Exemple #1
0
void bli_herk_blk_var3f( obj_t*  a,
                         obj_t*  ah,
                         obj_t*  c,
                         gemm_t* cntl,
                         herk_thrinfo_t* thread )
{
    obj_t  c_pack_s;
    obj_t  a1_pack_s, ah1_pack_s;

	obj_t  a1, ah1;
    obj_t* a1_pack = NULL;
    obj_t* ah1_pack = NULL;
	obj_t* c_pack = NULL;

	dim_t  i;
	dim_t  b_alg;
	dim_t  k_trans;

	// Prune any zero region that exists along the partitioning dimension.
	bli_herk_prune_unref_mparts_k( a, ah, c );

    if( thread_am_ochief( thread ) ) {
        // Initialize object for packing C.
	    bli_obj_init_pack( &c_pack_s );
        bli_packm_init( c, &c_pack_s,
                        cntl_sub_packm_c( cntl ) );
        
        // Scale C by beta (if instructed).
        bli_scalm_int( &BLIS_ONE,
                       c,
                       cntl_sub_scalm( cntl ) );
    }
    c_pack = thread_obroadcast( thread, &c_pack_s );

	// Initialize all pack objects that are passed into packm_init().
    if( thread_am_ichief( thread ) ) {
        bli_obj_init_pack( &a1_pack_s );
        bli_obj_init_pack( &ah1_pack_s );
    }
    a1_pack = thread_ibroadcast( thread, &a1_pack_s );
    ah1_pack = thread_ibroadcast( thread, &ah1_pack_s );

	// Pack C (if instructed).
	bli_packm_int( c, c_pack,
	               cntl_sub_packm_c( cntl ),
                   herk_thread_sub_opackm( thread ) );

	// Query dimension in partitioning direction.
	k_trans = bli_obj_width_after_trans( *a );

	// Partition along the k dimension.
	for ( i = 0; i < k_trans; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, k_trans, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and A1'.
		bli_acquire_mpart_l2r( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, ah, &ah1 );

		// Initialize objects for packing A1 and A1'.
        if( thread_am_ichief( thread ) ) {
            bli_packm_init( &a1, a1_pack,
                            cntl_sub_packm_a( cntl ) );
            bli_packm_init( &ah1, ah1_pack,
                            cntl_sub_packm_b( cntl ) );
        }
        thread_ibarrier( thread );

		// Pack A1 (if instructed).
		bli_packm_int( &a1, a1_pack,
		               cntl_sub_packm_a( cntl ),
                       herk_thread_sub_ipackm( thread ) );

		// Pack B1 (if instructed).
		bli_packm_int( &ah1, ah1_pack,
		               cntl_sub_packm_b( cntl ),
                       herk_thread_sub_ipackm( thread ) );

		// Perform herk subproblem.
		bli_herk_int( &BLIS_ONE,
		              a1_pack,
		              ah1_pack,
		              &BLIS_ONE,
		              c_pack,
		              cntl_sub_gemm( cntl ),
                      herk_thread_sub_herk( thread ) );

        // This variant executes multiple rank-k updates. Therefore, if the
        // internal beta scalar on matrix C is non-zero, we must use it
        // only for the first iteration (and then BLIS_ONE for all others).
        // And since c_pack is a local obj_t, we can simply overwrite the
        // internal beta scalar with BLIS_ONE once it has been used in the
        // first iteration.
        thread_ibarrier( thread );
        if ( i == 0 && thread_am_ichief( thread ) ) bli_obj_scalar_reset( c_pack );

	}

    thread_obarrier( thread );
    
	// Unpack C (if C was packed).
    bli_unpackm_int( c_pack, c,
                     cntl_sub_unpackm_c( cntl ),
                     herk_thread_sub_opackm( thread ) );

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
    if( thread_am_ochief( thread ) ) {
	    bli_packm_release( c_pack, cntl_sub_packm_c( cntl ) );
    }
    if( thread_am_ichief( thread ) ) {
        bli_packm_release( a1_pack, cntl_sub_packm_a( cntl ) );
        bli_packm_release( ah1_pack, cntl_sub_packm_b( cntl ) );
    }
}
Exemple #2
0
void bli_trsm_blk_var1b( obj_t*  a,
                         obj_t*  b,
                         obj_t*  c,
                         trsm_t* cntl )
{
    obj_t a1, a1_pack;
    obj_t b_pack;
    obj_t c1;

    dim_t i;
    dim_t b_alg;
    dim_t m_trans;
    dim_t offA;

    // Initialize all pack objects that are passed into packm_init().
    bli_obj_init_pack( &a1_pack );
    bli_obj_init_pack( &b_pack );

    // Set the default length of and offset to the non-zero part of A.
    m_trans  = bli_obj_length_after_trans( *a );
    offA     = 0;

    // If A is upper triangular, we have to adjust where the non-zero part of
    // A begins.
    if ( bli_obj_is_upper( *a ) )
        offA = m_trans - bli_abs( bli_obj_diag_offset_after_trans( *a ) ) -
               bli_obj_width_after_trans( *a );

    // Initialize object for packing B.
    bli_packm_init( b, &b_pack,
                    cntl_sub_packm_b( cntl ) );

    // Pack B1 (if instructed).
    bli_packm_int( b, &b_pack,
                   cntl_sub_packm_b( cntl ) );

    // Partition along the remaining portion of the m dimension.
    for ( i = offA; i < m_trans; i += b_alg )
    {
        // Determine the current algorithmic blocksize.
        b_alg = bli_determine_blocksize_b( i, m_trans, a,
                                           cntl_blocksize( cntl ) );

        // Acquire partitions for A1 and C1.
        bli_acquire_mpart_b2t( BLIS_SUBPART1,
                               i, b_alg, a, &a1 );
        bli_acquire_mpart_b2t( BLIS_SUBPART1,
                               i, b_alg, c, &c1 );

        //if ( bli_obj_is_zeros( a1 ) ) continue;

        // Initialize object for packing A1.
        bli_packm_init( &a1, &a1_pack,
                        cntl_sub_packm_a( cntl ) );

        // Pack A1 (if instructed).
        bli_packm_int( &a1, &a1_pack,
                       cntl_sub_packm_a( cntl ) );

        // Perform trsm subproblem.
        bli_trsm_int( &BLIS_ONE,
                      &a1_pack,
                      &b_pack,
                      &BLIS_ONE,
                      &c1,
                      cntl_sub_trsm( cntl ) );
    }

    // If any packing buffers were acquired within packm, release them back
    // to the memory manager.
    bli_obj_release_pack( &a1_pack );
    bli_obj_release_pack( &b_pack );
}
Exemple #3
0
void bli_herk_blk_var2f( obj_t*  a,
                         obj_t*  ah,
                         obj_t*  c,
                         gemm_t* cntl,
                         herk_thrinfo_t* thread )
{
    obj_t a_pack_s;
    obj_t ah1_pack_s, c1S_pack_s;

    obj_t ah1, c1, c1S;
    obj_t aS_pack;
    obj_t* a_pack;
    obj_t* ah1_pack;
    obj_t* c1S_pack;

	dim_t i;
	dim_t b_alg;
	dim_t n_trans;
	subpart_t stored_part;

	// The upper and lower variants are identical, except for which
	// merged subpartition is acquired in the loop body.
	if ( bli_obj_is_lower( *c ) ) stored_part = BLIS_SUBPART1B;
	else                          stored_part = BLIS_SUBPART1T;

    if( thread_am_ochief( thread ) ) {
        // Initialize object for packing A
	    bli_obj_init_pack( &a_pack_s );
        bli_packm_init( a, &a_pack_s,
                        cntl_sub_packm_a( cntl ) );

        // Scale C by beta (if instructed).
        bli_scalm_int( &BLIS_ONE,
                       c,
                       cntl_sub_scalm( cntl ) );
    }
    a_pack = thread_obroadcast( thread, &a_pack_s );

	// Initialize pack objects for C and A' that are passed into packm_init().
    if( thread_am_ichief( thread ) ) {
        bli_obj_init_pack( &ah1_pack_s );
        bli_obj_init_pack( &c1S_pack_s );
    }
    ah1_pack = thread_ibroadcast( thread, &ah1_pack_s );
    c1S_pack = thread_ibroadcast( thread, &c1S_pack_s );

	// Pack A (if instructed).
	bli_packm_int( a, a_pack,
	               cntl_sub_packm_a( cntl ),
                   herk_thread_sub_opackm( thread ) );

	// Query dimension in partitioning direction.
	n_trans = bli_obj_width_after_trans( *c );
    dim_t start, end;

    // Needs to be replaced with a weighted range because triangle
    bli_get_range_weighted( thread, 0, n_trans, 
                            bli_blksz_get_mult_for_obj( a, cntl_blocksize( cntl ) ),
                            bli_obj_is_lower( *c ), &start, &end );

	// Partition along the n dimension.
	for ( i = start; i < end; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, end, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1' and C1.
		bli_acquire_mpart_l2r( BLIS_SUBPART1,
		                       i, b_alg, ah, &ah1 );
		bli_acquire_mpart_l2r( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Partition off the stored region of C1 and the corresponding region
		// of A_pack.
        bli_acquire_mpart_t2b( stored_part,
                               i, b_alg, &c1, &c1S );
        bli_acquire_mpart_t2b( stored_part,
                               i, b_alg, a_pack, &aS_pack );

		// Initialize objects for packing A1' and C1.
        if( thread_am_ichief( thread ) ) {
            bli_packm_init( &ah1, ah1_pack,
                            cntl_sub_packm_b( cntl ) );
            bli_packm_init( &c1S, c1S_pack,
                            cntl_sub_packm_c( cntl ) );
        }
        thread_ibarrier( thread ) ;

		// Pack A1' (if instructed).
		bli_packm_int( &ah1, ah1_pack,
		               cntl_sub_packm_b( cntl ),
                       herk_thread_sub_ipackm( thread ) );

		// Pack C1 (if instructed).
		bli_packm_int( &c1S, c1S_pack,
		               cntl_sub_packm_c( cntl ),
                       herk_thread_sub_ipackm( thread ) ) ;

		// Perform herk subproblem.
		bli_herk_int( &BLIS_ONE,
		              &aS_pack,
		              ah1_pack,
		              &BLIS_ONE,
		              c1S_pack,
		              cntl_sub_gemm( cntl ),
                      herk_thread_sub_herk( thread ) );

        thread_ibarrier( thread );

		// Unpack C1 (if C1 was packed).
        bli_unpackm_int( c1S_pack, &c1S,
                         cntl_sub_unpackm_c( cntl ),
                         herk_thread_sub_ipackm( thread ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
    thread_obarrier( thread );
    if( thread_am_ochief( thread ) )
        bli_packm_release( a_pack, cntl_sub_packm_a( cntl ) );
    if( thread_am_ichief( thread ) ) {
        bli_packm_release( ah1_pack, cntl_sub_packm_b( cntl ) );
        bli_packm_release( c1S_pack, cntl_sub_packm_c( cntl ) );
    }
}
void bli_trmm_blk_var2b( obj_t*  a,
                         obj_t*  b,
                         obj_t*  c,
                         gemm_t* cntl,
                         trmm_thrinfo_t* thread )
{
    obj_t a_pack_s;
    obj_t b1_pack_s, c1_pack_s;
    
    obj_t b1, c1; 
    obj_t*  a_pack = NULL;
    obj_t*  b1_pack = NULL;
    obj_t*  c1_pack = NULL;

	dim_t i;
	dim_t b_alg;
	dim_t n_trans;


    if( thread_am_ochief( thread ) ) { 
        // Initialize object for packing A
        bli_obj_init_pack( &a_pack_s );
        bli_packm_init( a, &a_pack_s,
                        cntl_sub_packm_a( cntl ) );

        // Scale C by beta (if instructed).
        bli_scalm_int( &BLIS_ONE,
                       c,  
                       cntl_sub_scalm( cntl ) );
    }   
    a_pack = thread_obroadcast( thread, &a_pack_s );

    // Initialize pack objects for B and C that are passed into packm_init().
    if( thread_am_ichief( thread ) ) { 
        bli_obj_init_pack( &b1_pack_s );
        bli_obj_init_pack( &c1_pack_s );
    }   
    b1_pack = thread_ibroadcast( thread, &b1_pack_s );
    c1_pack = thread_ibroadcast( thread, &c1_pack_s );

	// Pack A (if instructed).
	bli_packm_int( a, a_pack,
	               cntl_sub_packm_a( cntl ),
                   trmm_thread_sub_opackm( thread ) );

	// Query dimension in partitioning direction.
	n_trans = bli_obj_width_after_trans( *b );
    dim_t start, end;
    bli_get_range_weighted( thread, 0, n_trans, 
                            bli_determine_reg_blocksize( b, cntl_blocksize( cntl ) ),
                            bli_obj_is_upper( *c ), &start, &end );

	// Partition along the n dimension.
	for ( i = start; i < end; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_b( i, end, b,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for B1 and C1.
		bli_acquire_mpart_r2l( BLIS_SUBPART1,
		                       i, b_alg, b, &b1 );
		bli_acquire_mpart_r2l( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Initialize objects for packing A1 and B1.
        if( thread_am_ichief( thread ) ) {
            bli_packm_init( &b1, b1_pack,
                            cntl_sub_packm_b( cntl ) );
            bli_packm_init( &c1, c1_pack,
                            cntl_sub_packm_c( cntl ) );
        }
        thread_ibarrier( thread );

		// Pack B1 (if instructed).
		bli_packm_int( &b1, b1_pack,
		               cntl_sub_packm_b( cntl ),
                       trmm_thread_sub_ipackm( thread ) );

		// Pack C1 (if instructed).
		bli_packm_int( &c1, c1_pack,
		               cntl_sub_packm_c( cntl ),
                       trmm_thread_sub_ipackm( thread ) );

		// Perform trmm subproblem.
		bli_trmm_int( &BLIS_ONE,
		              a_pack,
		              b1_pack,
		              &BLIS_ONE,
		              c1_pack,
		              cntl_sub_gemm( cntl ),
                      trmm_thread_sub_trmm( thread ) );

        // Unpack C1 (if C1 was packed).
        bli_unpackm_int( c1_pack, &c1,
                         cntl_sub_unpackm_c( cntl ),
                         trmm_thread_sub_ipackm( thread ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
    thread_obarrier( thread );
    if( thread_am_ochief( thread ) )
        bli_obj_release_pack( a_pack );
    if( thread_am_ichief( thread ) ) {
        bli_obj_release_pack( b1_pack );
        bli_obj_release_pack( c1_pack );
    }
}
void bli_trmm_blk_var1( obj_t*  alpha,
                        obj_t*  a,
                        obj_t*  b,
                        obj_t*  beta,
                        obj_t*  c,
                        trmm_t* cntl )
{
	obj_t a1, a1_pack;
	obj_t b_pack;
	obj_t c1, c1_pack;

	dim_t i;
	dim_t b_alg;
	dim_t m_trans;
	dim_t offA;

	// Initialize all pack objects that are passed into packm_init().
	bli_obj_init_pack( &a1_pack );
	bli_obj_init_pack( &b_pack );
	bli_obj_init_pack( &c1_pack );

	// Set the default length of and offset to the non-zero part of A.
	m_trans = bli_obj_length_after_trans( *a );
	offA    = 0;

	// If A is lower triangular, we have to adjust where the non-zero part of
	// A begins. If A is upper triangular, we have to adjust the length of
	// the non-zero part. If A is general/dense, then we keep the defaults.
	if      ( bli_obj_is_lower( *a ) )
		offA    = bli_abs( bli_obj_diag_offset_after_trans( *a ) );
	else if ( bli_obj_is_upper( *a ) )
		m_trans = bli_abs( bli_obj_diag_offset_after_trans( *a ) ) +
		          bli_obj_width_after_trans( *a );

	// Scale C by beta (if instructed).
	bli_scalm_int( beta,
	               c,
	               cntl_sub_scalm( cntl ) );

	// Initialize object for packing B.
	bli_packm_init( b, &b_pack,
	                cntl_sub_packm_b( cntl ) );

	// Pack B and scale by alpha (if instructed).
	bli_packm_int( alpha,
	               b, &b_pack,
	               cntl_sub_packm_b( cntl ) );

	// Partition along the m dimension.
	for ( i = offA; i < m_trans; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, m_trans, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Initialize objects for packing A1 and C1.
		bli_packm_init( &a1, &a1_pack,
		                cntl_sub_packm_a( cntl ) );
		bli_packm_init( &c1, &c1_pack,
		                cntl_sub_packm_c( cntl ) );

		// Pack A1 and scale by alpha (if instructed).
		bli_packm_int( alpha,
		               &a1, &a1_pack,
		               cntl_sub_packm_a( cntl ) );

		// Pack C1 and scale by beta (if instructed).
		bli_packm_int( beta,
		               &c1, &c1_pack,
		               cntl_sub_packm_c( cntl ) );

		// Perform trmm subproblem.
		bli_trmm_int( alpha,
		              &a1_pack,
		              &b_pack,
		              beta,
		              &c1_pack,
		              cntl_sub_trmm( cntl ) );

		// Unpack C1 (if C1 was packed).
		bli_unpackm_int( &c1_pack, &c1,
		                 cntl_sub_unpackm_c( cntl ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
	bli_obj_release_pack( &a1_pack );
	bli_obj_release_pack( &b_pack );
	bli_obj_release_pack( &c1_pack );
}
Exemple #6
0
void bli_trsm_l_blk_var4( obj_t*  alpha,
                          obj_t*  a,
                          obj_t*  b,
                          obj_t*  beta,
                          obj_t*  c,
                          trsm_t* cntl )
{
	obj_t a1, a1_pack;
	obj_t b_pack;
	obj_t c1;

	dim_t i;
	dim_t bm_alg;
	dim_t m_trans;
	dim_t offB;

	// Initialize all pack objects that are passed into packm_init().
	bli_obj_init_pack( &a1_pack );
	bli_obj_init_pack( &b_pack );

	// Query dimension in partitioning direction.
	m_trans = bli_obj_length_after_trans( *a );

	// Use the diagonal offset of A to skip over the zero region.
	offB = bli_abs( bli_obj_diag_offset_after_trans( *a ) );

	// Initialize object for packing B.
	bli_packm_init( b, &b_pack,
	                cntl_sub_packm_b( cntl ) );

	// Fuse the first iteration with incremental packing and computation.
	{
		obj_t b_inc, b_pack_inc;
		obj_t c1_inc;

		dim_t j;
		dim_t bn_inc;
		dim_t n_trans;

		// Query dimension in partitioning direction.
		n_trans = bli_obj_width( b_pack );

		// Determine the current algorithmic blocksize.
		bm_alg = bli_determine_blocksize_f( offB, m_trans, a,
		                                    cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       offB, bm_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       offB, bm_alg, c, &c1 );

		// Initialize objects for packing A1 and C1.
		bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) );

		// Pack A1 and scale by alpha (if instructed).
		bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) );

		// Partition along the n dimension.
		for ( j = 0; j < n_trans; j += bn_inc )
		{
			// Determine the current incremental packing blocksize.
			bn_inc = bli_determine_blocksize_f( j, n_trans, b,
			                                    cntl_blocksize_aux( cntl ) );

			// Acquire partitions.
			bli_acquire_mpart_l2r( BLIS_SUBPART1,
			                       j, bn_inc, b, &b_inc );
			bli_acquire_mpart_l2r( BLIS_SUBPART1,
			                       j, bn_inc, &b_pack, &b_pack_inc );
			bli_acquire_mpart_l2r( BLIS_SUBPART1,
			                       j, bn_inc, &c1, &c1_inc );

			// Pack B1 and scale by alpha (if instructed).
			bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) );

			// Perform trsm subproblem.
			bli_trsm_int( BLIS_LEFT,
			              alpha,
			              &a1_pack,
			              &b_pack_inc,
			              beta,
			              &c1_inc,
			              cntl_sub_trsm( cntl ) );
		}

		// Unpack B to the corresponding region of C. (Note that B and C1 are
		// conformal since A1 is square.)
		//bli_unpackm_int( &b_pack, &c1,
		//                 cntl_sub_unpackm_c( cntl ) );
	}

	// Partition along the remaining portion of the m dimension.
	for ( i = offB + bm_alg; i < m_trans; i += bm_alg )
	{
		// Determine the current algorithmic blocksize.
		bm_alg = bli_determine_blocksize_f( i, m_trans, a,
		                                    cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, bm_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, bm_alg, c, &c1 );

		// Initialize object for packing A1.
		bli_packm_init( &a1, &a1_pack,
		                cntl_sub_packm_a( cntl ) );

		// Pack A1 and scale by alpha (if instructed).
		bli_packm_int( alpha,
		               &a1, &a1_pack,
		               cntl_sub_packm_a( cntl ) );

		// Perform trsm subproblem.
		if ( bli_obj_intersects_diag( a1_pack ) )
			bli_trsm_int( BLIS_LEFT,
			              alpha,
			              &a1_pack,
			              &b_pack,
			              beta,
			              &c1,
			              cntl_sub_trsm( cntl ) );
		else
			bli_gemm_int( &BLIS_MINUS_ONE,
			              &a1_pack,
			              &b_pack,
			              &BLIS_ONE,
			              &c1,
			              cntl_sub_gemm( cntl ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
	bli_obj_release_pack( &a1_pack );
	bli_obj_release_pack( &b_pack );
}
Exemple #7
0
void bli_gemm_blk_var3f( obj_t*  a,
                         obj_t*  b,
                         obj_t*  c,
                         gemm_t* cntl,
                         gemm_thrinfo_t* thread )
{
    obj_t  c_pack_s;
    obj_t  a1_pack_s, b1_pack_s;

    obj_t  a1, b1;
    obj_t* a1_pack = NULL;
    obj_t* b1_pack = NULL;
    obj_t* c_pack = NULL;

	dim_t  i;
	dim_t  b_alg;
	dim_t  k_trans;

    if( thread_am_ochief( thread ) ){
        // Initialize object for packing C
	    bli_obj_init_pack( &c_pack_s );
        bli_packm_init( c, &c_pack_s,
                        cntl_sub_packm_c( cntl ) );

        // Scale C by beta (if instructed).
        bli_scalm_int( &BLIS_ONE,
                       c,
                       cntl_sub_scalm( cntl ) );
    }
    c_pack = thread_obroadcast( thread, &c_pack_s );

    // Initialize pack objects for A and B that are passed into packm_init().
    if( thread_am_ichief( thread ) ){
        bli_obj_init_pack( &a1_pack_s );
        bli_obj_init_pack( &b1_pack_s );
    }
    a1_pack = thread_ibroadcast( thread, &a1_pack_s );
    b1_pack = thread_ibroadcast( thread, &b1_pack_s );

	// Pack C (if instructed).
	bli_packm_int( c, c_pack,
	               cntl_sub_packm_c( cntl ),
                   gemm_thread_sub_opackm( thread ) );

	// Query dimension in partitioning direction.
	k_trans = bli_obj_width_after_trans( *a );

	// Partition along the k dimension.
	for ( i = 0; i < k_trans; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		// NOTE: We call a gemm/hemm/symm-specific function to determine
		// the kc blocksize so that we can implement the "nudging" of kc
		// to be a multiple of mr or nr, as needed.
		b_alg = bli_gemm_determine_kc_f( i, k_trans, a, b,
		                                 cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and B1.
		bli_acquire_mpart_l2r( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, b, &b1 );

		// Initialize objects for packing A1 and B1.
        if( thread_am_ichief( thread ) ) {
            bli_packm_init( &a1, a1_pack,
                            cntl_sub_packm_a( cntl ) );
            bli_packm_init( &b1, b1_pack,
                            cntl_sub_packm_b( cntl ) );
        }
        thread_ibarrier( thread );

		// Pack A1 (if instructed).
		bli_packm_int( &a1, a1_pack,
		               cntl_sub_packm_a( cntl ),
                       gemm_thread_sub_ipackm( thread ) );

		// Pack B1 (if instructed).
		bli_packm_int( &b1, b1_pack,
		               cntl_sub_packm_b( cntl ),
                       gemm_thread_sub_ipackm( thread ) );

		// Perform gemm subproblem.
		bli_gemm_int( &BLIS_ONE,
		              a1_pack,
		              b1_pack,
		              &BLIS_ONE,
		              c_pack,
		              cntl_sub_gemm( cntl ),
                      gemm_thread_sub_gemm( thread) );

		// This variant executes multiple rank-k updates. Therefore, if the
		// internal beta scalar on matrix C is non-zero, we must use it
		// only for the first iteration (and then BLIS_ONE for all others).
		// And since c_pack is a local obj_t, we can simply overwrite the
		// internal beta scalar with BLIS_ONE once it has been used in the
		// first iteration.
        thread_ibarrier( thread );
		if ( i == 0 && thread_am_ichief( thread ) ) bli_obj_scalar_reset( c_pack );

	}

    thread_obarrier( thread );

	// Unpack C (if C was packed).
    bli_unpackm_int( c_pack, c,
                     cntl_sub_unpackm_c( cntl ),
                     gemm_thread_sub_opackm( thread ) );

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
    if( thread_am_ochief( thread ) )
        bli_packm_release( c_pack, cntl_sub_packm_c( cntl ) );
    if( thread_am_ichief( thread ) ){
        bli_packm_release( a1_pack, cntl_sub_packm_a( cntl ) );
        bli_packm_release( b1_pack, cntl_sub_packm_b( cntl ) );
    }
}
Exemple #8
0
void bli_trsm_u_blk_var4( obj_t*  alpha,
                          obj_t*  a,
                          obj_t*  b,
                          obj_t*  beta,
                          obj_t*  c,
                          trsm_t* cntl )
{
	obj_t a1, a1_pack;
	obj_t b_pack;
	obj_t c1;

	dim_t i;
	dim_t bm_alg;
	dim_t m_trans;

	// Initialize all pack objects that are passed into packm_init().
	bli_obj_init_pack( &a1_pack );
	bli_obj_init_pack( &b_pack );

	// Query dimension in partitioning direction.
	m_trans = bli_obj_length_after_trans( *a );

	// Initialize object for packing B.
	bli_packm_init( b, &b_pack,
	                cntl_sub_packm_b( cntl ) );

	// Find the offset to the first non-zero block of A.
	for ( i = 0; i < m_trans; i += bm_alg )
	{
		// Determine the current algorithmic blocksize.
		bm_alg = bli_determine_blocksize_b( i, m_trans, a,
		                                    cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_b2t( BLIS_SUBPART1,
		                       i, bm_alg, a, &a1 );

		if ( !bli_obj_is_zeros( a1 ) ) break;
	}

	// Fuse the first iteration with incremental packing and computation.
	{
		obj_t b_inc, b_pack_inc;
		obj_t c1_inc;

		dim_t j;
		dim_t bn_inc;
		dim_t n_trans;

		// Query dimension in partitioning direction.
		n_trans = bli_obj_width( b_pack );

		// Determine the current algorithmic blocksize.
		bm_alg = bli_determine_blocksize_b( i, m_trans, a,
		                                    cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_b2t( BLIS_SUBPART1,
		                       i, bm_alg, a, &a1 );
		bli_acquire_mpart_b2t( BLIS_SUBPART1,
		                       i, bm_alg, c, &c1 );

		// Initialize objects for packing A1 and C1.
		bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) );

		// Pack A1 and scale by alpha (if instructed).
		bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) );

		// Partition along the n dimension.
		for ( j = 0; j < n_trans; j += bn_inc )
		{
			// Determine the current incremental packing blocksize.
			bn_inc = bli_determine_blocksize_f( j, n_trans, b,
			                                    cntl_blocksize_aux( cntl ) );

			// Acquire partitions.
			bli_acquire_mpart_l2r( BLIS_SUBPART1,
			                       j, bn_inc, b, &b_inc );
			bli_acquire_mpart_l2r( BLIS_SUBPART1,
			                       j, bn_inc, &b_pack, &b_pack_inc );
			bli_acquire_mpart_l2r( BLIS_SUBPART1,
			                       j, bn_inc, &c1, &c1_inc );

			// Pack B1 and scale by alpha (if instructed).
			bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) );

			// Perform trsm subproblem.
			bli_trsm_int( BLIS_LEFT,
			              alpha,
			              &a1_pack,
			              &b_pack_inc,
			              beta,
			              &c1_inc,
			              cntl_sub_trsm( cntl ) );
		}
	}

	// Partition along the remaining portion of the m dimension.
	for ( i = i + bm_alg; i < m_trans; i += bm_alg )
	{
		// Determine the current algorithmic blocksize.
		bm_alg = bli_determine_blocksize_b( i, m_trans, a,
		                                    cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_b2t( BLIS_SUBPART1,
		                       i, bm_alg, a, &a1 );
		bli_acquire_mpart_b2t( BLIS_SUBPART1,
		                       i, bm_alg, c, &c1 );

		// Initialize object for packing A1.
		bli_packm_init( &a1, &a1_pack,
		                cntl_sub_packm_a( cntl ) );

		// Pack A1 and scale by alpha (if instructed).
		bli_packm_int( alpha,
		               &a1, &a1_pack,
		               cntl_sub_packm_a( cntl ) );

		if ( bli_obj_intersects_diag( a1_pack ) )
			bli_trsm_int( BLIS_LEFT,
			              alpha,
			              &a1_pack,
			              &b_pack,
			              beta,
			              &c1,
			              cntl_sub_trsm( cntl ) );
		else
			bli_gemm_int( &BLIS_MINUS_ONE,
			              &a1_pack,
			              &b_pack,
			              &BLIS_ONE,
			              &c1,
			              cntl_sub_gemm( cntl ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
	bli_obj_release_pack( &a1_pack );
	bli_obj_release_pack( &b_pack );
}
Exemple #9
0
void bli_trsm_blk_var1f( obj_t*  a,
                         obj_t*  b,
                         obj_t*  c,
                         trsm_t* cntl,
                         trsm_thrinfo_t* thread )
{
    obj_t b_pack_s;
    obj_t a1_pack_s;

	obj_t a1, c1;
	obj_t* b_pack = NULL;
	obj_t* a1_pack = NULL;

	dim_t i;
	dim_t b_alg;
	dim_t m_trans;
	dim_t offA;

    // Initialize object for packing B.
    if( thread_am_ochief( thread ) ) {
	    bli_obj_init_pack( &b_pack_s );
        bli_packm_init( b, &b_pack_s,
                        cntl_sub_packm_b( cntl ) );
    }
    b_pack = thread_obroadcast( thread, &b_pack_s );

    // Initialize object for packing B.
    if( thread_am_ichief( thread ) ) {
        bli_obj_init_pack( &a1_pack_s );
    }
    a1_pack = thread_ibroadcast( thread, &a1_pack_s );

	// Pack B1 (if instructed).
	bli_packm_int( b, b_pack,
	               cntl_sub_packm_b( cntl ),
                   trsm_thread_sub_opackm( thread ) );

	// Set the default length of and offset to the non-zero part of A.
	m_trans  = bli_obj_length_after_trans( *a );
	offA     = 0;

	// If A is lower triangular, we have to adjust where the non-zero part of
	// A begins.
	if ( bli_obj_is_lower( *a ) )
		offA = bli_abs( bli_obj_diag_offset_after_trans( *a ) );

    dim_t start, end;
    num_t datatype = bli_obj_execution_datatype( *a );
    bli_get_range( thread, offA, m_trans,
                   //bli_lcm( bli_info_get_default_nr( datatype ), bli_info_get_default_mr( datatype ) ),  
                   bli_info_get_default_mc( datatype ),
                   &start, &end );

	// Partition along the remaining portion of the m dimension.
	for ( i = start; i < end; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, end, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Initialize object for packing A1.
        if( thread_am_ichief( thread ) ) {
            bli_packm_init( &a1, a1_pack,
                            cntl_sub_packm_a( cntl ) );
        }
        thread_ibarrier( thread );

		// Pack A1 (if instructed).
		bli_packm_int( &a1, a1_pack,
		               cntl_sub_packm_a( cntl ),
                       trsm_thread_sub_ipackm( thread ) );

		// Perform trsm subproblem.
		bli_trsm_int( &BLIS_ONE,
		              a1_pack,
		              b_pack,
		              &BLIS_ONE,
		              &c1,
		              cntl_sub_trsm( cntl ),
                      trsm_thread_sub_trsm( thread ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
    thread_obarrier( thread );
    if( thread_am_ochief( thread ) )
    	bli_obj_release_pack( b_pack );
    if( thread_am_ichief( thread ) )
    	bli_obj_release_pack( a1_pack );
}