Exemple #1
0
/* Subroutine */ int chpgv_(integer *itype, char *jobz, char *uplo, integer *
	n, complex *ap, complex *bp, real *w, complex *z__, integer *ldz, 
	complex *work, real *rwork, integer *info, ftnlen jobz_len, ftnlen 
	uplo_len)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;

    /* Local variables */
    static integer j, neig;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int chpev_(char *, char *, integer *, complex *, 
	    real *, complex *, integer *, complex *, real *, integer *, 
	    ftnlen, ftnlen);
    static char trans[1];
    extern /* Subroutine */ int ctpmv_(char *, char *, char *, integer *, 
	    complex *, complex *, integer *, ftnlen, ftnlen, ftnlen);
    static logical upper;
    extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *, 
	    complex *, complex *, integer *, ftnlen, ftnlen, ftnlen);
    static logical wantz;
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), chpgst_(
	    integer *, char *, integer *, complex *, complex *, integer *, 
	    ftnlen), cpptrf_(char *, integer *, complex *, integer *, ftnlen);


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     September 30, 1994 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHPGV computes all the eigenvalues and, optionally, the eigenvectors */
/*  of a complex generalized Hermitian-definite eigenproblem, of the form */
/*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x. */
/*  Here A and B are assumed to be Hermitian, stored in packed format, */
/*  and B is also positive definite. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the problem type to be solved: */
/*          = 1:  A*x = (lambda)*B*x */
/*          = 2:  A*B*x = (lambda)*x */
/*          = 3:  B*A*x = (lambda)*x */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, the contents of AP are destroyed. */

/*  BP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          B, packed columnwise in a linear array.  The j-th column of B */
/*          is stored in the array BP as follows: */
/*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */

/*          On exit, the triangular factor U or L from the Cholesky */
/*          factorization B = U**H*U or B = L*L**H, in the same storage */
/*          format as B. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors.  The eigenvectors are normalized as follows: */
/*          if ITYPE = 1 or 2, Z**H*B*Z = I; */
/*          if ITYPE = 3, Z**H*inv(B)*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) COMPLEX array, dimension (max(1, 2*N-1)) */

/*  RWORK   (workspace) REAL array, dimension (max(1, 3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  CPPTRF or CHPEV returned an error code: */
/*             <= N:  if INFO = i, CHPEV failed to converge; */
/*                    i off-diagonal elements of an intermediate */
/*                    tridiagonal form did not convergeto zero; */
/*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading */
/*                    minor of order i of B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --bp;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1);
    upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);

    *info = 0;
    if (*itype < 0 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L", (ftnlen)1, (ftnlen)1))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHPGV ", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    cpptrf_(uplo, n, &bp[1], info, (ftnlen)1);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    chpgst_(itype, uplo, n, &ap[1], &bp[1], info, (ftnlen)1);
    chpev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], &
	    rwork[1], info, (ftnlen)1, (ftnlen)1);

    if (wantz) {

/*        Backtransform eigenvectors to the original problem. */

	neig = *n;
	if (*info > 0) {
	    neig = *info - 1;
	}
	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

	    i__1 = neig;
	    for (j = 1; j <= i__1; ++j) {
		ctpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
			1], &c__1, (ftnlen)1, (ftnlen)1, (ftnlen)8);
/* L10: */
	    }

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x; */
/*           backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'C';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    i__1 = neig;
	    for (j = 1; j <= i__1; ++j) {
		ctpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
			1], &c__1, (ftnlen)1, (ftnlen)1, (ftnlen)8);
/* L20: */
	    }
	}
    }
    return 0;

/*     End of CHPGV */

} /* chpgv_ */
Exemple #2
0
/* Subroutine */
int chpgvx_(integer *itype, char *jobz, char *range, char * uplo, integer *n, complex *ap, complex *bp, real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *m, real *w, complex * z__, integer *ldz, complex *work, real *rwork, integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    /* Local variables */
    integer j;
    extern logical lsame_(char *, char *);
    char trans[1];
    extern /* Subroutine */
    int ctpmv_(char *, char *, char *, integer *, complex *, complex *, integer *);
    logical upper;
    extern /* Subroutine */
    int ctpsv_(char *, char *, char *, integer *, complex *, complex *, integer *);
    logical wantz, alleig, indeig, valeig;
    extern /* Subroutine */
    int xerbla_(char *, integer *), chpgst_( integer *, char *, integer *, complex *, complex *, integer *), chpevx_(char *, char *, char *, integer *, complex *, real *, real *, integer *, integer *, real *, integer *, real *, complex *, integer *, complex *, real *, integer *, integer *, integer *), cpptrf_(char *, integer *, complex *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    --ap;
    --bp;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    *info = 0;
    if (*itype < 1 || *itype > 3)
    {
        *info = -1;
    }
    else if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -2;
    }
    else if (! (alleig || valeig || indeig))
    {
        *info = -3;
    }
    else if (! (upper || lsame_(uplo, "L")))
    {
        *info = -4;
    }
    else if (*n < 0)
    {
        *info = -5;
    }
    else
    {
        if (valeig)
        {
            if (*n > 0 && *vu <= *vl)
            {
                *info = -9;
            }
        }
        else if (indeig)
        {
            if (*il < 1)
            {
                *info = -10;
            }
            else if (*iu < min(*n,*il) || *iu > *n)
            {
                *info = -11;
            }
        }
    }
    if (*info == 0)
    {
        if (*ldz < 1 || wantz && *ldz < *n)
        {
            *info = -16;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHPGVX", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Form a Cholesky factorization of B. */
    cpptrf_(uplo, n, &bp[1], info);
    if (*info != 0)
    {
        *info = *n + *info;
        return 0;
    }
    /* Transform problem to standard eigenvalue problem and solve. */
    chpgst_(itype, uplo, n, &ap[1], &bp[1], info);
    chpevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], & z__[z_offset], ldz, &work[1], &rwork[1], &iwork[1], &ifail[1], info);
    if (wantz)
    {
        /* Backtransform eigenvectors to the original problem. */
        if (*info > 0)
        {
            *m = *info - 1;
        }
        if (*itype == 1 || *itype == 2)
        {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
            */
            /* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y */
            if (upper)
            {
                *(unsigned char *)trans = 'N';
            }
            else
            {
                *(unsigned char *)trans = 'C';
            }
            i__1 = *m;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                ctpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 1], &c__1);
                /* L10: */
            }
        }
        else if (*itype == 3)
        {
            /* For B*A*x=(lambda)*x;
            */
            /* backtransform eigenvectors: x = L*y or U**H*y */
            if (upper)
            {
                *(unsigned char *)trans = 'C';
            }
            else
            {
                *(unsigned char *)trans = 'N';
            }
            i__1 = *m;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                ctpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 1], &c__1);
                /* L20: */
            }
        }
    }
    return 0;
    /* End of CHPGVX */
}