template <typename Scalar> Scalar i0e(Scalar x) { /* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */ static const Scalar A[] = { -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 }; /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */ static const Scalar B[] = { -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 }; if (x < 0) x = -x; if (x <= 8) { Scalar y = (x * (Scalar) 0.5) - (Scalar) 2.0; return chbevl(y, A, 30); } else { return chbevl((Scalar) 32.0/x - (Scalar) 2.0, B, 25) / std::sqrt(x); } }
double i0_approx(double x) { double y; if (x < 0) x = -x; if (x <= 8.0) { y = (x / 2.0) - 2.0; return(exp(x) * chbevl(y, A_approx, 15)); } return(exp(x) * chbevl(32.0 / x - 2.0, B_approx, 4) / sqrt(x)); }
double i0e(double x) { double y; if (x < 0) x = -x; if (x <= 8.0) { y = (x / 2.0) - 2.0; return(chbevl(y, A, 30)); } return(chbevl(32.0 / x - 2.0, B, 25) / sqrt(x)); }
double i0(double x) { double y; if( x < 0 ) x = -x; if( x <= 8.0 ) { y = (x/2.0) - 2.0; return( exp(x) * chbevl( y, A_i0, 30 ) ); } return( exp(x) * chbevl( 32.0/x - 2.0, B_i0, 25 ) / sqrt(x) ); }
double k1e (double x) { double y; if (x <= 0.0) { mtherr("k1e", CEPHES_DOMAIN); return MAXNUM; } if (x <= 2.0) { y = x * x - 2.0; y = log(0.5 * x) * cephes_bessel_I1(x) + chbevl(y, A, 11) / x; return y * exp(x); } return chbevl(8.0/x - 2.0, B, 25) / sqrt(x); }
double i1e( double x, int prec1, int prec2 ) { double y, z; z = fabs(x); if( z <= 8.0 ) { y = (z/2.0) - 2.0; z = chbevl( y, A, 29, prec1 ) * z; } else { z = chbevl( 32.0/z - 2.0, B, 25, prec2 ) / sqrt(z); } if( x < 0.0 ) z = -z; return( z ); }
double cephes_bessel_K1 (double x) { double y, z; z = 0.5 * x; if (z <= 0.0) { mtherr("k1", CEPHES_DOMAIN); return MAXNUM; } if (x <= 2.0) { y = x * x - 2.0; y = log(z) * cephes_bessel_I1(x) + chbevl(y, A, 11) / x; return y; } return exp(-x) * chbevl(8.0/x - 2.0, B, 25) / sqrt(x); }
double i1(double x) { double y, z; z = fabs(x); if( z <= 8.0 ) { y = (z/2.0) - 2.0; z = chbevl( y, A_i1, 29 ) * z * exp(z); } else { z = exp(z) * chbevl( 32.0/z - 2.0, B_i1, 25 ) / sqrt(z); } if( x < 0.0 ) z = -z; return( z ); }
double k1(double x) { double y, z; z = 0.5 * x; if( z <= 0.0 ) /* { mtherr( "k1", DOMAIN ); return( MAXNUM ); } */ assert(0); if( x <= 2.0 ) { y = x * x - 2.0; y = log(z) * i1(x) + chbevl( y, A_k1, 11 ) / x; return( y ); } return( exp(-x) * chbevl( 8.0/x - 2.0, B_k1, 25 ) / sqrt(x) ); }
double k0(double x) { double y, z; if( x <= 0.0 ) /* { mtherr( "k0", DOMAIN ); return( MAXNUM ); } */ assert(0); if( x <= 2.0 ) { y = x * x - 2.0; y = chbevl( y, A_k0, 10 ) - log( 0.5 * x ) * i0(x); return( y ); } z = 8.0/x - 2.0; y = exp(-x) * chbevl( z, B_k0, 25 ) / sqrt(x); return(y); }
double i0e(double x, int prec1, int prec2) { /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier */ static double A[] = { -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 }; static double B[] = { -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 }; double y; if (fabs(x) < DSMALL) return ONE; if( x < 0 ) x = -x; if( x <= 8.0 ) { y = (x/2.0) - 2.0; return( chbevl( y, A, 30, prec1 ) ); } return( chbevl( 32.0/x - 2.0, B, 25, prec2 ) / sqrt(x) ); }
double i1e( double x, int prec1, int prec2 ) { /* Cephes Math Library Release 2.8: June, 2000 Copyright 1985, 1987, 2000 by Stephen L. Moshier */ static double A[] = { 2.77791411276104639959E-18, -2.11142121435816608115E-17, 1.55363195773620046921E-16, -1.10559694773538630805E-15, 7.60068429473540693410E-15, -5.04218550472791168711E-14, 3.22379336594557470981E-13, -1.98397439776494371520E-12, 1.17361862988909016308E-11, -6.66348972350202774223E-11, 3.62559028155211703701E-10, -1.88724975172282928790E-9, 9.38153738649577178388E-9, -4.44505912879632808065E-8, 2.00329475355213526229E-7, -8.56872026469545474066E-7, 3.47025130813767847674E-6, -1.32731636560394358279E-5, 4.78156510755005422638E-5, -1.61760815825896745588E-4, 5.12285956168575772895E-4, -1.51357245063125314899E-3, 4.15642294431288815669E-3, -1.05640848946261981558E-2, 2.47264490306265168283E-2, -5.29459812080949914269E-2, 1.02643658689847095384E-1, -1.76416518357834055153E-1, 2.52587186443633654823E-1 }; static double B[] = { 7.51729631084210481353E-18, 4.41434832307170791151E-18, -4.65030536848935832153E-17, -3.20952592199342395980E-17, 2.96262899764595013876E-16, 3.30820231092092828324E-16, -1.88035477551078244854E-15, -3.81440307243700780478E-15, 1.04202769841288027642E-14, 4.27244001671195135429E-14, -2.10154184277266431302E-14, -4.08355111109219731823E-13, -7.19855177624590851209E-13, 2.03562854414708950722E-12, 1.41258074366137813316E-11, 3.25260358301548823856E-11, -1.89749581235054123450E-11, -5.58974346219658380687E-10, -3.83538038596423702205E-9, -2.63146884688951950684E-8, -2.51223623787020892529E-7, -3.88256480887769039346E-6, -1.10588938762623716291E-4, -9.76109749136146840777E-3, 7.78576235018280120474E-1 }; double y, z; z = fabs(x); if( z <= 8.0 ) { y = (z/2.0) - 2.0; z = chbevl( y, A, 29, prec1 ) * z; } else { z = chbevl( 32.0/z - 2.0, B, 25, prec2 ) / sqrt(z); } if( x < 0.0 ) z = -z; return( z ); }
int shichi(double x, double *si, double *ci ) { double k, z, c, s, a; short sign; if( x < 0.0 ) { sign = -1; x = -x; } else sign = 0; if( x == 0.0 ) { *si = 0.0; *ci = -MAXNUM; return( 0 ); } if( x >= 8.0 ) goto chb; z = x * x; /* Direct power series expansion */ a = 1.0; s = 1.0; c = 0.0; k = 2.0; do { a *= z/k; c += a/k; k += 1.0; a /= k; s += a/k; k += 1.0; } while( fabs(a/s) > MACHEP ); s *= x; goto done; chb: if( x < 18.0 ) { a = (576.0/x - 52.0)/10.0; k = exp(x) / x; s = k * chbevl( a, S1, 22 ); c = k * chbevl( a, C1, 23 ); goto done; } if( x <= 88.0 ) { a = (6336.0/x - 212.0)/70.0; k = exp(x) / x; s = k * chbevl( a, S2, 23 ); c = k * chbevl( a, C2, 24 ); goto done; } else { if( sign ) *si = -MAXNUM; else *si = MAXNUM; *ci = MAXNUM; return(0); } done: if( sign ) s = -s; *si = s; *ci = eulers_constant + log(x) + c; return(0); }