// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
    // note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
    // save approximation with multiple quadratics for later
int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Quadratics allowQuadratics,
        ReduceOrder_Styles reduceStyle) {
    int index, minX, maxX, minY, maxY;
    int minXSet, minYSet;
    minX = maxX = minY = maxY = 0;
    minXSet = minYSet = 0;
    for (index = 1; index < 4; ++index) {
        if (cubic[minX].x > cubic[index].x) {
            minX = index;
        }
        if (cubic[minY].y > cubic[index].y) {
            minY = index;
        }
        if (cubic[maxX].x < cubic[index].x) {
            maxX = index;
        }
        if (cubic[maxY].y < cubic[index].y) {
            maxY = index;
        }
    }
    for (index = 0; index < 4; ++index) {
        double cx = cubic[index].x;
        double cy = cubic[index].y;
        double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
                SkTMax(fabs(cubic[minX].x), fabs(cubic[minY].y))));
        if (denom == 0) {
            minXSet |= 1 << index;
            minYSet |= 1 << index;
            continue;
        }
        double inv = 1 / denom;
        if (approximately_equal_half(cx * inv, cubic[minX].x * inv)) {
            minXSet |= 1 << index;
        }
        if (approximately_equal_half(cy * inv, cubic[minY].y * inv)) {
            minYSet |= 1 << index;
        }
    }
    if (minXSet == 0xF) { // test for vertical line
        if (minYSet == 0xF) { // return 1 if all four are coincident
            return coincident_line(cubic, reduction);
        }
        return vertical_line(cubic, reduceStyle, reduction);
    }
    if (minYSet == 0xF) { // test for horizontal line
        return horizontal_line(cubic, reduceStyle, reduction);
    }
    int result = check_linear(cubic, reduceStyle, minX, maxX, minY, maxY, reduction);
    if (result) {
        return result;
    }
    if (allowQuadratics == kReduceOrder_QuadraticsAllowed
            && (result = check_quadratic(cubic, reduction))) {
        return result;
    }
    memcpy(reduction, cubic, sizeof(Cubic));
    return 4;
}
// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
    // note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
    // save approximation with multiple quadratics for later
int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) {
    int index, minX, maxX, minY, maxY;
    int minXSet, minYSet;
    minX = maxX = minY = maxY = 0;
    minXSet = minYSet = 0;
    for (index = 1; index < 4; ++index) {
        if (cubic[minX].fX > cubic[index].fX) {
            minX = index;
        }
        if (cubic[minY].fY > cubic[index].fY) {
            minY = index;
        }
        if (cubic[maxX].fX < cubic[index].fX) {
            maxX = index;
        }
        if (cubic[maxY].fY < cubic[index].fY) {
            maxY = index;
        }
    }
    for (index = 0; index < 4; ++index) {
        double cx = cubic[index].fX;
        double cy = cubic[index].fY;
        double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
                SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY))));
        if (denom == 0) {
            minXSet |= 1 << index;
            minYSet |= 1 << index;
            continue;
        }
        double inv = 1 / denom;
        if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) {
            minXSet |= 1 << index;
        }
        if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) {
            minYSet |= 1 << index;
        }
    }
    if (minXSet == 0xF) {  // test for vertical line
        if (minYSet == 0xF) {  // return 1 if all four are coincident
            return coincident_line(cubic, fCubic);
        }
        return vertical_line(cubic, fCubic);
    }
    if (minYSet == 0xF) {  // test for horizontal line
        return horizontal_line(cubic, fCubic);
    }
    int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic);
    if (result) {
        return result;
    }
    if (allowQuadratics == SkReduceOrder::kAllow_Quadratics
            && (result = check_quadratic(cubic, fCubic))) {
        return result;
    }
    fCubic = cubic;
    return 4;
}
Exemple #3
0
// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
    // note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
    // save approximation with multiple quadratics for later
int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQuadratics) {
    int index, minX, maxX, minY, maxY;
    int minXSet, minYSet;
    minX = maxX = minY = maxY = 0;
    minXSet = minYSet = 0;
    for (index = 1; index < 4; ++index) {
        if (cubic[minX].x > cubic[index].x) {
            minX = index;
        }
        if (cubic[minY].y > cubic[index].y) {
            minY = index;
        }
        if (cubic[maxX].x < cubic[index].x) {
            maxX = index;
        }
        if (cubic[maxY].y < cubic[index].y) {
            maxY = index;
        }
    }
    for (index = 0; index < 4; ++index) {
        if (approximately_equal(cubic[index].x, cubic[minX].x)) {
            minXSet |= 1 << index;
        }
        if (approximately_equal(cubic[index].y, cubic[minY].y)) {
            minYSet |= 1 << index;
        }
    }
    if (minXSet == 0xF) { // test for vertical line
        if (minYSet == 0xF) { // return 1 if all four are coincident
            return coincident_line(cubic, reduction);
        }
        return vertical_line(cubic, reduction);
    }
    if (minYSet == 0xF) { // test for horizontal line
        return horizontal_line(cubic, reduction);
    }
    int result = check_linear(cubic, reduction, minX, maxX, minY, maxY);
    if (result) {
        return result;
    }
    if (allowQuadratics && (result = check_quadratic(cubic, reduction))) {
        return result;
    }
    memcpy(reduction, cubic, sizeof(Cubic));
    return 4;
}
Exemple #4
0
void STDMETHODCALLTYPE SkDWriteGeometrySink::AddBeziers(const D2D1_BEZIER_SEGMENT *beziers, UINT beziersCount) {
    SkPoint lastPt;
    fPath->getLastPt(&lastPt);
    D2D1_POINT_2F prevPt = { SkScalarToFloat(lastPt.fX), SkScalarToFloat(lastPt.fY) };

    for (const D2D1_BEZIER_SEGMENT *end = &beziers[beziersCount]; beziers < end; ++beziers) {
        Cubic cubic = { { prevPt.x, prevPt.y },
                        { beziers->point1.x, beziers->point1.y },
                        { beziers->point2.x, beziers->point2.y },
                        { beziers->point3.x, beziers->point3.y }, };
        Quadratic quadratic;
        if (check_quadratic(cubic, quadratic)) {
            fPath->quadTo(quadratic[1].x, quadratic[1].y,
                          quadratic[2].x, quadratic[2].y);
        } else {
            fPath->cubicTo(beziers->point1.x, beziers->point1.y,
                           beziers->point2.x, beziers->point2.y,
                           beziers->point3.x, beziers->point3.y);
        }
        prevPt = beziers->point3;
    }
}