Exemple #1
0
/* Subroutine */ int cchkhp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, real *thresh, logical *tsterr, integer *
	nmax, complex *a, complex *afac, complex *ainv, complex *b, complex *
	x, complex *xact, complex *work, real *rwork, integer *iwork, integer 
	*nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, 
	    info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *), cget04_(
	    integer *, integer *, complex *, integer *, complex *, integer *, 
	    real *, real *);
    integer nfail, iseed[4];
    extern /* Subroutine */ int chpt01_(char *, integer *, complex *, complex 
	    *, integer *, complex *, integer *, real *, real *);
    extern logical lsame_(char *, char *);
    real rcond;
    integer nimat;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int cppt02_(char *, integer *, integer *, complex 
	    *, complex *, integer *, complex *, integer *, real *, real *), cppt03_(char *, integer *, complex *, complex *, complex 
	    *, integer *, real *, real *, real *);
    real anorm;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), cppt05_(char *, integer *, integer *, 
	    complex *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, real *, real *, real *);
    integer iuplo, izero, nerrs;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *), claipd_(integer *, complex *, integer *, integer 
	    *);
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *);
    real rcondc;
    extern /* Subroutine */ int chpcon_(char *, integer *, complex *, integer 
	    *, real *, real *, complex *, integer *);
    char packit[1];
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), clarhs_(char *, char 
	    *, char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, integer *, integer *), 
	    alasum_(char *, integer *, integer *, integer *, integer *);
    real cndnum;
    extern /* Subroutine */ int chprfs_(char *, integer *, integer *, complex 
	    *, complex *, integer *, complex *, integer *, complex *, integer 
	    *, real *, real *, complex *, real *, integer *), chptrf_(
	    char *, integer *, complex *, integer *, integer *), 
	    clatms_(integer *, integer *, char *, integer *, char *, real *, 
	    integer *, real *, real *, integer *, integer *, char *, complex *
, integer *, complex *, integer *), 
	    chptri_(char *, integer *, complex *, integer *, complex *, 
	    integer *);
    logical trfcon;
    extern /* Subroutine */ int chptrs_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *, integer *), cerrsy_(
	    char *, integer *);
    real result[8];

    /* Fortran I/O blocks */
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CCHKHP tests CHPTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) COMPLEX array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) COMPLEX array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) COMPLEX array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) COMPLEX array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) COMPLEX array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) COMPLEX array, dimension */
/*                      (NMAX*max(2,NSMAX)) */

/*  RWORK   (workspace) REAL array, */
/*                                 dimension (NMAX+2*NSMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	cerrsy_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L160;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L160;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		if (lsame_(uplo, "U")) {
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with CLATB4 and generate a test matrix */
/*              with CLATMS. */

		clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6);
		clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from CLATMS. */

		if (info != 0) {
		    alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L150;
		}

/*              For types 3-6, zero one or more rows and columns of */
/*              the matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0.f, a[i__5].i = 0.f;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0.f, a[i__5].i = 0.f;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    claipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    claipd_(&n, &a[1], &n, &c_n1);
		}

/*              Compute the L*D*L' or U*D*U' factorization of the matrix. */

		npp = n * (n + 1) / 2;
		ccopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
		s_copy(srnamc_1.srnamt, "CHPTRF", (ftnlen)6, (ftnlen)6);
		chptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*              Adjust the expected value of INFO to account for */
/*              pivoting. */

		k = izero;
		if (k > 0) {
L100:
		    if (iwork[k] < 0) {
			if (iwork[k] != -k) {
			    k = -iwork[k];
			    goto L100;
			}
		    } else if (iwork[k] != k) {
			k = iwork[k];
			goto L100;
		    }
		}

/*              Check error code from CHPTRF. */

		if (info != k) {
		    alaerh_(path, "CHPTRF", &info, &k, uplo, &n, &n, &c_n1, &
			    c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}
		if (info != 0) {
		    trfcon = TRUE_;
		} else {
		    trfcon = FALSE_;
		}

/* +    TEST 1 */
/*              Reconstruct matrix from factors and compute residual. */

		chpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, 
			&rwork[1], result);
		nt = 1;

/* +    TEST 2 */
/*              Form the inverse and compute the residual. */

		if (! trfcon) {
		    ccopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		    s_copy(srnamc_1.srnamt, "CHPTRI", (ftnlen)6, (ftnlen)6);
		    chptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info);

/*              Check error code from CHPTRI. */

		    if (info != 0) {
			alaerh_(path, "CHPTRI", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    cppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[
			    1], &rcondc, &result[1]);
		    nt = 2;
		}

/*              Print information about the tests that did not pass */
/*              the threshold. */

		i__3 = nt;
		for (k = 1; k <= i__3; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
/* L110: */
		}
		nrun += nt;

/*              Do only the condition estimate if INFO is not 0. */

		if (trfcon) {
		    rcondc = 0.f;
		    goto L140;
		}

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];

/* +    TEST 3 */
/*              Solve and compute residual for  A * X = B. */

		    s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen)6);
		    clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';
		    clacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

		    s_copy(srnamc_1.srnamt, "CHPTRS", (ftnlen)6, (ftnlen)6);
		    chptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, 
			     &info);

/*              Check error code from CHPTRS. */

		    if (info != 0) {
			alaerh_(path, "CHPTRS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    clacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    cppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], &
			    lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*              Check solution from generated exact solution. */

		    cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);

/* +    TESTS 5, 6, and 7 */
/*              Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "CHPRFS", (ftnlen)6, (ftnlen)6);
		    chprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1]
, &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], 
			    &work[1], &rwork[(nrhs << 1) + 1], &info);

/*              Check error code from CHPRFS. */

		    if (info != 0) {
			alaerh_(path, "CHPRFS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[4]);
		    cppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, 
			    &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &
			    result[5]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 3; k <= 7; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L120: */
		    }
		    nrun += 5;
/* L130: */
		}

/* +    TEST 8 */
/*              Get an estimate of RCOND = 1/CNDNUM. */

L140:
		anorm = clanhp_("1", uplo, &n, &a[1], &rwork[1]);
		s_copy(srnamc_1.srnamt, "CHPCON", (ftnlen)6, (ftnlen)6);
		chpcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[
			1], &info);

/*              Check error code from CHPCON. */

		if (info != 0) {
		    alaerh_(path, "CHPCON", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[7] = sget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[7] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
L150:
		;
	    }
L160:
	    ;
	}
/* L170: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of CCHKHP */

} /* cchkhp_ */
Exemple #2
0
/* Subroutine */ int ctimhp_(char *line, integer *nn, integer *nval, integer *
                             nns, integer *nsval, integer *la, real *timmin, complex *a, complex *
                             b, complex *work, integer *iwork, real *reslts, integer *ldr1,
                             integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char uplos[1*2] = "U" "L";
    static char subnam[6*3] = "CHPTRF" "CHPTRS" "CHPTRI";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
                             "***\002,/)";
    static char fmt_9997[] = "(5x,a6,\002 with UPLO = '\002,a1,\002'\002,/)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2;

    /* Builtin functions
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer info;
    static char path[3];
    static real time;
    static integer isub, nrhs;
    static char uplo[1];
    static integer i__, n;
    static char cname[6];
    static integer laval[1];
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
                                       complex *, integer *);
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer
                             *, integer *);
    static integer iuplo;
    static real s1, s2;
    static integer ic, in;
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer
                                        *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int ctimmg_(integer *, integer *, integer *,
                                        complex *, integer *, integer *, integer *), atimin_(char *, char
                                                *, integer *, char *, logical *, integer *, integer *, ftnlen,
                                                ftnlen, ftnlen), chptrf_(char *, integer *, complex *, integer *,
                                                        integer *), chptri_(char *, integer *, complex *, integer
                                                                *, complex *, integer *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    static logical timsub[3];
    extern /* Subroutine */ int chptrs_(char *, integer *, integer *, complex
                                        *, integer *, complex *, integer *, integer *), sprtbl_(
                                            char *, char *, integer *, integer *, integer *, integer *,
                                            integer *, real *, integer *, integer *, integer *, ftnlen,
                                            ftnlen);
    static integer lda, ldb, icl, mat;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___8 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_9997, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


    /*  -- LAPACK timing routine (version 3.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           March 31, 1993


        Purpose
        =======

        CTIMHP times CHPTRF, -TRS, and -TRI.

        Arguments
        =========

        LINE    (input) CHARACTER*80
                The input line that requested this routine.  The first six
                characters contain either the name of a subroutine or a
                generic path name.  The remaining characters may be used to
                specify the individual routines to be timed.  See ATIMIN for
                a full description of the format of the input line.

        NN      (input) INTEGER
                The number of values of N contained in the vector NVAL.

        NVAL    (input) INTEGER array, dimension (NN)
                The values of the matrix size N.

        NNS     (input) INTEGER
                The number of values of NRHS contained in the vector NSVAL.

        NSVAL   (input) INTEGER array, dimension (NNS)
                The values of the number of right hand sides NRHS.

        LA      (input) INTEGER
                The size of the arrays A, B, and C.

        TIMMIN  (input) REAL
                The minimum time a subroutine will be timed.

        A       (workspace) COMPLEX array, dimension (LA)

        B       (workspace) COMPLEX array, dimension (LA)

        WORK    (workspace) COMPLEX array, dimension (NMAX)

        IWORK   (workspace) INTEGER array, dimension (NMAX)
                where NMAX is the maximum value of N permitted.

        RESLTS  (output) REAL array, dimension
                         (LDR1,LDR2,LDR3,NSUBS)
                The timing results for each subroutine over the relevant
                values of N.

        LDR1    (input) INTEGER
                The first dimension of RESLTS.  LDR1 >= max(4,NNB).

        LDR2    (input) INTEGER
                The second dimension of RESLTS.  LDR2 >= max(1,NN).

        LDR3    (input) INTEGER
                The third dimension of RESLTS.  LDR3 >= 2.

        NOUT    (input) INTEGER
                The unit number for output.

        =====================================================================

           Parameter adjustments */
    --nval;
    --nsval;
    --a;
    --b;
    --work;
    --iwork;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
                                      );
    reslts -= reslts_offset;

    /* Function Body

       Extract the timing request from the input line. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, (
                ftnlen)80, (ftnlen)6);
    if (info != 0) {
        goto L120;
    }

    /*     Check that N*(N+1)/2 <= LA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    laval[0] = *la;
    atimck_(&c__4, cname, nn, &nval[1], &c__1, laval, nout, &info, (ftnlen)6);
    if (info > 0) {
        io___8.ciunit = *nout;
        s_wsfe(&io___8);
        do_fio(&c__1, cname, (ftnlen)6);
        e_wsfe();
        goto L120;
    }

    /*     Do first for UPLO = 'U', then for UPLO = 'L' */

    for (iuplo = 1; iuplo <= 2; ++iuplo) {
        *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
        if (lsame_(uplo, "U")) {
            mat = 7;
        } else {
            mat = -7;
        }

        /*        Do for each value of N in NVAL. */

        i__1 = *nn;
        for (in = 1; in <= i__1; ++in) {
            n = nval[in];
            lda = n * (n + 1) / 2;

            /*           Time CHPTRF */

            if (timsub[0]) {
                ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
                ic = 0;
                s1 = second_();
L10:
                chptrf_(uplo, &n, &a[1], &iwork[1], &info);
                s2 = second_();
                time = s2 - s1;
                ++ic;
                if (time < *timmin) {
                    ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
                    goto L10;
                }

                /*              Subtract the time used in CTIMMG. */

                icl = 1;
                s1 = second_();
L20:
                s2 = second_();
                untime = s2 - s1;
                ++icl;
                if (icl <= ic) {
                    ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
                    goto L20;
                }

                time = (time - untime) / (real) ic;
                ops = sopla_("CHPTRF", &n, &n, &c__0, &c__0, &c__0)
                      ;
                reslts_ref(1, in, iuplo, 1) = smflop_(&ops, &time, &info);

            } else {
                ic = 0;
                ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
            }

            /*           Generate another matrix and factor it using CHPTRF so
                         that the factored form can be used in timing the other
                         routines. */

            if (ic != 1) {
                chptrf_(uplo, &n, &a[1], &iwork[1], &info);
            }

            /*           Time CHPTRI */

            if (timsub[2]) {
                ccopy_(&lda, &a[1], &c__1, &b[1], &c__1);
                ic = 0;
                s1 = second_();
L30:
                chptri_(uplo, &n, &b[1], &iwork[1], &work[1], &info);
                s2 = second_();
                time = s2 - s1;
                ++ic;
                if (time < *timmin) {
                    ccopy_(&lda, &a[1], &c__1, &b[1], &c__1);
                    goto L30;
                }

                /*              Subtract the time used in CCOPY. */

                icl = 1;
                s1 = second_();
L40:
                s2 = second_();
                untime = s2 - s1;
                ++icl;
                if (icl <= ic) {
                    ccopy_(&lda, &a[1], &c__1, &b[1], &c__1);
                    goto L40;
                }

                time = (time - untime) / (real) ic;
                ops = sopla_("CHPTRI", &n, &n, &c__0, &c__0, &c__0)
                      ;
                reslts_ref(1, in, iuplo, 3) = smflop_(&ops, &time, &info);
            }

            /*           Time CHPTRS */

            if (timsub[1]) {
                i__2 = *nns;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    nrhs = nsval[i__];
                    ldb = n;
                    if (ldb % 2 == 0) {
                        ++ldb;
                    }
                    ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0);
                    ic = 0;
                    s1 = second_();
L50:
                    chptrs_(uplo, &n, &nrhs, &a[1], &iwork[1], &b[1], &ldb, &
                            info);
                    s2 = second_();
                    time = s2 - s1;
                    ++ic;
                    if (time < *timmin) {
                        ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0);
                        goto L50;
                    }

                    /*                 Subtract the time used in CTIMMG. */

                    icl = 1;
                    s1 = second_();
L60:
                    s2 = second_();
                    untime = s2 - s1;
                    ++icl;
                    if (icl <= ic) {
                        ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0);
                        goto L60;
                    }

                    time = (time - untime) / (real) ic;
                    ops = sopla_("CHPTRS", &n, &nrhs, &c__0, &c__0, &c__0);
                    reslts_ref(i__, in, iuplo, 2) = smflop_(&ops, &time, &
                                                            info);
                    /* L70: */
                }
            }
            /* L80: */
        }
        /* L90: */
    }

    /*     Print tables of results for each timed routine. */

    for (isub = 1; isub <= 3; ++isub) {
        if (! timsub[isub - 1]) {
            goto L110;
        }
        io___26.ciunit = *nout;
        s_wsfe(&io___26);
        do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
        e_wsfe();
        for (iuplo = 1; iuplo <= 2; ++iuplo) {
            io___27.ciunit = *nout;
            s_wsfe(&io___27);
            do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
            do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1);
            e_wsfe();
            if (isub == 1) {
                sprtbl_(" ", "N", &c__1, laval, nn, &nval[1], &c__1, &
                        reslts_ref(1, 1, iuplo, 1), ldr1, ldr2, nout, (ftnlen)
                        1, (ftnlen)1);
            } else if (isub == 2) {
                sprtbl_("NRHS", "N", nns, &nsval[1], nn, &nval[1], &c__1, &
                        reslts_ref(1, 1, iuplo, 2), ldr1, ldr2, nout, (ftnlen)
                        4, (ftnlen)1);
            } else if (isub == 3) {
                sprtbl_(" ", "N", &c__1, laval, nn, &nval[1], &c__1, &
                        reslts_ref(1, 1, iuplo, 3), ldr1, ldr2, nout, (ftnlen)
                        1, (ftnlen)1);
            }
            /* L100: */
        }
L110:
        ;
    }
L120:
    return 0;

    /*     End of CTIMHP */

} /* ctimhp_ */
Exemple #3
0
/* Subroutine */ int cdrvhp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, complex *
	a, complex *afac, complex *ainv, complex *b, complex *x, complex *
	xact, complex *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode, imat, info;
    static char path[3], dist[1], uplo[1], type__[1];
    static integer nrun, i__, j, k, n, ifact;
    extern /* Subroutine */ int cget04_(integer *, integer *, complex *, 
	    integer *, complex *, integer *, real *, real *);
    static integer nfail, iseed[4];
    extern /* Subroutine */ int chpt01_(char *, integer *, complex *, complex 
	    *, integer *, complex *, integer *, real *, real *);
    static integer nbmin;
    static real rcond;
    static integer nimat;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int cppt02_(char *, integer *, integer *, complex 
	    *, complex *, integer *, complex *, integer *, real *, real *), cppt05_(char *, integer *, integer *, complex *, complex 
	    *, integer *, complex *, integer *, complex *, integer *, real *, 
	    real *, real *);
    static real anorm;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), chpsv_(char *, integer *, integer *, 
	    complex *, integer *, complex *, integer *, integer *);
    static integer iuplo, izero, i1, i2, k1, nerrs;
    static logical zerot;
    static char xtype[1];
    extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
	    ), aladhd_(integer *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *), claipd_(integer *, complex *, integer *, integer *);
    static integer ku, nt;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *);
    static real rcondc;
    static char packit[1];
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), clarhs_(char *, char 
	    *, char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, integer *, integer *), 
	    claset_(char *, integer *, integer *, complex *, complex *, 
	    complex *, integer *), alasvm_(char *, integer *, integer 
	    *, integer *, integer *);
    static real cndnum;
    extern /* Subroutine */ int clatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
	    , char *, complex *, integer *, complex *, integer *), chptrf_(char *, integer *, complex *, integer *, 
	    integer *);
    static real ainvnm;
    extern /* Subroutine */ int chptri_(char *, integer *, complex *, integer 
	    *, complex *, integer *), xlaenv_(integer *, integer *), 
	    cerrvx_(char *, integer *), chpsvx_(char *, char *, 
	    integer *, integer *, complex *, complex *, integer *, complex *, 
	    integer *, complex *, integer *, real *, real *, real *, complex *
	    , real *, integer *);
    static real result[6];
    static integer lda, npp;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CDRVHP tests the driver routines CHPSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) REAL   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AFAC    (workspace) COMPLEX array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AINV    (workspace) COMPLEX array, dimension   
                        (NMAX*(NMAX+1)/2)   

    B       (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX array, dimension   
                        (NMAX*max(2,NRHS))   

    RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    *(unsigned char *)path = 'C';
    s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	cerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with CLATB4 and generate a test matrix   
                with CLATMS. */

		clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6);
		clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from CLATMS. */

		if (info != 0) {
		    alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, &c_n1,
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L160;
		}

/*              For types 3-6, zero one or more rows and columns of the   
                matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0.f, a[i__5].i = 0.f;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0.f, a[i__5].i = 0.f;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    claipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    claipd_(&n, &a[1], &n, &c_n1);
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with   
                   the value returned by CHPSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.f;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = clanhp_("1", uplo, &n, &a[1], &rwork[1]);

/*                    Factor the matrix A. */

			ccopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			chptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*                    Compute inv(A) and take its norm. */

			ccopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
			chptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &
				info);
			ainvnm = clanhp_("1", uplo, &n, &ainv[1], &rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0.f || ainvnm <= 0.f) {
			    rcondc = 1.f;
			} else {
			    rcondc = 1.f / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen)6);
		    clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test CHPSV  --- */

		    if (ifact == 2) {
			ccopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			clacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using CHPSV. */

			s_copy(srnamc_1.srnamt, "CHPSV ", (ftnlen)6, (ftnlen)
				6);
			chpsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], &
				lda, &info);

/*                    Adjust the expected value of INFO to account for   
                      pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from CHPSV . */

			if (info != k) {
			    alaerh_(path, "CHPSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			chpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1]
				, &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			cppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "CHPSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test CHPSVX --- */

		    if (ifact == 2 && npp > 0) {
			claset_("Full", &npp, &c__1, &c_b64, &c_b64, &afac[1],
				 &npp);
		    }
		    claset_("Full", &n, nrhs, &c_b64, &c_b64, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using CHPSVX. */

		    s_copy(srnamc_1.srnamt, "CHPSVX", (ftnlen)6, (ftnlen)6);
		    chpsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], 
			    &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &
			    rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 
			    1], &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from CHPSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "CHPSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    chpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &
				    ainv[1], &lda, &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			cppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[(*nrhs << 1) + 1], &result[1]);

/*                    Check solution from generated exact solution. */

			cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			cppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], &
				lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs 
				+ 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from CHPSVX with the computed value   
                   in RCONDC. */

		    result[5] = sget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "CHPSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of CDRVHP */

} /* cdrvhp_ */