void BorderEstimator::estimate( const sensor_msgs::PointCloud2::ConstPtr& msg, const sensor_msgs::CameraInfo::ConstPtr& info) { if (msg->height == 1) { JSK_NODELET_ERROR("[BorderEstimator::estimate] pointcloud must be organized"); return; } pcl::RangeImagePlanar range_image; pcl::PointCloud<pcl::PointXYZ> cloud; pcl::fromROSMsg(*msg, cloud); Eigen::Affine3f dummytrans = Eigen::Affine3f::Identity(); float fx = info->P[0]; float cx = info->P[2]; float tx = info->P[3]; float fy = info->P[5]; float cy = info->P[6]; range_image.createFromPointCloudWithFixedSize (cloud, msg->width, msg->height, cx, cy, fx, fy, dummytrans); range_image.setUnseenToMaxRange(); computeBorder(range_image, msg->header); }
void BorderEstimator::estimate( const sensor_msgs::PointCloud2::ConstPtr& msg) { boost::mutex::scoped_lock lock(mutex_); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::fromROSMsg(*msg, *cloud); pcl::RangeImage range_image; if (model_type_ == "sphere") { range_image = pcl::RangeImageSpherical(); } range_image.createFromPointCloud( *cloud, angular_resolution_, max_angle_width_, max_angle_height_, Eigen::Affine3f::Identity(), pcl::RangeImage::CAMERA_FRAME, noise_level_, min_range_, border_size_); range_image.setUnseenToMaxRange(); computeBorder(range_image, msg->header); }
void KisShrinkSelectionFilter::process(KisPixelSelectionSP pixelSelection, const QRect& rect) { if (m_xRadius <= 0 || m_yRadius <= 0) return; /* pretty much the same as fatten_region only different blame all bugs in this function on [email protected] */ /* If edge_lock is true we assume that pixels outside the region we are passed are identical to the edge pixels. If edge_lock is false, we assume that pixels outside the region are 0 */ quint8 **buf; // caches the region's pixels quint8 **max; // caches the smallest values for each column qint32 last_max, last_index; max = new quint8* [rect.width() + 2 * m_xRadius]; buf = new quint8* [m_yRadius + 1]; for (qint32 i = 0; i < m_yRadius + 1; i++) { buf[i] = new quint8[rect.width()]; } qint32 buffer_size = (rect.width() + 2 * m_xRadius + 1) * (m_yRadius + 1); quint8* buffer = new quint8[buffer_size]; if (m_edgeLock) memset(buffer, 255, buffer_size); else memset(buffer, 0, buffer_size); for (qint32 i = 0; i < rect.width() + 2 * m_xRadius; i++) { if (i < m_xRadius) if (m_edgeLock) max[i] = buffer; else max[i] = &buffer[(m_yRadius + 1) * (rect.width() + m_xRadius)]; else if (i < rect.width() + m_xRadius) max[i] = &buffer[(m_yRadius + 1) * (i - m_xRadius)]; else if (m_edgeLock) max[i] = &buffer[(m_yRadius + 1) * (rect.width() + m_xRadius - 1)]; else max[i] = &buffer[(m_yRadius + 1) * (rect.width() + m_xRadius)]; } if (!m_edgeLock) for (qint32 j = 0 ; j < m_xRadius + 1; j++) max[0][j] = 0; // offset the max pointer by m_xRadius so the range of the array is [-m_xRadius] to [region->w + m_xRadius] max += m_xRadius; quint8* out = new quint8[rect.width()]; // holds the new scan line we are computing qint32* circ = new qint32[2 * m_xRadius + 1]; // holds the y coords of the filter's mask computeBorder(circ, m_xRadius, m_yRadius); // offset the circ pointer by m_xRadius so the range of the array is [-m_xRadius] to [m_xRadius] circ += m_xRadius; for (qint32 i = 0; i < m_yRadius && i < rect.height(); i++) // load top of image pixelSelection->readBytes(buf[i + 1], rect.x(), rect.y() + i, rect.width(), 1); if (m_edgeLock) memcpy(buf[0], buf[1], rect.width()); else memset(buf[0], 0, rect.width()); for (qint32 x = 0; x < rect.width(); x++) { // set up max for top of image max[x][0] = buf[0][x]; for (qint32 j = 1; j < m_yRadius + 1; j++) max[x][j] = MIN(buf[j][x], max[x][j-1]); } for (qint32 y = 0; y < rect.height(); y++) { rotatePointers(buf, m_yRadius + 1); if (y < rect.height() - m_yRadius) pixelSelection->readBytes(buf[m_yRadius], rect.x(), rect.y() + y + m_yRadius, rect.width(), 1); else if (m_edgeLock) memcpy(buf[m_yRadius], buf[m_yRadius - 1], rect.width()); else memset(buf[m_yRadius], 0, rect.width()); for (qint32 x = 0 ; x < rect.width(); x++) { // update max array for (qint32 i = m_yRadius; i > 0; i--) { max[x][i] = MIN(MIN(max[x][i - 1], buf[i - 1][x]), buf[i][x]); } max[x][0] = buf[0][x]; } last_max = max[0][circ[-1]]; last_index = 0; for (qint32 x = 0 ; x < rect.width(); x++) { // render scan line last_index--; if (last_index >= 0) { if (last_max == 0) out[x] = 0; else { last_max = 255; for (qint32 i = m_xRadius; i >= 0; i--) if (last_max > max[x + i][circ[i]]) { last_max = max[x + i][circ[i]]; last_index = i; } out[x] = last_max; } } else { last_index = m_xRadius; last_max = max[x + m_xRadius][circ[m_xRadius]]; for (qint32 i = m_xRadius - 1; i >= -m_xRadius; i--) if (last_max > max[x + i][circ[i]]) { last_max = max[x + i][circ[i]]; last_index = i; } out[x] = last_max; } } pixelSelection->writeBytes(out, rect.x(), rect.y() + y, rect.width(), 1); } // undo the offsets to the pointers so we can free the malloced memmory circ -= m_xRadius; max -= m_xRadius; delete[] circ; delete[] buffer; delete[] max; for (qint32 i = 0; i < m_yRadius + 1; i++) delete buf[i]; delete[] buf; delete[] out; }
void KisGrowSelectionFilter::process(KisPixelSelectionSP pixelSelection, const QRect& rect) { if (m_xRadius <= 0 || m_yRadius <= 0) return; /** * Much code resembles Shrink filter, so please fix bugs * in both filters */ quint8 **buf; // caches the region's pixel data quint8 **max; // caches the largest values for each column max = new quint8* [rect.width() + 2 * m_xRadius]; buf = new quint8* [m_yRadius + 1]; for (qint32 i = 0; i < m_yRadius + 1; i++) { buf[i] = new quint8[rect.width()]; } quint8* buffer = new quint8[(rect.width() + 2 * m_xRadius) *(m_yRadius + 1)]; for (qint32 i = 0; i < rect.width() + 2 * m_xRadius; i++) { if (i < m_xRadius) max[i] = buffer; else if (i < rect.width() + m_xRadius) max[i] = &buffer[(m_yRadius + 1) * (i - m_xRadius)]; else max[i] = &buffer[(m_yRadius + 1) * (rect.width() + m_xRadius - 1)]; for (qint32 j = 0; j < m_xRadius + 1; j++) max[i][j] = 0; } /* offset the max pointer by m_xRadius so the range of the array is [-m_xRadius] to [region->w + m_xRadius] */ max += m_xRadius; quint8* out = new quint8[ rect.width()]; // holds the new scan line we are computing qint32* circ = new qint32[ 2 * m_xRadius + 1 ]; // holds the y coords of the filter's mask computeBorder(circ, m_xRadius, m_yRadius); /* offset the circ pointer by m_xRadius so the range of the array is [-m_xRadius] to [m_xRadius] */ circ += m_xRadius; memset(buf[0], 0, rect.width()); for (qint32 i = 0; i < m_yRadius && i < rect.height(); i++) { // load top of image pixelSelection->readBytes(buf[i + 1], rect.x(), rect.y() + i, rect.width(), 1); } for (qint32 x = 0; x < rect.width() ; x++) { // set up max for top of image max[x][0] = 0; // buf[0][x] is always 0 max[x][1] = buf[1][x]; // MAX (buf[1][x], max[x][0]) always = buf[1][x] for (qint32 j = 2; j < m_yRadius + 1; j++) { max[x][j] = MAX(buf[j][x], max[x][j-1]); } } for (qint32 y = 0; y < rect.height(); y++) { rotatePointers(buf, m_yRadius + 1); if (y < rect.height() - (m_yRadius)) pixelSelection->readBytes(buf[m_yRadius], rect.x(), rect.y() + y + m_yRadius, rect.width(), 1); else memset(buf[m_yRadius], 0, rect.width()); for (qint32 x = 0; x < rect.width(); x++) { /* update max array */ for (qint32 i = m_yRadius; i > 0; i--) { max[x][i] = MAX(MAX(max[x][i - 1], buf[i - 1][x]), buf[i][x]); } max[x][0] = buf[0][x]; } qint32 last_max = max[0][circ[-1]]; qint32 last_index = 1; for (qint32 x = 0; x < rect.width(); x++) { /* render scan line */ last_index--; if (last_index >= 0) { if (last_max == 255) out[x] = 255; else { last_max = 0; for (qint32 i = m_xRadius; i >= 0; i--) if (last_max < max[x + i][circ[i]]) { last_max = max[x + i][circ[i]]; last_index = i; } out[x] = last_max; } } else { last_index = m_xRadius; last_max = max[x + m_xRadius][circ[m_xRadius]]; for (qint32 i = m_xRadius - 1; i >= -m_xRadius; i--) if (last_max < max[x + i][circ[i]]) { last_max = max[x + i][circ[i]]; last_index = i; } out[x] = last_max; } } pixelSelection->writeBytes(out, rect.x(), rect.y() + y, rect.width(), 1); } /* undo the offsets to the pointers so we can free the malloced memmory */ circ -= m_xRadius; max -= m_xRadius; delete[] circ; delete[] buffer; delete[] max; for (qint32 i = 0; i < m_yRadius + 1; i++) delete[] buf[i]; delete[] buf; delete[] out; }