// Returns in gens a generating set for Zm* /<p>, and in ords the // order of these generators. Return value is the order of p in Zm*. long findGenerators(vector<long>& gens, vector<long>& ords, long m, long p) { gens.clear(); ords.clear(); // Compute the generators for (Z/mZ)^* vector<long> classes(m); vector<long> orders(m); for (long i=0; i<m; i++) { // initially each element in its own class if (GCD(i,m)!=1) classes[i] = 0; // i is not in (Z/mZ)^* else classes[i] = i; } // Start building a representation of (Z/mZ)^*, first use the generator p conjClasses(classes,p % m,m); // merge classes that have a factor of p // The order of p is the size of the equivalence class of 1 #if 0 long ordP = std::count(classes.begin(), classes.end(), 1); // count(from,to,val) returns # of elements in (from,to) with value=val #else long ordP = 0; for (long i = 0; i < lsize(classes); i++) if (classes[i] == 1) ordP++; #endif // Compute orders in (Z/mZ)^*/<p> while comparing to (Z/mZ)^* while (true) { compOrder(orders,classes,true,m); // if the orders of i in Zm* /<p> and Zm* are not the same, then // order[i] contains the order in Zm* /<p> with negative sign long idx = argmax(orders, >AbsVal); // find the element with largest order long largest = orders[idx]; if (abs(largest) == 1) break; // Trivial group, we are done // store generator with same order as in (Z/mZ)^* gens.push_back(idx); ords.push_back(largest); conjClasses(classes,idx,m); // merge classes that have a factor of idx } return ordP; }
// Generate the representation of Z_m^* for a given odd integer m // and plaintext base p PAlgebra::PAlgebra(unsigned long mm, unsigned long pp) { m = mm; p = pp; assert( (m&1) == 1 ); assert( ProbPrime(p) ); // replaced by Mahdi after a conversation with Shai // assert( m > p && (m % p) != 0 ); // original line assert( (m % p) != 0 ); // end of replace by Mahdi assert( m < NTL_SP_BOUND ); // Compute the generators for (Z/mZ)^* vector<unsigned long> classes(m); vector<long> orders(m); unsigned long i; for (i=0; i<m; i++) { // initially each element in its own class if (GCD(i,m)!=1) classes[i] = 0; // i is not in (Z/mZ)^* else classes[i] = i; } // Start building a representation of (Z/mZ)^*, first use the generator p conjClasses(classes,p,m); // merge classes that have a factor of 2 // The order of p is the size of the equivalence class of 1 ordP = (unsigned long) count (classes.begin(), classes.end(), 1); // Compute orders in (Z/mZ)^*/<p> while comparing to (Z/mZ)^* long idx, largest; while (true) { compOrder(orders,classes,true,m); idx = argmax(orders); // find the element with largest order largest = orders[idx]; if (largest <= 0) break; // stop comparing to order in (Z/mZ)^* // store generator with same order as in (Z/mZ)^* gens.push_back(idx); ords.push_back(largest); conjClasses(classes,idx,m); // merge classes that have a factor of idx } // Compute orders in (Z/mZ)^*/<p> without comparing to (Z/mZ)^* while (true) { compOrder(orders,classes,false,m); idx = argmax(orders); // find the element with largest order largest = orders[idx]; if (largest <= 0) break; // we have the trivial group, we are done // store generator with different order than (Z/mZ)^* gens.push_back(idx); ords.push_back(-largest); // store with negative sign conjClasses(classes,idx,m); // merge classes that have a factor of idx } nSlots = qGrpOrd(); phiM = ordP * nSlots; // Allocate space for the various arrays T.resize(nSlots); dLogT.resize(nSlots*gens.size()); Tidx.assign(m,-1); // allocate m slots, initialize them to -1 zmsIdx.assign(m,-1); // allocate m slots, initialize them to -1 for (i=idx=0; i<m; i++) if (GCD(i,m)==1) zmsIdx[i] = idx++; // Now fill the Tidx and dLogT translation tables. We identify an element // t\in T with its representation t = \prod_{i=0}^n gi^{ei} mod m (where // the gi's are the generators in gens[]) , represent t by the vector of // exponents *in reverse order* (en,...,e1,e0), and order these vectors // in lexicographic order. // buffer is initialized to all-zero, which represents 1=\prod_i gi^0 vector<unsigned long> buffer(gens.size()); // temporaty holds exponents i = idx = 0; do { unsigned long t = exponentiate(buffer); for (unsigned long j=0; j<buffer.size(); j++) dLogT[idx++] = buffer[j]; T[i] = t; // The i'th element in T it t Tidx[t] = i++; // the index of t in T is i // increment buffer by one (in lexigoraphic order) } while (nextExpVector(buffer)); // until we cover all the group PhimX = Cyclotomic(m); // compute and store Phi_m(X) // initialize prods array long ndims = gens.size(); prods.resize(ndims+1); prods[ndims] = 1; for (long j = ndims-1; j >= 0; j--) { prods[j] = OrderOf(j) * prods[j+1]; } }