Exemple #1
0
static void blink_led(void)
{
    int i;
    long long int t;

    for(i=0;i<3;i++) {
        leds_out_write(1);
        t = clock_get_ms();
        while(clock_get_ms() < t + 250);
        leds_out_write(0);
        t = clock_get_ms();
        while(clock_get_ms() < t + 250);
    }
}
Exemple #2
0
static int check_test_mode(void)
{
    char c;
    long long int t;

    t = clock_get_ms();
    while(clock_get_ms() < t + 1000) {
        if(readchar_nonblock()) {
            c = readchar();
            if((c == 't')||(c == 'T'))
                return 1;
        }
    }
    return 0;
}
Exemple #3
0
int watchdog_expired(void)
{
    int i;
    long long int t;

    t = 0x7fffffffffffffffLL;
    for(i=0;i<MAX_WATCHDOGS;i++)
        if(watchdogs[i].active && (watchdogs[i].threshold < t))
            t = watchdogs[i].threshold;
    return clock_get_ms() > t;
}
Exemple #4
0
int watchdog_set(int ms)
{
    int i, id;

    id = -1;
    for(i=0;i<MAX_WATCHDOGS;i++)
        if(!watchdogs[i].active) {
            id = i;
            break;
        }
    if(id < 0) {
        core_log("WARNING: Failed to add watchdog\n");
        return id;
    }

    watchdogs[id].active = 1;
    watchdogs[id].threshold = clock_get_ms() + ms;
    return id;
}
Exemple #5
0
static THD_FUNCTION(uart_thread, arg)
{
  (void)arg;
  chRegSetThreadName("UART thread");

  // KPA.
  event_listener_t kpa_event_listener;
  chEvtRegisterMaskWithFlags((event_source_t*)chnGetEventSource(&SD1), &kpa_event_listener, EVENT_MASK(1), CHN_INPUT_AVAILABLE);
  struct writer kpa_writer;
  writer_init(&kpa_writer, &SD1, uart_write);

  // FBV.
  event_listener_t fbv_event_listener;
  chEvtRegisterMaskWithFlags((event_source_t*)chnGetEventSource(&SD6), &fbv_event_listener, EVENT_MASK(2), CHN_INPUT_AVAILABLE);
  struct writer fbv_writer;
  writer_init(&fbv_writer, &SD6, uart_write);

  // Bridge-
  struct bridge bridge;
  bridge_init(&bridge, &kpa_writer, &fbv_writer);

  uint8_t byte = 0;
  while (true)
  {
    eventflags_t evt = chEvtWaitAnyTimeout(EVENT_MASK(1) | EVENT_MASK(2), MS2ST(1));

    if (evt & EVENT_MASK(1))
    {
      chEvtGetAndClearFlags(&kpa_event_listener);
      while (readByte(&SD1, &byte))
        bridge_update_kpa(&bridge, byte);
    }

    if (evt & EVENT_MASK(2))
    {
      chEvtGetAndClearFlags(&fbv_event_listener);
      while (readByte(&SD6, &byte))
        bridge_update_fbv(&bridge, byte);
    }

    bridge_update_time(&bridge, clock_get_ms());
  }
}
Exemple #6
0
void clock_test(void)
{
	volatile short i = 0;
	DDRB |= (1<<PB3) | (1<<PB4);
	clock_set_ms(0);
	
	while(1)
	{
		if( (clock_get_ms() % 500) == 0)
		{
			PORTB ^= (1<<PB4);
			
		}
		
		PORTB ^= (1<<PB3);
		// wait so that the LED doesn't toggle twice
		for(i = 0; i < 100;i++)
		{
			continue;
		}
	}
}
Exemple #7
0
u32_t sys_now(void)
{
    return clock_get_ms();
}
int main(void)
{
	system_init();
	clock_init();
	led_init();	led_set(0x01); //show life
	UART_Init(BAUD); UART_Write("\nInit"); //Show UART life
	motor_init();
	adc_init();
	
	
	//Enable Analog pins
	adc_enable(CHANNEL_SENSOR_LEFT); 
    adc_enable(CHANNEL_SENSOR_RIGHT);	
    adc_enable(CHANNEL_SENSOR_FRONT);

	
	//Sensor value variables
	uint16_t sensor_left_value = 0; uint16_t sensor_right_value  = 0; uint16_t sensor_front_value  = 0;

	//Analog inputSignal conditioning arrays
	circBuf_t left_buffer; circBuf_t right_buffer; 	circBuf_t front_buffer;

    //Initialise sensor averaging buffers
	initCircBuf(&left_buffer, ROLLING_AVERAGE_LENGTH);
	initCircBuf(&right_buffer, ROLLING_AVERAGE_LENGTH);
	initCircBuf(&front_buffer, ROLLING_AVERAGE_LENGTH);

		
	//UART output buffer
	char buffer[UART_BUFF_SIZE] = {0};

	//=====Application specific variables=====								//TODO: initialise circbuff
	circBuf_t sweep_times;
	initCircBuf(&sweep_times, SWEEP_TIME_MEMORY_LENGTH);
	short sweep_del_t_last = 0;
	short sweep_end_t_last = 0;
	
	//time when front sensor begins to see grey.
	uint32_t grey_time_start = 0;


	bool sweep_ended = FALSE;
	//set high if the front sensor crosses the line
	bool front_crossed_black = FALSE; 
	//set high if front finds finish line
	bool front_crossed_grey = FALSE;

	bool sensor_update_serviced = TRUE;
	
	action current_action = IDLE;
	
	int16_t forward_speed = DEFAULT_FORWARD_SPEED;
	int16_t turn_speed = DEFAULT_SPEED;
	
	//Scheduler variables
	uint32_t t = 0;	

	//Loop control time variables
	uint32_t maze_logic_t_last = 0;
	uint32_t sample_t_last = 0;
	uint32_t UART_t_last = 0;


	clock_set_ms(0);
	sei(); // Enable all interrupts
	UART_Write("ialized\n");

	//wait for start command
	DDRD &= ~BIT(7);
	PORTD |= BIT(7);
	
	
	//motor_set(128, 128);
	while((PIND & BIT(7)))
	{
		continue;
	}
	

	
	while(1)
	{
		                                                                                                                         
		t = clock_get_ms();
		
		//check if a sensor update has occured
		if ((sensor_update_serviced == FALSE) && 
			(t%MAZE_LOGIC_PERIOD == 0) && (t != maze_logic_t_last))
		{
			sensor_update_serviced = TRUE;


			// finishing condition is a grey read for a set period
			if(is_grey(sensor_front_value) && front_crossed_grey == FALSE)
			{
				front_crossed_grey = TRUE;
				grey_time_start = t;	                                   //TODO: adjust so that finishing condition is a 1/2 whole sweeps on grey line
			}
			else if (is_grey(sensor_front_value) && front_crossed_grey == TRUE)
			{
				//
				if ((grey_time_start + GREY_TIME) <= t )
				{
					// Finish line found. Stop robot.
					maze_completed(); // wait for button push
					front_crossed_grey = FALSE;
				}

			}
			else
			{
				front_crossed_grey = FALSE;
			}
			
			//see if the front sensor crosses the line in case we run into a gap
			if(is_black(sensor_front_value)&&front_crossed_black == FALSE)
			{
				front_crossed_black = TRUE;
				//check for false finish line
				if(front_crossed_grey)
					front_crossed_grey = FALSE; //false alarm
			}	
			
			// when both rear sensors go black, this indicates an intersection (turns included).
			// try turning left
			if(is_black(sensor_left_value) && is_black(sensor_right_value))
			{
				sweep_ended = TRUE;
				motor_set(0, 255);									
				PORTB |= BIT(3);
				PORTB |= BIT(4);
			}
			
			//when both sensors are completely white this indicates a dead end or a tape-gap
			else if (is_white(sensor_left_value) && is_white(sensor_right_value))
			{
				sweep_ended = TRUE;
				PORTB &= ~BIT(3);
				PORTB &= ~BIT(4);
				//current_action = ON_WHITE;
				//Check if the front sensor is on black, or has been during the last sweep.
				if(is_black(sensor_front_value) | front_crossed_black)
					motor_set(255, 255);
				else if (is_white(sensor_front_value))
					motor_set(-255, 255);
			}				
			
			//sweep to the side that reads the darkest value			
			else if (sensor_left_value + SENSOR_TOLLERANCE < sensor_right_value)
			{
				PORTB &= ~BIT(3);
				PORTB |= BIT(4);
				if (current_action == SWEEP_LEFT)
					sweep_ended = TRUE;
				current_action = SWEEP_RIGHT;
				motor_set(forward_speed + turn_speed, forward_speed);
			}
			else if(sensor_right_value + SENSOR_TOLLERANCE< sensor_left_value)
			{
				PORTB |= BIT(3);
				PORTB &= ~BIT(4);			
				if (current_action == SWEEP_RIGHT)
					sweep_ended = TRUE;
				current_action = SWEEP_LEFT;
				motor_set(forward_speed, forward_speed+ turn_speed);
			}

            //If a new sweep started this cycle, find how long it took
            if (sweep_ended)
            {
            	//reset front black crossing detection variable
				sweep_ended = FALSE;
				
				if (front_crossed_black)
					front_crossed_black = FALSE;

				//Calculate sweep time
				sweep_del_t_last = t - sweep_end_t_last;
				sweep_end_t_last = t;
				writeCircBuf(&sweep_times, sweep_del_t_last);
				
				//adjust turn_speed for battery level.
				if (sweep_del_t_last > IDEAL_SWEEP_TIME)
				{
					turn_speed += 5;
				}					
				if (sweep_del_t_last < IDEAL_SWEEP_TIME)
				{
					turn_speed -= 5;
				}					
					
				turn_speed = regulate_within(turn_speed, MIN_TURN_SPEED, MAX_TURN_SPEED);
				
			}
		}
		
		//Sensor value update
 		if((t%SAMPLE_PERIOD == 0) & (t!=sample_t_last))
		{
            sample_t_last = t;
            //read in analog values
            sensor_update(CHANNEL_SENSOR_LEFT, &left_buffer, &sensor_left_value );
            sensor_update(CHANNEL_SENSOR_RIGHT, &right_buffer, &sensor_right_value );
            sensor_update(CHANNEL_SENSOR_FRONT, &front_buffer, &sensor_front_value );
			sensor_update_serviced = FALSE;

		}
		
		//display debug information		
		if((t%UART_PERIOD == 0) & (t != UART_t_last) & UART_ENABLED)
		{
			UART_t_last = t;
			
			sprintf(buffer, "sweep_time: %u \n", sweep_del_t_last);
			UART_Write(buffer);

			sprintf(buffer, "L: %u F: %u R: %u", sensor_left_value, sensor_front_value, sensor_right_value);
			UART_Write(buffer);
			UART_Write("\n");
		}
	}
}