Exemple #1
0
cl_int WINAPI wine_clRetainProgram(cl_program program)
{
    cl_int ret;
    TRACE("\n");
    ret = clRetainProgram(program);
    return ret;
}
Exemple #2
0
cl_kernel
__clCloneKernel (cl_kernel kernel)
{
  _cl_kernel *original_kernel_data = (_cl_kernel *) kernel;
  _cl_kernel *kernel_data = NULL;
  cl_uint i;

  if (!original_kernel_data)
  {
#ifdef OCL_DEBUG_MESSAGES
    __clDebugPrint (CL_LOG_ERROR, "__clCloneKernel: invalid parameter\n");
#endif // #ifdef OCL_DEBUG_MESSAGES
    return 0;
  }

  kernel_data = (_cl_kernel *) __clAlloc (sizeof (_cl_kernel));
  if (!kernel_data)
  {
#ifdef OCL_DEBUG_MESSAGES
    __clDebugPrint (CL_LOG_ERROR, "__clCloneKernel: out of memory\n");
#endif // #ifdef OCL_DEBUG_MESSAGES
    return (cl_kernel) 0;
  }

  // copy all the rest from original kernel
  memcpy (kernel_data, original_kernel_data, sizeof (_cl_kernel));
  kernel_data->header.ref_count = 1;

  if (kernel_data->program_data)
  {
    // clone will reference same program as original, so increase refcount
    clRetainProgram ((cl_program) kernel_data->program_data);
  }

  for (i = 0; i < MAX_KERNEL_ARGS; i++)
  {
    kernel_data->arg[i].buffer = original_kernel_data->arg[i].buffer;
    if (kernel_data->arg[i].buffer)
    {
      // clone will reference same argument buffers, so increase refcount
      clRetainMemObject (kernel_data->arg[i].buffer);
    }

    if (original_kernel_data->arg[i].data)
    {
      // make a copy of a argument data
      kernel_data->arg[i].data =
	__clAlloc (original_kernel_data->arg[i].datalen);
      memcpy (kernel_data->arg[i].data, original_kernel_data->arg[i].data,
	      original_kernel_data->arg[i].datalen);
      kernel_data->arg[i].datalen = original_kernel_data->arg[i].datalen;
    }
  }

  __clListAddNode (&g_kernel_data_root, kernel_data);

  return (cl_kernel) kernel_data;
}
Exemple #3
0
//A callback function which displays the log of the program build
void programCallback(cl_program program, void* user_data)
{
    clRetainProgram(program);
    cl::Program p(program);
    cl::Device  dev_id = p.getInfo<CL_PROGRAM_DEVICES>()[0];
    std::string device_name = dev_id.getInfo<CL_DEVICE_NAME>();
    std::string log = p.getBuildInfo<CL_PROGRAM_BUILD_LOG>(dev_id);
    std::cout << device_name << " Log: " << log << std::endl;
}
void cb(cl_program p,void* data)
{
    clRetainProgram(p);
    cl_device_id devid[1];
    clGetProgramInfo(p,CL_PROGRAM_DEVICES,sizeof(cl_device_id),(void*)devid,NULL);
    char bug[65536];
    clGetProgramBuildInfo(p,devid[0],CL_PROGRAM_BUILD_LOG,65536*sizeof(char),bug,NULL);
    clReleaseProgram(p);
    LOGE("Build log \n %s\n",bug);
}
Exemple #5
0
 Program& Program::operator=(const Program& other)
 {
     _ctx = other._ctx;
     _options = other._options;
     _built = other._built;
     if(other._id)
         clRetainProgram(other._id);
     if(_id)
         clReleaseProgram(_id);
     _id = other._id;
     return *this;
 }
Exemple #6
0
 Program::Program(const Program& other)
     : _ctx(other._ctx), _id(other._id), _options(other._options) ,_built(other._built)
 {
     if(_id)
         clRetainProgram(_id);
 }
Exemple #7
0
cl_int
clEnqueueFillBuffer(cl_command_queue command_queue,
					cl_mem buffer,
					const void *pattern,
					size_t pattern_size,
					size_t offset,
					size_t size,
					cl_uint num_events_in_wait_list,
					const cl_event *event_wait_list,
					cl_event *event)
{
	static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
	static cl_program	last_program = NULL;
	static cl_context	last_context = NULL;
	cl_kernel			kernel;
	cl_program			program;
	cl_context			context;
	cl_device_id		device;
	size_t				gworksz;
	size_t				lworksz;
	char				kernel_name[80];
	cl_int				rc;
	union {
		cl_char			v_char;
		cl_short		v_short;
		cl_int			v_int;
		cl_long			v_long;
	} pattern_value;
	cl_uint				pattern_nums;

	switch (pattern_size)
	{
		case sizeof(cl_char):
			pattern_value.v_char = *((cl_char *)pattern);
			break;
		case sizeof(cl_short):
			pattern_value.v_short = *((cl_short *)pattern);
			break;
		case sizeof(cl_int):
			pattern_value.v_int = *((cl_int *)pattern);
			break;
		case sizeof(cl_long):
			pattern_value.v_long = *((cl_long *)pattern);
			break;
		default:
			/*
			 * pattern_size was not support one, even though OpenCL 1.2
			 * spec says 16, 32, 64 or 128 bytes patterns are supported.
			 */
			return CL_INVALID_VALUE;
	}

	/* ensure alignment */
	if (offset % pattern_size != 0)
		return CL_INVALID_VALUE;
	if (size % pattern_size != 0)
		return CL_INVALID_VALUE;

	/* fetch context and device_id associated with this command queue */
	rc = clGetCommandQueueInfo(command_queue,
							   CL_QUEUE_CONTEXT,
							   sizeof(cl_context),
							   &context,
							   NULL);
	if (rc != CL_SUCCESS)
		return rc;

	pthread_mutex_lock(&lock);
	if (last_program && last_context == context)
	{
		rc = clRetainProgram(last_program);
		if (rc != CL_SUCCESS)
			goto out_unlock;
		program = last_program;
	}
	else
	{
		char			source[10240];
		const char	   *prog_source[1];
		size_t			prog_length[1];
		cl_uint			num_devices;
		cl_device_id   *device_ids;
		static struct {
			const char *type_name;
			size_t		type_size;
		} pattern_types[] = {
			{ "char",  sizeof(cl_char) },
			{ "short", sizeof(cl_short) },
			{ "int",   sizeof(cl_int) },
			{ "long",  sizeof(cl_long) },
		};
		size_t		i, ofs;

		/* fetch properties of cl_context */
		rc = clGetContextInfo(context,
							  CL_CONTEXT_NUM_DEVICES,
							  sizeof(cl_uint),
							  &num_devices,
							  NULL);
		if (rc != CL_SUCCESS)
			goto out_unlock;
		Assert(num_devices > 0);

		device_ids = calloc(num_devices, sizeof(cl_device_id));
		if (!device_ids)
		{
			rc = CL_OUT_OF_HOST_MEMORY;
			goto out_unlock;
		}
		rc = clGetContextInfo(context,
							  CL_CONTEXT_DEVICES,
							  sizeof(cl_device_id) * num_devices,
							  device_ids,
							  NULL);
		if (rc != CL_SUCCESS)
		{
			free(device_ids);
			goto out_unlock;
		}

		/* release the previous program */
		if (last_program)
		{
			rc = clReleaseProgram(last_program);
			Assert(rc == CL_SUCCESS);
			last_program = NULL;
			last_context = NULL;
		}

		/* create a program object */
		for (i=0, ofs=0; i < lengthof(pattern_types); i++)
		{
			ofs += snprintf(
				source + ofs, sizeof(source) - ofs,
				"__kernel void\n"
				"pgstromEnqueueFillBuffer_%zu(__global %s *buffer,\n"
				"                             %s value, uint nums)\n"
				"{\n"
				"  if (get_global_id(0) >= nums)\n"
				"    return;\n"
				"  buffer[get_global_id(0)] = value;\n"
				"}\n",
				pattern_types[i].type_size,
				pattern_types[i].type_name,
				pattern_types[i].type_name);
		}
		prog_source[0] = source;
		prog_length[0] = ofs;
		program = clCreateProgramWithSource(context,
											1,
											prog_source,
											prog_length,
											&rc);
		if (rc != CL_SUCCESS)
		{
			free(device_ids);
			goto out_unlock;
		}

		/* build this program object */
		rc = clBuildProgram(program,
							num_devices,
							device_ids,
							NULL,
							NULL,
							NULL);
		free(device_ids);
		if (rc != CL_SUCCESS)
		{
			clReleaseProgram(program);
			goto out_unlock;
		}

		/* acquire the program object */
		rc = clRetainProgram(program);
		if (rc != CL_SUCCESS)
		{
			clReleaseProgram(program);
			goto out_unlock;
		}
		last_program = program;
		last_context = context;
	}
	pthread_mutex_unlock(&lock);
	Assert(program != NULL);

	/* fetch a device id of this command queue */
	rc = clGetCommandQueueInfo(command_queue,
							   CL_QUEUE_DEVICE,
							   sizeof(cl_device_id),
							   &device,
							   NULL);
	if (rc != CL_SUCCESS)
		goto out_release_program;

	/* fetch a kernel object to be called */
	snprintf(kernel_name, sizeof(kernel_name),
			 "pgstromEnqueueFillBuffer_%zu", pattern_size);
	kernel = clCreateKernel(program,
							kernel_name,
							&rc);
	if (rc != CL_SUCCESS)
		goto out_release_program;

	/* 1st arg: __global <typename> *buffer */
	rc = clSetKernelArg(kernel, 0, sizeof(cl_mem), &buffer);
	if (rc != CL_SUCCESS)
		goto out_release_kernel;

	/* 2nd arg: <typename> value */
	rc = clSetKernelArg(kernel, 1, pattern_size, &pattern_value);
	if (rc != CL_SUCCESS)
		goto out_release_kernel;

	/* 3rd arg: size_t nums */
	pattern_nums = (offset + size) / pattern_size;
	rc = clSetKernelArg(kernel, 2, sizeof(cl_uint), &pattern_nums);
	if (rc != CL_SUCCESS)
		goto out_release_kernel;

	/* calculate optimal workgroup size */
	rc = clGetKernelWorkGroupInfo(kernel,
								  device,
								  CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
								  sizeof(size_t),
								  &lworksz,
								  NULL);
	Assert((lworksz & (lworksz - 1)) == 0);
	gworksz = ((size / pattern_size + lworksz - 1) / lworksz) * lworksz;

	/* enqueue a kernel, instead of clEnqueueFillBuffer */
	offset /= pattern_size;
	rc = clEnqueueNDRangeKernel(command_queue,
								kernel,
								1,
								&offset,
								&gworksz,
								&lworksz,
								num_events_in_wait_list,
								event_wait_list,
								event);
	if (rc != CL_SUCCESS)
		goto out_release_kernel;

	rc = clSetEventCallback(*event,
							CL_COMPLETE,
							pgstromEnqueueFillBufferCleanup,
							kernel);
	if (rc != CL_SUCCESS)
	{
		clWaitForEvents(1, event);
		goto out_release_kernel;
	}
	return CL_SUCCESS;

out_unlock:
	pthread_mutex_unlock(&lock);
	return rc;

out_release_kernel:
	clReleaseKernel(kernel);
out_release_program:
	clReleaseProgram(program);
	return rc;
}
Exemple #8
0
 static void inc(cl_program & something)
 {
   cl_int err = clRetainProgram(something);
   VIENNACL_ERR_CHECK(err);
 }
Exemple #9
0
cl_kernel
clCreateKernel (cl_program program,
		const char *kernel_name, cl_int * errcode_ret)
{
  _cl_program *program_data = (_cl_program *) (program);
  _cl_kernel *kernel_data = NULL;
  int i;
  cl_kernel_function_info *info = NULL;
  _cl_program_binary *program_binary_data = NULL;
  char *error = NULL;

  if (!program_data)
  {
#ifdef OCL_DEBUG_MESSAGES
    __clDebugPrint (CL_LOG_ERROR,
		    "clCreateKernel: Invalid program parameter (program=0x%08x)\n",
		    (int) program);
#endif //      #ifdef OCL_DEBUG_MESSAGES
    if (errcode_ret)
    {
      *errcode_ret = CL_INVALID_PROGRAM;
    }
    return 0;
  }
  if (program_data->num_binaries == 0)
  {
    // program is not build
#ifdef OCL_DEBUG_MESSAGES
    __clDebugPrint (CL_LOG_ERROR,
		    "clCreateKernel: Program is not build (program=0x%08x)\n",
		    (int) program);
#endif //      #ifdef OCL_DEBUG_MESSAGES
    if (errcode_ret)
    {
      *errcode_ret = CL_INVALID_PROGRAM;
    }
    return 0;
  }


  kernel_data = (_cl_kernel *) __clAlloc (sizeof (_cl_kernel));
  if (!kernel_data)
  {
#ifdef OCL_DEBUG_MESSAGES
    __clDebugPrint (CL_LOG_ERROR, "clCreateKernel: out of memory\n");
#endif // #ifdef OCL_DEBUG_MESSAGES
    if (errcode_ret)
    {
      *errcode_ret = CL_OUT_OF_HOST_MEMORY;
    }
    return (cl_kernel) 0;
  }

  memset (kernel_data, 0, sizeof (_cl_kernel));

  kernel_data->header.ref_count = 1;
  kernel_data->header.context = program_data->header.context;

  for (i = 0; i < program_data->num_kernel_functions; i++)
  {
    info = &program_data->kernel_function_info[i];
    if (strcmp (kernel_name, info->function_name) == 0)
    {
      // found the matching kernel function name
      kernel_data->kernel_function_info = info;

#ifdef OCL_DEBUG_MESSAGES
      __clDebugPrint (CL_LOG_DEBUG,
		      "clCreateKernel: Kernel '%s' found. Has %d parameters\n",
		      kernel_name,
		      kernel_data->kernel_function_info->num_parameters);
#endif //      #ifdef OCL_DEBUG_MESSAGES
      break;
    }
  }

  if (!kernel_data->kernel_function_info)
  {
#ifdef OCL_DEBUG_MESSAGES
    __clDebugPrint (CL_LOG_ERROR,
		    "clCreateKernel: kernel function '%s' not found in program (0x%08x)\n",
		    kernel_name, (int) program_data);
#endif // #ifdef OCL_DEBUG_MESSAGES

    if (errcode_ret)
    {
      *errcode_ret = CL_INVALID_VALUE;
    }
    return (cl_kernel) 0;
  }


  program_binary_data = &program_data->binaries[0];
  if (program_binary_data->lib)
  {
    // find the function from dynamic library
    kernel_data->entry_fn = dlsym (program_binary_data->lib, kernel_name);
    if ((error = dlerror ()) != NULL)
    {
#ifdef OCL_DEBUG_MESSAGES
      __clDebugPrint (CL_LOG_ERROR,
        "clCreateKernel: Kernel entry point function not found (dlerror=%s)\n",
		    error);
#endif //      #ifdef OCL_DEBUG_MESSAGES

      if (errcode_ret)
      {
	*errcode_ret = CL_INVALID_KERNEL_NAME;
      }
      clReleaseKernel ((cl_kernel) kernel_data);
      return (cl_kernel) 0;
    }
  }
  else
  {
    kernel_data->entry_fn = NULL;
  }


  memset (kernel_data->arg, 0, sizeof (CL_KERNEL_ARG_DATA) * MAX_KERNEL_ARGS);

  kernel_data->program_data = program_data;
  clRetainProgram (program);

  __clListAddNode (&g_kernel_data_root, kernel_data);

  if (errcode_ret)
  {
    *errcode_ret = CL_SUCCESS;
  }
  return (cl_kernel) kernel_data;
}
Exemple #10
0
_clState *initCl(unsigned int gpu, char *name, size_t nameSize)
{
	_clState *clState = calloc(1, sizeof(_clState));
	bool patchbfi = false, prog_built = false;
	cl_platform_id platform = NULL;
	cl_platform_id* platforms;
	cl_device_id *devices;
	cl_uint numPlatforms;
	cl_uint numDevices;
	char pbuff[256];
	cl_int status;

	status = clGetPlatformIDs(0, NULL, &numPlatforms);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Getting Platforms. (clGetPlatformsIDs)");
		return NULL;
	}

	platforms = (cl_platform_id *)alloca(numPlatforms*sizeof(cl_platform_id));
	status = clGetPlatformIDs(numPlatforms, platforms, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Getting Platform Ids. (clGetPlatformsIDs)");
		return NULL;
	}

	if (opt_platform_id >= numPlatforms) {
		applog(LOG_ERR, "Specified platform that does not exist");
		return NULL;
	}

	status = clGetPlatformInfo(platforms[opt_platform_id], CL_PLATFORM_VENDOR, sizeof(pbuff), pbuff, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Getting Platform Info. (clGetPlatformInfo)");
		return NULL;
	}
	platform = platforms[opt_platform_id];

	if (platform == NULL) {
		perror("NULL platform found!\n");
		return NULL;
	}

	applog(LOG_INFO, "CL Platform vendor: %s", pbuff);
	status = clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(pbuff), pbuff, NULL);
	if (status == CL_SUCCESS)
		applog(LOG_INFO, "CL Platform name: %s", pbuff);
	status = clGetPlatformInfo(platform, CL_PLATFORM_VERSION, sizeof(pbuff), pbuff, NULL);
	if (status == CL_SUCCESS)
		applog(LOG_INFO, "CL Platform version: %s", pbuff);

	status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Getting Device IDs (num)");
		return NULL;
	}

	if (numDevices > 0 ) {
		devices = (cl_device_id *)malloc(numDevices*sizeof(cl_device_id));

		/* Now, get the device list data */

		status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error: Getting Device IDs (list)");
			return NULL;
		}

		applog(LOG_INFO, "List of devices:");

		unsigned int i;
		for (i = 0; i < numDevices; i++) {
			status = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(pbuff), pbuff, NULL);
			if (status != CL_SUCCESS) {
				applog(LOG_ERR, "Error: Getting Device Info");
				return NULL;
			}

			applog(LOG_INFO, "\t%i\t%s", i, pbuff);
		}

		if (gpu < numDevices) {
			status = clGetDeviceInfo(devices[gpu], CL_DEVICE_NAME, sizeof(pbuff), pbuff, NULL);
			if (status != CL_SUCCESS) {
				applog(LOG_ERR, "Error: Getting Device Info");
				return NULL;
			}

			applog(LOG_INFO, "Selected %i: %s", gpu, pbuff);
			strncpy(name, pbuff, nameSize);
		} else {
			applog(LOG_ERR, "Invalid GPU %i", gpu);
			return NULL;
		}

	} else return NULL;

	cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0 };

	clState->context = clCreateContextFromType(cps, CL_DEVICE_TYPE_GPU, NULL, NULL, &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Creating Context. (clCreateContextFromType)");
		return NULL;
	}

	/* Check for BFI INT support. Hopefully people don't mix devices with
	 * and without it! */
	char * extensions = malloc(1024);
	const char * camo = "cl_amd_media_ops";
	char *find;

	status = clGetDeviceInfo(devices[gpu], CL_DEVICE_EXTENSIONS, 1024, (void *)extensions, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Failed to clGetDeviceInfo when trying to get CL_DEVICE_EXTENSIONS");
		return NULL;
	}
	find = strstr(extensions, camo);
	if (find)
		clState->hasBitAlign = true;

	status = clGetDeviceInfo(devices[gpu], CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, sizeof(cl_uint), (void *)&clState->preferred_vwidth, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Failed to clGetDeviceInfo when trying to get CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT");
		return NULL;
	}
	if (opt_debug)
		applog(LOG_DEBUG, "Preferred vector width reported %d", clState->preferred_vwidth);

	status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), (void *)&clState->max_work_size, NULL);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_WORK_GROUP_SIZE");
		return NULL;
	}
	if (opt_debug)
		applog(LOG_DEBUG, "Max work group size reported %d", clState->max_work_size);

	/* For some reason 2 vectors is still better even if the card says
	 * otherwise, and many cards lie about their max so use 256 as max
	 * unless explicitly set on the command line. 79x0 cards perform
	 * better without vectors */
	if (clState->preferred_vwidth > 1) {
		if (strstr(name, "Tahiti"))
			clState->preferred_vwidth = 1;
		else
			clState->preferred_vwidth = 2;
	}

	if (opt_vectors)
		clState->preferred_vwidth = opt_vectors;
	if (opt_worksize && opt_worksize <= clState->max_work_size)
		clState->work_size = opt_worksize;
	else
		clState->work_size = (clState->max_work_size <= 256 ? clState->max_work_size : 256) /
				clState->preferred_vwidth;

	/* Create binary filename based on parameters passed to opencl
	 * compiler to ensure we only load a binary that matches what would
	 * have otherwise created. The filename is:
	 * name + kernelname +/i bitalign + v + vectors + w + work_size + sizeof(long) + .bin
	 */
	char binaryfilename[255];
	char numbuf[10];
	char filename[16];

	if (chosen_kernel == KL_NONE) {
		if (!clState->hasBitAlign || strstr(name, "Tahiti"))
			chosen_kernel = KL_POCLBM;
		else
			chosen_kernel = KL_PHATK;
	}

	switch (chosen_kernel) {
		case KL_POCLBM:
			strcpy(filename, "poclbm120203.cl");
			strcpy(binaryfilename, "poclbm120203");
			break;
		case KL_NONE: /* Shouldn't happen */
		case KL_PHATK:
			strcpy(filename, "phatk120203.cl");
			strcpy(binaryfilename, "phatk120203");
			break;
	}

	FILE *binaryfile;
	size_t *binary_sizes;
	char **binaries;
	int pl;
	char *source = file_contents(filename, &pl);
	size_t sourceSize[] = {(size_t)pl};

	if (!source)
		return NULL;

	binary_sizes = (size_t *)malloc(sizeof(size_t)*numDevices);
	if (unlikely(!binary_sizes)) {
		applog(LOG_ERR, "Unable to malloc binary_sizes");
		return NULL;
	}
	binaries = (char **)malloc(sizeof(char *)*numDevices);
	if (unlikely(!binaries)) {
		applog(LOG_ERR, "Unable to malloc binaries");
		return NULL;
	}

	strcat(binaryfilename, name);
	if (clState->hasBitAlign)
		strcat(binaryfilename, "bitalign");

	strcat(binaryfilename, "v");
	sprintf(numbuf, "%d", clState->preferred_vwidth);
	strcat(binaryfilename, numbuf);
	strcat(binaryfilename, "w");
	sprintf(numbuf, "%d", (int)clState->work_size);
	strcat(binaryfilename, numbuf);
	strcat(binaryfilename, "long");
	sprintf(numbuf, "%d", (int)sizeof(long));
	strcat(binaryfilename, numbuf);
	strcat(binaryfilename, ".bin");

	binaryfile = fopen(binaryfilename, "rb");
	if (!binaryfile) {
		if (opt_debug)
			applog(LOG_DEBUG, "No binary found, generating from source");
	} else {
		struct stat binary_stat;

		if (unlikely(stat(binaryfilename, &binary_stat))) {
			if (opt_debug)
				applog(LOG_DEBUG, "Unable to stat binary, generating from source");
			fclose(binaryfile);
			goto build;
		}
		if (!binary_stat.st_size)
			goto build;

		binary_sizes[gpu] = binary_stat.st_size;
		binaries[gpu] = (char *)malloc(binary_sizes[gpu]);
		if (unlikely(!binaries[gpu])) {
			applog(LOG_ERR, "Unable to malloc binaries");
			fclose(binaryfile);
			return NULL;
		}

		if (fread(binaries[gpu], 1, binary_sizes[gpu], binaryfile) != binary_sizes[gpu]) {
			applog(LOG_ERR, "Unable to fread binaries[gpu]");
			fclose(binaryfile);
			free(binaries[gpu]);
			goto build;
		}

		clState->program = clCreateProgramWithBinary(clState->context, 1, &devices[gpu], &binary_sizes[gpu], (const unsigned char **)&binaries[gpu], &status, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error: Loading Binary into cl_program (clCreateProgramWithBinary)");
			fclose(binaryfile);
			free(binaries[gpu]);
			goto build;
		}
		fclose(binaryfile);
		if (opt_debug)
			applog(LOG_DEBUG, "Loaded binary image %s", binaryfilename);

		/* We don't need to patch this already loaded image, but need to
		 * set the flag for status later */
		if (clState->hasBitAlign)
			patchbfi = true;

		free(binaries[gpu]);
		goto built;
	}

	/////////////////////////////////////////////////////////////////
	// Load CL file, build CL program object, create CL kernel object
	/////////////////////////////////////////////////////////////////

build:
	clState->program = clCreateProgramWithSource(clState->context, 1, (const char **)&source, sourceSize, &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Loading Binary into cl_program (clCreateProgramWithSource)");
		return NULL;
	}

	clRetainProgram(clState->program);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Retaining Program (clRetainProgram)");
		return NULL;
	}

	/* create a cl program executable for all the devices specified */
	char *CompilerOptions = calloc(1, 256);

	sprintf(CompilerOptions, "-D WORKSIZE=%d -D VECTORS%d",
		(int)clState->work_size, clState->preferred_vwidth);
	if (opt_debug)
		applog(LOG_DEBUG, "Setting worksize to %d", clState->work_size);
	if (clState->preferred_vwidth > 1 && opt_debug)
		applog(LOG_DEBUG, "Patched source to suit %d vectors", clState->preferred_vwidth);

	if (clState->hasBitAlign) {
		strcat(CompilerOptions, " -D BITALIGN");
		if (opt_debug)
			applog(LOG_DEBUG, "cl_amd_media_ops found, setting BITALIGN");
		if (strstr(name, "Cedar") ||
		    strstr(name, "Redwood") ||
		    strstr(name, "Juniper") ||
		    strstr(name, "Cypress" ) ||
		    strstr(name, "Hemlock" ) ||
		    strstr(name, "Caicos" ) ||
		    strstr(name, "Turks" ) ||
		    strstr(name, "Barts" ) ||
		    strstr(name, "Cayman" ) ||
		    strstr(name, "Antilles" ) ||
		    strstr(name, "Wrestler" ) ||
		    strstr(name, "Zacate" ) ||
		    strstr(name, "WinterPark" ) ||
		    strstr(name, "BeaverCreek" ))
			patchbfi = true;
	} else if (opt_debug)
		applog(LOG_DEBUG, "cl_amd_media_ops not found, will not set BITALIGN");

	if (patchbfi) {
		strcat(CompilerOptions, " -D BFI_INT");
		if (opt_debug)
			applog(LOG_DEBUG, "BFI_INT patch requiring device found, patched source with BFI_INT");
	} else if (opt_debug)
		applog(LOG_DEBUG, "BFI_INT patch requiring device not found, will not BFI_INT patch");

	if (opt_debug)
		applog(LOG_DEBUG, "CompilerOptions: %s", CompilerOptions);
	status = clBuildProgram(clState->program, 1, &devices[gpu], CompilerOptions , NULL, NULL);
	free(CompilerOptions);

	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Building Program (clBuildProgram)");
		size_t logSize;
		status = clGetProgramBuildInfo(clState->program, devices[gpu], CL_PROGRAM_BUILD_LOG, 0, NULL, &logSize);

		char *log = malloc(logSize);
		status = clGetProgramBuildInfo(clState->program, devices[gpu], CL_PROGRAM_BUILD_LOG, logSize, log, NULL);
		applog(LOG_INFO, "%s", log);
		return NULL;
	}

	prog_built = true;

	status = clGetProgramInfo( clState->program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t)*numDevices, binary_sizes, NULL );
	if (unlikely(status != CL_SUCCESS)) {
		applog(LOG_ERR, "Error: Getting program info CL_PROGRAM_BINARY_SIZES. (clGetPlatformInfo)");
		return NULL;
	}

	/* copy over all of the generated binaries. */
	if (opt_debug)
		applog(LOG_DEBUG, "binary size %d : %d", gpu, binary_sizes[gpu]);
	if (!binary_sizes[gpu]) {
		applog(LOG_ERR, "OpenCL compiler generated a zero sized binary, may need to reboot!");
		return NULL;
	}
	binaries[gpu] = (char *)malloc( sizeof(char)*binary_sizes[gpu]);
	status = clGetProgramInfo( clState->program, CL_PROGRAM_BINARIES, sizeof(char *)*numDevices, binaries, NULL );
	if (unlikely(status != CL_SUCCESS)) {
		applog(LOG_ERR, "Error: Getting program info. (clGetPlatformInfo)");
		return NULL;
	}

	/* Patch the kernel if the hardware supports BFI_INT but it needs to
	 * be hacked in */
	if (patchbfi) {
		unsigned remaining = binary_sizes[gpu];
		char *w = binaries[gpu];
		unsigned int start, length;

		/* Find 2nd incidence of .text, and copy the program's
		* position and length at a fixed offset from that. Then go
		* back and find the 2nd incidence of \x7ELF (rewind by one
		* from ELF) and then patch the opcocdes */
		if (!advance(&w, &remaining, ".text"))
			{patchbfi = 0; goto build;}
		w++; remaining--;
		if (!advance(&w, &remaining, ".text")) {
			/* 32 bit builds only one ELF */
			w--; remaining++;
		}
		memcpy(&start, w + 285, 4);
		memcpy(&length, w + 289, 4);
		w = binaries[gpu]; remaining = binary_sizes[gpu];
		if (!advance(&w, &remaining, "ELF"))
			{patchbfi = 0; goto build;}
		w++; remaining--;
		if (!advance(&w, &remaining, "ELF")) {
			/* 32 bit builds only one ELF */
			w--; remaining++;
		}
		w--; remaining++;
		w += start; remaining -= start;
		if (opt_debug)
			applog(LOG_DEBUG, "At %p (%u rem. bytes), to begin patching",
				w, remaining);
		patch_opcodes(w, length);

		status = clReleaseProgram(clState->program);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error: Releasing program. (clReleaseProgram)");
			return NULL;
		}

		clState->program = clCreateProgramWithBinary(clState->context, 1, &devices[gpu], &binary_sizes[gpu], (const unsigned char **)&binaries[gpu], &status, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error: Loading Binary into cl_program (clCreateProgramWithBinary)");
			return NULL;
		}

		clRetainProgram(clState->program);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error: Retaining Program (clRetainProgram)");
			return NULL;
		}

		/* Program needs to be rebuilt */
		prog_built = false;
	}

	free(source);

	/* Save the binary to be loaded next time */
	binaryfile = fopen(binaryfilename, "wb");
	if (!binaryfile) {
		/* Not a fatal problem, just means we build it again next time */
		if (opt_debug)
			applog(LOG_DEBUG, "Unable to create file %s", binaryfilename);
	} else {
		if (unlikely(fwrite(binaries[gpu], 1, binary_sizes[gpu], binaryfile) != binary_sizes[gpu])) {
			applog(LOG_ERR, "Unable to fwrite to binaryfile");
			return NULL;
		}
		fclose(binaryfile);
	}
	if (binaries[gpu])
		free(binaries[gpu]);
built:
	free(binaries);
	free(binary_sizes);

	applog(LOG_INFO, "Initialising kernel %s with%s BFI_INT, %d vectors and worksize %d",
	       filename, patchbfi ? "" : "out", clState->preferred_vwidth, clState->work_size);

	if (!prog_built) {
		/* create a cl program executable for all the devices specified */
		status = clBuildProgram(clState->program, 1, &devices[gpu], NULL, NULL, NULL);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error: Building Program (clBuildProgram)");
			size_t logSize;
			status = clGetProgramBuildInfo(clState->program, devices[gpu], CL_PROGRAM_BUILD_LOG, 0, NULL, &logSize);

			char *log = malloc(logSize);
			status = clGetProgramBuildInfo(clState->program, devices[gpu], CL_PROGRAM_BUILD_LOG, logSize, log, NULL);
			applog(LOG_INFO, "%s", log);
			return NULL;
		}

		clRetainProgram(clState->program);
		if (status != CL_SUCCESS) {
			applog(LOG_ERR, "Error: Retaining Program (clRetainProgram)");
			return NULL;
		}
	}

	/* get a kernel object handle for a kernel with the given name */
	clState->kernel = clCreateKernel(clState->program, "search", &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: Creating Kernel from program. (clCreateKernel)");
		return NULL;
	}

	/////////////////////////////////////////////////////////////////
	// Create an OpenCL command queue
	/////////////////////////////////////////////////////////////////
	clState->commandQueue = clCreateCommandQueue(clState->context, devices[gpu],
						     CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &status);
	if (status != CL_SUCCESS) /* Try again without OOE enable */
		clState->commandQueue = clCreateCommandQueue(clState->context, devices[gpu], 0 , &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Creating Command Queue. (clCreateCommandQueue)");
		return NULL;
	}

	clState->outputBuffer = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, BUFFERSIZE, NULL, &status);
	if (status != CL_SUCCESS) {
		applog(LOG_ERR, "Error: clCreateBuffer (outputBuffer)");
		return NULL;
	}

	return clState;
}
Exemple #11
0
		program( const program& rhs )
		{
			prog = rhs.prog;
			clRetainProgram(prog);
		}