/** * Tests creation, getting info from and destruction of * profiler objects, and their relationship with context, device and * queue wrapper objects. * */ static void create_add_destroy_test() { /* Test variables. */ CCLErr* err = NULL; CCLBuffer* buf1 = NULL; CCLBuffer* buf2 = NULL; CCLProf* prof = NULL; CCLContext* ctx = NULL; CCLDevice* d = NULL; CCLQueue* cq1 = NULL; CCLQueue* cq2 = NULL; CCLEvent* evt = NULL; CCLEventWaitList ewl = NULL; size_t buf_size = 8 * sizeof(cl_short); cl_short hbuf[8] = {1, 2, 3, 4, 5, 6, 7, 8}; cl_ulong duration, eff_duration; double time_elapsed; /* Create a new profile object. */ prof = ccl_prof_new(); /* Get a context and a device. */ ctx = ccl_test_context_new(&err); g_assert_no_error(err); d = ccl_context_get_device(ctx, 0, &err); g_assert_no_error(err); /* Create two command queue wrappers. */ cq1 = ccl_queue_new(ctx, d, CL_QUEUE_PROFILING_ENABLE, &err); g_assert_no_error(err); cq2 = ccl_queue_new(ctx, d, CL_QUEUE_PROFILING_ENABLE, &err); g_assert_no_error(err); /* Create device buffers. */ buf1 = ccl_buffer_new(ctx, CL_MEM_READ_ONLY, buf_size, NULL, &err); g_assert_no_error(err); buf2 = ccl_buffer_new(ctx, CL_MEM_READ_WRITE, buf_size, NULL, &err); g_assert_no_error(err); /* Start profile object timer. */ ccl_prof_start(prof); /* Transfer data to buffer. */ evt = ccl_buffer_enqueue_write( buf1, cq1, CL_FALSE, 0, buf_size, hbuf, NULL, &err); g_assert_no_error(err); /* Transfer data from one buffer to another. */ evt = ccl_buffer_enqueue_copy(buf1, buf2, cq2, 0, 0, buf_size, ccl_ewl(&ewl, evt, NULL), &err); g_assert_no_error(err); /* Wait for copy. */ ccl_event_wait(ccl_ewl(&ewl, evt, NULL), &err); g_assert_no_error(err); /* Stop profile object timer. */ ccl_prof_stop(prof); /* Add both queues to profile object. */ ccl_prof_add_queue(prof, "A Queue", cq1); ccl_prof_add_queue(prof, "Another Queue", cq2); /* Process queues. */ ccl_prof_calc(prof, &err); g_assert_no_error(err); /* Request some profiling information. */ time_elapsed = ccl_prof_time_elapsed(prof); duration = ccl_prof_get_duration(prof); eff_duration = ccl_prof_get_eff_duration(prof); g_debug("Profiling time elapsed: %lf", time_elapsed); g_debug("Profiling duration: %d", (cl_int) duration); g_debug("Profiling eff. duration: %d", (cl_int) eff_duration); /* Destroy buffers. */ ccl_buffer_destroy(buf1); ccl_buffer_destroy(buf2); /* Unref cq1, which should not be destroyed because it is held * by the profile object. */ ccl_queue_destroy(cq1); /* Destroy the profile object, which will also destroy cq1. cq2 * will me merely unrefed and must still be explicitly destroyed. */ ccl_prof_destroy(prof); /* Destroy cq2. */ ccl_queue_destroy(cq2); /* Destroy the context. */ ccl_context_destroy(ctx); /* Confirm that memory allocated by wrappers has been properly * freed. */ g_assert(ccl_wrapper_memcheck()); }
/** * Main program. * * @param argc Number of command line arguments. * @param argv Vector of command line arguments. * @return @link clo_error_codes::CLO_SUCCESS @endlink if program * terminates successfully, or another value of #clo_error_codes if an * error occurs. * */ int main(int argc, char **argv) { /* Status var aux */ int status; /* Context object for command line argument parsing. */ GOptionContext *context = NULL; /* Test data structures. */ cl_uchar* host_data = NULL; size_t bytes; cl_ulong total_time; FILE *outfile = NULL; CloType clotype_elem; /* Sorter object. */ CloSort* sorter = NULL; /* cf4ocl wrappers. */ CCLQueue* cq_exec = NULL; CCLQueue* cq_comm = NULL; CCLContext* ctx = NULL; CCLDevice* dev = NULL; /* Profiler object. */ CCLProf* prof; /* Host-based random number generator (mersenne twister) */ GRand* rng_host = NULL; /* Error management object. */ GError *err = NULL; /* Sorting benchmarks. */ cl_ulong** benchmarks = NULL; /* Parse command line options. */ context = g_option_context_new (" - " CLO_SORT_DESCRIPTION); g_option_context_add_main_entries(context, entries, NULL); g_option_context_parse(context, &argc, &argv, &err); g_if_err_goto(err, error_handler); clotype_elem = clo_type_by_name( type != NULL ? type : CLO_SORT_BENCHMARK_TYPE, &err); g_if_err_goto(err, error_handler); if (algorithm == NULL) algorithm = g_strdup(CLO_SORT_BENCHMARK_ALGORITHM); if (alg_options == NULL) alg_options = g_strdup(CLO_SORT_BENCHMARK_ALG_OPTS); /* Determine size in bytes of each element to sort. */ bytes = clo_type_sizeof(clotype_elem); /* Initialize random number generator. */ rng_host = g_rand_new_with_seed(rng_seed); /* Get the context wrapper and the chosen device. */ ctx = ccl_context_new_from_menu_full(&dev_idx, &err); g_if_err_goto(err, error_handler); dev = ccl_context_get_device(ctx, 0, &err); g_if_err_goto(err, error_handler); /* Get sorter object. */ sorter = clo_sort_new( algorithm, alg_options, ctx, &clotype_elem, NULL, NULL, NULL, compiler_opts, &err); g_if_err_goto(err, error_handler); /* Create command queues. */ cq_exec = ccl_queue_new(ctx, dev, CL_QUEUE_PROFILING_ENABLE, &err); g_if_err_goto(err, error_handler); cq_comm = ccl_queue_new(ctx, dev, 0, &err); g_if_err_goto(err, error_handler); /* Create benchmarks table. */ benchmarks = g_new(cl_ulong*, maxpo2); for (unsigned int i = 0; i < maxpo2; i++) benchmarks[i] = g_new0(cl_ulong, runs); /* Print options. */ printf("\n =========================== Selected options ============================\n\n"); printf(" Random number generator seed: %u\n", rng_seed); printf(" Maximum local worksize (0 is auto-select): %d\n", (int) lws); printf(" Type of elements to sort: %s\n", clo_type_get_name(clotype_elem)); printf(" Number of runs: %d\n", runs); printf(" Compiler Options: %s\n", compiler_opts); /* Create host buffer. */ host_data = g_slice_alloc(bytes * (1 << maxpo2)); /* Perform test. */ for (unsigned int N = 4; N <= maxpo2; N++) { unsigned int num_elems = 1 << N; gboolean sorted_ok = TRUE; for (unsigned int r = 0; r < runs; r++) { /* Initialize host buffer. */ for (unsigned int i = 0; i < num_elems; i++) { clo_bench_rand( rng_host, clotype_elem, host_data + bytes * i); } /* Perform sort. */ clo_sort_with_host_data(sorter, cq_exec, cq_comm, host_data, host_data, num_elems, lws, &err); g_if_err_goto(err, error_handler); /* Perform profiling. */ prof = ccl_prof_new(); ccl_prof_add_queue(prof, "q_exec", cq_exec); ccl_prof_calc(prof, &err); g_if_err_goto(err, error_handler); /* Save duration to benchmarks. */ benchmarks[N - 1][r] = ccl_prof_get_duration(prof); ccl_prof_destroy(prof); /* Check if sorting was well performed. */ sorted_ok = TRUE; /* Wait on host thread for data transfer queue to finish... */ ccl_queue_finish(cq_comm, &err); g_if_err_goto(err, error_handler); /* Start check. */ for (unsigned int i = 0; i < num_elems - 1; i++) { /* Perform comparison. */ if (clo_bench_compare(clotype_elem, host_data + bytes*i, host_data + bytes*(i + 1)) > 0) { sorted_ok = FALSE; break; } } } /* Print info. */ total_time = 0; for (unsigned int i = 0; i < runs; i++) total_time += benchmarks[N - 1][i]; printf(" - 2^%d: %lf Mkeys/s %s\n", N, (1e-6 * num_elems * runs) / (total_time * 1e-9), sorted_ok ? "" : "(sort did not work)"); } /* Save benchmarks to file, if filename was given as cli option. */ if (out) { outfile = fopen(out, "w"); for (unsigned int i = 0; i < maxpo2; i++) { fprintf(outfile, "%d", i); for (unsigned int j = 0; j < runs; j++) { fprintf(outfile, "\t%lu", (unsigned long)benchmarks[i][j]); } fprintf(outfile, "\n"); } fclose(outfile); } /* If we get here, everything went Ok. */ status = CLO_SUCCESS; g_assert(err == NULL); goto cleanup; error_handler: /* Handle error. */ g_assert(err != NULL); fprintf(stderr, "Error: %s\n", err->message); g_error_free(err); cleanup: /* Free sorter object. */ if (sorter) clo_sort_destroy(sorter); /* Free command line options. */ if (context) g_option_context_free(context); if (algorithm) g_free(algorithm); if (alg_options) g_free(alg_options); if (compiler_opts) g_free(compiler_opts); if (out) g_free(out); /* Free host-based random number generator. */ if (rng_host) g_rand_free(rng_host); /* Free OpenCL wrappers. */ if (cq_exec) ccl_queue_destroy(cq_exec); if (cq_comm) ccl_queue_destroy(cq_comm); if (ctx) ccl_context_destroy(ctx); /* Free host resources */ if (host_data) g_slice_free1(bytes * (1 << maxpo2), host_data); /* Free benchmarks. */ if (benchmarks) { for (unsigned int i = 0; i < maxpo2; i++) if (benchmarks[i]) g_free(benchmarks[i]); g_free(benchmarks); } /* Bye. */ return status; }
/** * Cellular automata sample main function. * */ int main(int argc, char* argv[]) { /* Wrappers for OpenCL objects. */ CCLContext* ctx; CCLDevice* dev; CCLImage* img1; CCLImage* img2; CCLProgram* prg; CCLKernel* krnl; CCLEvent* evt1; CCLEvent* evt2; /* Other variables. */ CCLEventWaitList ewl = NULL; /* Profiler object. */ CCLProf* prof; /* Output images filename. */ char* filename; /* Selected device, may be given in command line. */ int dev_idx = -1; /* Error handling object (must be NULL). */ GError* err = NULL; /* Does selected device support images? */ cl_bool image_ok; /* Initial sim state. */ cl_uchar4* input_image; /* Simulation states. */ cl_uchar4** output_images; /* RNG seed, may be given in command line. */ unsigned int seed; /* Image file write status. */ int file_write_status; /* Image format. */ cl_image_format image_format = { CL_RGBA, CL_UNSIGNED_INT8 }; /* Thread data. */ struct thread_data td; /* Global and local worksizes. */ size_t gws[2]; size_t lws[2]; /* Threads. */ GThread* comm_thread; GThread* exec_thread; /* Check arguments. */ if (argc >= 2) { /* Check if a device was specified in the command line. */ dev_idx = atoi(argv[1]); } if (argc >= 3) { /* Check if a RNG seed was specified. */ seed = atoi(argv[2]); } else { seed = (unsigned int) time(NULL); } /* Initialize RNG. */ srand(seed); /* Create random initial state. */ input_image = (cl_uchar4*) malloc(CA_WIDTH * CA_HEIGHT * sizeof(cl_uchar4)); for (cl_uint i = 0; i < CA_WIDTH * CA_HEIGHT; ++i) { cl_uchar state = (rand() & 0x3) ? 0xFF : 0x00; input_image[i] = (cl_uchar4) {{ state, state, state, 0xFF }}; } /* Allocate space for simulation results. */ output_images = (cl_uchar4**) malloc((CA_ITERS + 1) * sizeof(cl_uchar4*)); for (cl_uint i = 0; i < CA_ITERS + 1; ++i) output_images[i] = (cl_uchar4*) malloc(CA_WIDTH * CA_HEIGHT * sizeof(cl_uchar4)); /* Create context using device selected from menu. */ ctx = ccl_context_new_from_menu_full(&dev_idx, &err); HANDLE_ERROR(err); /* Get first device in context. */ dev = ccl_context_get_device(ctx, 0, &err); HANDLE_ERROR(err); /* Ask device if it supports images. */ image_ok = ccl_device_get_info_scalar( dev, CL_DEVICE_IMAGE_SUPPORT, cl_bool, &err); HANDLE_ERROR(err); if (!image_ok) ERROR_MSG_AND_EXIT("Selected device doesn't support images."); /* Create command queues. */ queue_exec = ccl_queue_new(ctx, dev, CL_QUEUE_PROFILING_ENABLE, &err); HANDLE_ERROR(err); queue_comm = ccl_queue_new(ctx, dev, CL_QUEUE_PROFILING_ENABLE, &err); HANDLE_ERROR(err); /* Create 2D image for initial state. */ img1 = ccl_image_new(ctx, CL_MEM_READ_WRITE, &image_format, NULL, &err, "image_type", (cl_mem_object_type) CL_MEM_OBJECT_IMAGE2D, "image_width", (size_t) CA_WIDTH, "image_height", (size_t) CA_HEIGHT, NULL); HANDLE_ERROR(err); /* Create another 2D image for double buffering. */ img2 = ccl_image_new(ctx, CL_MEM_READ_WRITE, &image_format, NULL, &err, "image_type", (cl_mem_object_type) CL_MEM_OBJECT_IMAGE2D, "image_width", (size_t) CA_WIDTH, "image_height", (size_t) CA_HEIGHT, NULL); HANDLE_ERROR(err); /* Create program from kernel source and compile it. */ prg = ccl_program_new_from_source(ctx, CA_KERNEL, &err); HANDLE_ERROR(err); ccl_program_build(prg, NULL, &err); HANDLE_ERROR(err); /* Get kernel wrapper. */ krnl = ccl_program_get_kernel(prg, "ca", &err); HANDLE_ERROR(err); /* Determine nice local and global worksizes. */ ccl_kernel_suggest_worksizes(krnl, dev, 2, real_ws, gws, lws, &err); HANDLE_ERROR(err); printf("\n * Global work-size: (%d, %d)\n", (int) gws[0], (int) gws[1]); printf(" * Local work-size: (%d, %d)\n", (int) lws[0], (int) lws[1]); /* Create thread communication queues. */ comm_thread_queue = g_async_queue_new(); exec_thread_queue = g_async_queue_new(); host_thread_queue = g_async_queue_new(); /* Setup thread data. */ td.krnl = krnl; td.img1 = img1; td.img2 = img2; td.gws = gws; td.lws = lws; td.output_images = output_images; /* Create threads. */ exec_thread = g_thread_new("exec_thread", exec_func, &td); comm_thread = g_thread_new("comm_thread", comm_func, &td); /* Start profiling. */ prof = ccl_prof_new(); ccl_prof_start(prof); /* Write initial state. */ ccl_image_enqueue_write(img1, queue_comm, CL_TRUE, origin, region, 0, 0, input_image, NULL, &err); HANDLE_ERROR(err); /* Run CA_ITERS iterations of the CA. */ for (cl_uint i = 0; i < CA_ITERS; ++i) { /* Send message to comms thread. */ g_async_queue_push(comm_thread_queue, &go_msg); /* Send message to exec thread. */ g_async_queue_push(exec_thread_queue, &go_msg); /* Get event wrappers from both threads. */ evt1 = (CCLEvent*) g_async_queue_pop(host_thread_queue); evt2 = (CCLEvent*) g_async_queue_pop(host_thread_queue); /* Can't continue until this iteration is over. */ ccl_event_wait_list_add(&ewl, evt1, evt2, NULL); /* Wait for events. */ ccl_event_wait(&ewl, &err); HANDLE_ERROR(err); } /* Send message to comms thread to read last result. */ g_async_queue_push(comm_thread_queue, &go_msg); /* Send stop messages to both threads. */ g_async_queue_push(comm_thread_queue, &stop_msg); g_async_queue_push(exec_thread_queue, &stop_msg); /* Get event wrapper from comms thread. */ evt1 = (CCLEvent*) g_async_queue_pop(host_thread_queue); /* Can't continue until final read is over. */ ccl_event_wait_list_add(&ewl, evt1, NULL); ccl_event_wait(&ewl, &err); HANDLE_ERROR(err); /* Make sure both queues are finished. */ ccl_queue_finish(queue_comm, &err); HANDLE_ERROR(err); ccl_queue_finish(queue_exec, &err); HANDLE_ERROR(err); /* Stop profiling timer and add queues for analysis. */ ccl_prof_stop(prof); ccl_prof_add_queue(prof, "Comms", queue_comm); ccl_prof_add_queue(prof, "Exec", queue_exec); /* Allocate space for base filename. */ filename = (char*) malloc( (strlen(IMAGE_FILE_PREFIX ".png") + IMAGE_FILE_NUM_DIGITS + 1) * sizeof(char)); /* Write results to image files. */ for (cl_uint i = 0; i < CA_ITERS; ++i) { /* Determine next filename. */ sprintf(filename, "%s%0" G_STRINGIFY(IMAGE_FILE_NUM_DIGITS) "d.png", IMAGE_FILE_PREFIX, i); /* Save next image. */ file_write_status = stbi_write_png(filename, CA_WIDTH, CA_HEIGHT, 4, output_images[i], CA_WIDTH * sizeof(cl_uchar4)); /* Give feedback if unable to save image. */ if (!file_write_status) { ERROR_MSG_AND_EXIT("Unable to save image in file."); } } /* Process profiling info. */ ccl_prof_calc(prof, &err); HANDLE_ERROR(err); /* Print profiling info. */ ccl_prof_print_summary(prof); /* Save profiling info. */ ccl_prof_export_info_file(prof, "prof.tsv", &err); HANDLE_ERROR(err); /* Destroy threads. */ g_thread_join(exec_thread); g_thread_join(comm_thread); /* Destroy thread communication queues. */ g_async_queue_unref(comm_thread_queue); g_async_queue_unref(exec_thread_queue); g_async_queue_unref(host_thread_queue); /* Release host buffers. */ free(filename); free(input_image); for (cl_uint i = 0; i < CA_ITERS + 1; ++i) free(output_images[i]); free(output_images); /* Release wrappers. */ ccl_image_destroy(img1); ccl_image_destroy(img2); ccl_program_destroy(prg); ccl_queue_destroy(queue_comm); ccl_queue_destroy(queue_exec); ccl_context_destroy(ctx); /* Destroy profiler. */ ccl_prof_destroy(prof); /* Check all wrappers have been destroyed. */ g_assert(ccl_wrapper_memcheck()); /* Terminate. */ return 0; }
/** * Canonical example main function. * */ int main(int argc, char** argv) { /* Number of elements in buffer. */ size_t buf_n = DEF_BUF_N; /* Device selected specified in the command line. */ int dev_idx = -1; /* Program return value. */ int ret_val; /* Check if a device was specified in the command line. */ if (argc >= 2) { dev_idx = atoi(argv[1]); } /* Check if a new buffer size was specified in the command line. */ if (argc >= 3) { buf_n = atoi(argv[2]); } /* Wrappers. */ CCLContext* ctx = NULL; CCLProgram* prg = NULL; CCLDevice* dev = NULL; CCLQueue* queue = NULL; CCLKernel* krnl = NULL; CCLBuffer* a_dev; CCLBuffer* b_dev; CCLBuffer* c_dev; CCLEvent* evt_write1; CCLEvent* evt_write2; CCLEvent* evt_exec; CCLEventWaitList ewl = NULL; /* Profiler. */ CCLProf* prof; /* Global and local worksizes. */ size_t gws = 0; size_t lws = 0; /* Host buffers. */ cl_uint* a_host = NULL; cl_uint* b_host = NULL; cl_uint* c_host = NULL; cl_uint d_host; /* Error reporting object. */ CCLErr* err = NULL; /* Check results flag. */ cl_bool check_result; /* Create a context with device selected from menu. */ ctx = ccl_context_new_from_menu_full(&dev_idx, &err); HANDLE_ERROR(err); /* Get the selected device. */ dev = ccl_context_get_device(ctx, 0, &err); HANDLE_ERROR(err); /* Create a new program from kernel source. */ prg = ccl_program_new_from_source(ctx, KERNEL_SRC, &err); HANDLE_ERROR(err); /* Build program. */ ccl_program_build(prg, NULL, &err); HANDLE_ERROR(err); /* Create a command queue. */ queue = ccl_queue_new(ctx, dev, CL_QUEUE_PROFILING_ENABLE, &err); HANDLE_ERROR(err); /* Get kernel object. */ krnl = ccl_program_get_kernel(prg, KERNEL_NAME, &err); HANDLE_ERROR(err); /* Get worksizes. */ lws = ccl_kernel_suggest_worksizes(krnl, dev, 1, &buf_n, &gws, &lws, &err); HANDLE_ERROR(err); /* Show worksizes. */ printf("\n"); printf(" * Global worksize: %d\n", (int) gws); printf(" * Local worksize : %d\n", (int) lws); /* Initialize host buffers. */ a_host = (cl_uint*) malloc(sizeof(cl_uint) * buf_n); b_host = (cl_uint*) malloc(sizeof(cl_uint) * buf_n); c_host = (cl_uint*) malloc(sizeof(cl_uint) * buf_n); /* Fill host buffers. */ for (cl_uint i = 0; i < buf_n; ++i) { a_host[i] = i; b_host[i] = buf_n - i; } d_host = buf_n / 4; /* Create device buffers. */ a_dev = ccl_buffer_new(ctx, CL_MEM_READ_ONLY, buf_n * sizeof(cl_uint), NULL, &err); HANDLE_ERROR(err); b_dev = ccl_buffer_new(ctx, CL_MEM_READ_ONLY, buf_n * sizeof(cl_uint), NULL, &err); HANDLE_ERROR(err); c_dev = ccl_buffer_new(ctx, CL_MEM_WRITE_ONLY, buf_n * sizeof(cl_uint), NULL, &err); HANDLE_ERROR(err); /* Copy host data to device buffers without waiting for transfer * to terminate before continuing host program. */ evt_write1 = ccl_buffer_enqueue_write(a_dev, queue, CL_FALSE, 0, buf_n * sizeof(cl_uint), a_host, NULL, &err); HANDLE_ERROR(err); evt_write2 = ccl_buffer_enqueue_write(b_dev, queue, CL_FALSE, 0, buf_n * sizeof(cl_uint), b_host, NULL, &err); HANDLE_ERROR(err); /* Initialize event wait list and add the two transfer events. */ ccl_event_wait_list_add(&ewl, evt_write1, evt_write2, NULL); /* Execute program kernel, waiting for the two transfer events * to terminate (this will empty the event wait list). */ evt_exec = ccl_program_enqueue_kernel(prg, KERNEL_NAME, queue, 1, NULL, &gws, &lws, &ewl, &err, /* Kernel arguments. */ a_dev, b_dev, c_dev, ccl_arg_priv(d_host, cl_uint), ccl_arg_priv(buf_n, cl_uint), NULL); HANDLE_ERROR(err); /* Add the kernel termination event to the wait list. */ ccl_event_wait_list_add(&ewl, evt_exec, NULL); /* Sync. queue for events in wait list (just the execute event in * this case) to terminate before going forward... */ ccl_enqueue_barrier(queue, &ewl, &err); HANDLE_ERROR(err); /* Read back results from host waiting for transfer to terminate * before continuing host program. */ ccl_buffer_enqueue_read(c_dev, queue, CL_TRUE, 0, buf_n * sizeof(cl_uint), c_host, NULL, &err); HANDLE_ERROR(err); /* Check results are as expected (not available with OpenCL stub). */ check_result = CL_TRUE; for (cl_uint i = 0; i < buf_n; ++i) { if(c_host[i] != a_host[i] + b_host[i] + d_host) { check_result = CL_FALSE; break; } } if (check_result) { fprintf(stdout, " * Kernel execution produced the expected results.\n"); ret_val = EXIT_SUCCESS; } else { fprintf(stderr, " * Kernel execution failed to produce the expected results.\n"); ret_val = EXIT_FAILURE; } /* Perform profiling. */ prof = ccl_prof_new(); ccl_prof_add_queue(prof, "queue1", queue); ccl_prof_calc(prof, &err); HANDLE_ERROR(err); /* Show profiling info. */ ccl_prof_print_summary(prof); /* Export profiling info. */ ccl_prof_export_info_file(prof, "out.tsv", &err); HANDLE_ERROR(err); /* Destroy profiler object. */ ccl_prof_destroy(prof); /* Destroy host buffers. */ free(a_host); free(b_host); free(c_host); /* Destroy wrappers. */ ccl_buffer_destroy(a_dev); ccl_buffer_destroy(b_dev); ccl_buffer_destroy(c_dev); ccl_queue_destroy(queue); ccl_program_destroy(prg); ccl_context_destroy(ctx); /* Confirm that memory allocated by wrappers has been properly freed. */ assert(ccl_wrapper_memcheck()); /* Bye. */ return ret_val; }