Exemple #1
0
SEXP Csparse_Csparse_prod(SEXP a, SEXP b)
{
    CHM_SP
	cha = AS_CHM_SP(a),
	chb = AS_CHM_SP(b),
	chc = cholmod_ssmult(cha, chb, /*out_stype:*/ 0,
			       /* values:= is_numeric (T/F) */ cha->xtype > 0,
			       /*out sorted:*/ 1, &c);
    const char *cl_a = class_P(a), *cl_b = class_P(b);
    char diag[] = {'\0', '\0'};
    int uploT = 0;
    SEXP dn = PROTECT(allocVector(VECSXP, 2));
    R_CheckStack();

#ifdef DEBUG_Matrix_verbose
    Rprintf("DBG Csparse_C*_prod(%s, %s)\n", cl_a, cl_b);
#endif

    /* Preserve triangularity and even unit-triangularity if appropriate.
     * Note that in that case, the multiplication itself should happen
     * faster.  But there's no support for that in CHOLMOD */

    /* UGLY hack -- rather should have (fast!) C-level version of
     *       is(a, "triangularMatrix") etc */
    if (cl_a[1] == 't' && cl_b[1] == 't')
	/* FIXME: fails for "Cholesky","BunchKaufmann"..*/
	if(*uplo_P(a) == *uplo_P(b)) { /* both upper, or both lower tri. */
	    uploT = (*uplo_P(a) == 'U') ? 1 : -1;
	    if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */
		/* "remove the diagonal entries": */
		chm_diagN2U(chc, uploT, /* do_realloc */ FALSE);
		diag[0]= 'U';
	    }
	    else diag[0]= 'N';
	}
    SET_VECTOR_ELT(dn, 0,	/* establish dimnames */
		   duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0)));
    SET_VECTOR_ELT(dn, 1,
		   duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), 1)));
    UNPROTECT(1);
    return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn);
}
Exemple #2
0
SEXP Csparse_Csparse_crossprod(SEXP a, SEXP b, SEXP trans)
{
    int tr = asLogical(trans);
    CHM_SP
	cha = AS_CHM_SP(a),
	chb = AS_CHM_SP(b),
	chTr, chc;
    const char *cl_a = class_P(a), *cl_b = class_P(b);
    char diag[] = {'\0', '\0'};
    int uploT = 0;
    SEXP dn = PROTECT(allocVector(VECSXP, 2));
    R_CheckStack();

    chTr = cholmod_transpose((tr) ? chb : cha, chb->xtype, &c);
    chc = cholmod_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb,
			 /*out_stype:*/ 0, cha->xtype, /*out sorted:*/ 1, &c);
    cholmod_free_sparse(&chTr, &c);

    /* Preserve triangularity and unit-triangularity if appropriate;
     * see Csparse_Csparse_prod() for comments */
    if (cl_a[1] == 't' && cl_b[1] == 't')
	if(*uplo_P(a) != *uplo_P(b)) { /* one 'U', the other 'L' */
	    uploT = (*uplo_P(b) == 'U') ? 1 : -1;
	    if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */
		chm_diagN2U(chc, uploT, /* do_realloc */ FALSE);
		diag[0]= 'U';
	    }
	    else diag[0]= 'N';
	}
    SET_VECTOR_ELT(dn, 0,	/* establish dimnames */
		   duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), (tr) ? 0 : 1)));
    SET_VECTOR_ELT(dn, 1,
		   duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), (tr) ? 0 : 1)));
    UNPROTECT(1);
    return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn);
}
BasicMesh MeshTransferer::transfer(const vector<PhGUtils::Matrix3x3d> &S1grad)
{
  if( !(S0set && T0set) ) {
    throw "S0 or T0 not set.";
  }

  auto &S = S1grad;
  auto &T = T0grad;

  int nfaces = S0.faces.nrow;
  int nverts = S0.verts.nrow;

  // assemble sparse matrix A
  int nrowsA = nfaces * 3;
  int nsv = stationary_vertices.size();
  int nrowsC = nsv;
  int nrows = nrowsA + nrowsC;
  int ncols = nverts;
  int ntermsA = nfaces*9;
  int ntermsC = stationary_vertices.size();
  int nterms = ntermsA + ntermsC;
  SparseMatrix A(nrows, ncols, nterms);
  // fill in the deformation gradient part
  for(int i=0, ioffset=0;i<nfaces;++i) {
    /*
     * Ai:
     *     1 2 3 4 5 ... nfaces*3
     *     1 2 3 4 5 ... nfaces*3
     *     1 2 3 4 5 ... nfaces*3
     * Ai = reshape(Ai, 1, nfaces*9)
     *
     * Aj = reshape(repmat(S0.faces', 3, 1), 1, nfaces*9)
     * Av = reshape(cell2mat(T)', 1, nfaces*9)
     */
    int *f = S0.faces.rowptr(i);

    auto Ti = T[i];

    A.append(ioffset, f[0], Ti(0));
    A.append(ioffset, f[1], Ti(1));
    A.append(ioffset, f[2], Ti(2));
    ++ioffset;

    A.append(ioffset, f[0], Ti(3));
    A.append(ioffset, f[1], Ti(4));
    A.append(ioffset, f[2], Ti(5));
    ++ioffset;

    A.append(ioffset, f[0], Ti(6));
    A.append(ioffset, f[1], Ti(7));
    A.append(ioffset, f[2], Ti(8));
    ++ioffset;
  }

  // fill in the lower part of A, stationary vertices part
  for(int i=0;i<nsv;++i) {
    A.append(nrowsA+i, stationary_vertices[i], 1);
  }

  ofstream fA("A.txt");
  fA<<A;
  fA.close();

  // fill in c matrix
  DenseMatrix c(nrows, 3);
  for(int i=0;i<3;++i) {
    for(int j=0, joffset=0;j<nfaces;++j) {
      auto &Sj = S[j];
      c(joffset, i) = Sj(0, i); ++joffset;
      c(joffset, i) = Sj(1, i); ++joffset;
      c(joffset, i) = Sj(2, i); ++joffset;
    }
  }
  for(int i=0;i<3;++i) {
    for(int j=0, joffset=nrowsA;j<nsv;++j,++joffset) {
      auto vj = T0.verts.rowptr(stationary_vertices[j]);
      c(joffset, i) = vj[i];
    }
  }

  cholmod_sparse *G = A.to_sparse();
  cholmod_sparse *Gt = cholmod_transpose(G, 2, global::cm);

  // compute GtD
  // just multiply Dsi to corresponding elemenets
  double *Gtx = (double*)Gt->x;
  const int* Gtp = (const int*)(Gt->p);
  for(int i=0;i<nrowsA;++i) {
    int fidx = i/3;
    for(int j=Gtp[i];j<Gtp[i+1];++j) {
      Gtx[j] *= Ds(fidx);
    }
  }

  // compute GtDG
  cholmod_sparse *GtDG = cholmod_ssmult(Gt, G, 0, 1, 1, global::cm);
  GtDG->stype = 1;

  // compute GtD * c
  cholmod_dense *GtDc = cholmod_allocate_dense(ncols, 3, ncols, CHOLMOD_REAL, global::cm);
  double alpha[2] = {1, 0}; double beta[2] = {0, 0};
  cholmod_sdmult(Gt, 0, alpha, beta, c.to_dense(), GtDc, global::cm);

  // solve for GtDG \ GtDc
  cholmod_factor *L = cholmod_analyze(GtDG, global::cm);
  cholmod_factorize(GtDG, L, global::cm);
  cholmod_dense *x = cholmod_solve(CHOLMOD_A, L, GtDc, global::cm);

  // make a copy of T0
  BasicMesh Td = T0;

  // change the vertices with x
  double *Vx = (double*)x->x;
  for(int i=0;i<nverts;++i) {
    Td.verts(i, 0) = Vx[i];
    Td.verts(i, 1) = Vx[i+nverts];
    Td.verts(i, 2) = Vx[i+nverts*2];
  }

  // release memory
  cholmod_free_sparse(&G, global::cm);
  cholmod_free_sparse(&Gt, global::cm);
  cholmod_free_sparse(&GtDG, global::cm);
  cholmod_free_dense(&GtDc, global::cm);
  cholmod_free_factor(&L, global::cm);
  cholmod_free_dense(&x, global::cm);

  return Td;
}