void StaticPlaneSphereConstraint::computeContactBasis( const VectorXs& q, const VectorXs& v, MatrixXXsc& basis ) const { const Vector3s n{ m_plane.n() }; assert( fabs( n.norm() - 1.0 ) <= 1.0e-6 ); // Compute the relative velocity to use as a direction for the tangent sample Vector3s s{ computeRelativeVelocity( q, v ) }; // If the relative velocity is zero, any vector will do if( n.cross( s ).squaredNorm() < 1.0e-9 ) { s = FrictionUtilities::orthogonalVector( n ); } // Otherwise project out the component along the normal and normalize the relative velocity else { s = ( s - s.dot( n ) * n ).normalized(); } // Invert the tangent vector in order to oppose s *= -1.0; // Create a second orthogonal sample in the tangent plane const Vector3s t{ n.cross( s ).normalized() }; // Don't need to normalize but it won't hurt assert( MathUtilities::isRightHandedOrthoNormal( n, s, t, 1.0e-6 ) ); basis.resize( 3, 3 ); basis.col( 0 ) = n; basis.col( 1 ) = s; basis.col( 2 ) = t; }
// This method and the smooth version share the second half of code. Abstract that out. void StaticPlaneSphereConstraint::computeGeneralizedFrictionDisk( const VectorXs& q, const VectorXs& v, const int start_column, const int num_samples, SparseMatrixsc& D, VectorXs& drel ) const { assert( start_column >= 0 ); assert( start_column < D.cols() ); assert( num_samples > 0 ); assert( start_column + num_samples - 1 < D.cols() ); assert( q.size() % 12 == 0 ); assert( q.size() == 2 * v.size() ); const Vector3s n{ m_plane.n() }; assert( fabs( n.norm() - 1.0 ) <= 1.0e-6 ); std::vector<Vector3s> friction_disk( static_cast<std::vector<Vector3s>::size_type>( num_samples ) ); assert( friction_disk.size() == std::vector<Vector3s>::size_type( num_samples ) ); { // Compute the relative velocity Vector3s tangent_suggestion{ computeRelativeVelocity( q, v ) }; if( tangent_suggestion.cross( n ).squaredNorm() < 1.0e-9 ) { tangent_suggestion = FrictionUtilities::orthogonalVector( n ); } tangent_suggestion *= -1.0; // Sample the friction disk FrictionUtilities::generateOrthogonalVectors( n, friction_disk, tangent_suggestion ); } assert( unsigned( num_samples ) == friction_disk.size() ); // Compute the displacement from the center of mass to the point of contact assert( fabs( n.norm() - 1.0 ) <= 1.0e-10 ); assert( m_r >= 0.0 ); const Vector3s r_world{ - m_r * n }; // Cache the velocity of the collision point on the plane const Vector3s plane_collision_point_vel{ computePlaneCollisionPointVelocity( q ) }; // For each sample of the friction disk const unsigned nbodies{ static_cast<unsigned>( q.size() / 12 ) }; for( unsigned friction_sample = 0; friction_sample < unsigned( num_samples ); ++friction_sample ) { const unsigned cur_col{ start_column + friction_sample }; assert( cur_col < unsigned( D.cols() ) ); // Effect on center of mass D.insert( 3 * m_sphere_idx + 0, cur_col ) = friction_disk[friction_sample].x(); D.insert( 3 * m_sphere_idx + 1, cur_col ) = friction_disk[friction_sample].y(); D.insert( 3 * m_sphere_idx + 2, cur_col ) = friction_disk[friction_sample].z(); // Effect on orientation { const Vector3s ntilde{ r_world.cross( friction_disk[friction_sample] ) }; D.insert( 3 * ( nbodies + m_sphere_idx ) + 0, cur_col ) = ntilde.x(); D.insert( 3 * ( nbodies + m_sphere_idx ) + 1, cur_col ) = ntilde.y(); D.insert( 3 * ( nbodies + m_sphere_idx ) + 2, cur_col ) = ntilde.z(); } // Relative velocity contribution from kinematic scripting assert( cur_col < drel.size() ); drel( cur_col ) = - friction_disk[friction_sample].dot( plane_collision_point_vel ); } }
void Constraint::computeForcingTerm( const VectorXs& q, const VectorXs& v, const MatrixXXsc& basis, const scalar& CoR, const scalar& nrel, const VectorXs& drel, VectorXs& constant_term ) const { assert( basis.rows() == basis.cols() ); assert( ( basis * basis.transpose() - MatrixXXsc::Identity( basis.rows(), basis.cols() ) ).lpNorm<Eigen::Infinity>() <= 1.0e-6 ); assert( fabs( basis.determinant() - 1.0 ) <= 1.0e-6 ); assert( CoR >= 0.0 ); assert( CoR <= 1.0 ); constant_term = VectorXs::Zero( basis.rows() ); assert( fabs( evalNdotV( q, v ) - basis.col(0).dot( computeRelativeVelocity( q, v ) ) ) <= 1.0e-6 ); //constant_term += basis.col(0) * ( CoR * ( evalNdotV( q, v ) - nrel ) + ( 1.0 + CoR ) * nrel ); constant_term += basis.col(0) * ( CoR * evalNdotV( q, v ) + nrel ); assert( drel.size() == basis.cols() - 1 ); for( unsigned friction_sample = 0; friction_sample < drel.size(); ++friction_sample ) { constant_term += basis.col( friction_sample + 1 ) * drel( friction_sample ); } }
// TODO: Don't do the if here, have children do what they need to do scalar Constraint::computeLambda( const VectorXs& q, const VectorXs& v ) const { MatrixXXsc basis; computeBasis( q, v, basis ); assert( basis.rows() == basis.cols() ); assert( basis.cols() == 2 || basis.cols() == 3 ); const VectorXs rel_vel = computeRelativeVelocity( q, v ); assert( rel_vel.size() == basis.rows() ); if( basis.cols() == 3 ) { const Vector2s tangent_vel( rel_vel.dot( basis.col( 1 ) ), rel_vel.dot( basis.col( 2 ) ) ); return tangent_vel.norm(); } else if( basis.cols() == 2 ) { return fabs( rel_vel.dot( basis.col( 1 ) ) ); } std::cerr << "Unhandled case in Constraint::computeLambda" << std::endl; std::exit( EXIT_FAILURE ); }
// TODO: Unspecialize from 3D void Constraint::computeNormalAndRelVelAlignedTangent( const VectorXs& q, const VectorXs& v, VectorXs& n, VectorXs& t, VectorXs& tangent_rel_vel ) const { MatrixXXsc basis; computeBasis( q, v, basis ); assert( basis.rows() == basis.cols() ); assert( basis.rows() == 3 ); n = basis.col( 0 ); t = basis.col( 1 ); // Compute the relative velocity tangent_rel_vel = computeRelativeVelocity( q, v ); // Project out normal component of relative velocity tangent_rel_vel = tangent_rel_vel - tangent_rel_vel.dot( n ) * n; #ifndef NDEBUG // Relative velocity and tangent should be parallel assert( Eigen::Map<Vector3s>( tangent_rel_vel.data() ).cross( Eigen::Map<Vector3s>( t.data() ) ).lpNorm<Eigen::Infinity>() <= 1.0e-6 ); // If tangent relative velocity is non-negligble, tangent should oppose if( tangent_rel_vel.norm() > 1.0e-9 ) { assert( fabs( tangent_rel_vel.normalized().dot( t ) + 1.0 ) <= 1.0e-6 ); } #endif }
void BodyBodyConstraint::computeGeneralizedFrictionDisk( const VectorXs& q, const VectorXs& v, const int start_column, const int num_samples, SparseMatrixsc& D, VectorXs& drel ) const { assert( start_column >= 0 ); assert( start_column < D.cols() ); assert( num_samples > 0 ); assert( start_column + num_samples - 1 < D.cols() ); assert( q.size() % 12 == 0 ); assert( q.size() == 2 * v.size() ); const unsigned nbodies{ static_cast<unsigned>( q.size() / 12 ) }; assert( fabs( m_n.norm() - 1.0 ) <= 1.0e-6 ); std::vector<Vector3s> friction_disk; { // Compute the relative velocity Vector3s tangent_suggestion{ computeRelativeVelocity( q, v ) }; if( tangent_suggestion.cross( m_n ).squaredNorm() < 1.0e-9 ) { tangent_suggestion = FrictionUtilities::orthogonalVector( m_n ); } tangent_suggestion *= -1.0; // Sample the friction disk friction_disk.resize( num_samples ); FrictionUtilities::generateOrthogonalVectors( m_n, friction_disk, tangent_suggestion ); } assert( unsigned( num_samples ) == friction_disk.size() ); // For each sample of the friction disk assert( m_idx0 < m_idx1 ); for( int i = 0; i < num_samples; ++i ) { const int cur_col{ start_column + i }; assert( cur_col >= 0 ); assert( cur_col < D.cols() ); // Effect on center of mass of body i D.insert( 3 * m_idx0 + 0, cur_col ) = friction_disk[i].x(); D.insert( 3 * m_idx0 + 1, cur_col ) = friction_disk[i].y(); D.insert( 3 * m_idx0 + 2, cur_col ) = friction_disk[i].z(); // Effect on orientation of body i { const Vector3s ttilde0{ m_r0.cross( friction_disk[i] ) }; D.insert( 3 * ( m_idx0 + nbodies ) + 0, cur_col ) = ttilde0.x(); D.insert( 3 * ( m_idx0 + nbodies ) + 1, cur_col ) = ttilde0.y(); D.insert( 3 * ( m_idx0 + nbodies ) + 2, cur_col ) = ttilde0.z(); } // Effect on center of mass of body j D.insert( 3 * m_idx1 + 0, cur_col ) = - friction_disk[i].x(); D.insert( 3 * m_idx1 + 1, cur_col ) = - friction_disk[i].y(); D.insert( 3 * m_idx1 + 2, cur_col ) = - friction_disk[i].z(); // Effect on orientation of body j { const Vector3s ttilde1{ m_r1.cross( friction_disk[i] ) }; D.insert( 3 * ( m_idx1 + nbodies ) + 0, cur_col ) = - ttilde1.x(); D.insert( 3 * ( m_idx1 + nbodies ) + 1, cur_col ) = - ttilde1.y(); D.insert( 3 * ( m_idx1 + nbodies ) + 2, cur_col ) = - ttilde1.z(); } // Relative velocity contribution from kinematic scripting assert( cur_col < drel.size() ); // Zero for now drel( cur_col ) = 0.0; } }
scalar BodyBodyConstraint::evalNdotV( const VectorXs& q, const VectorXs& v ) const { return m_n.dot( computeRelativeVelocity( q, v ) ); }
void BodyBodyConstraint::computeSmoothGeneralizedFrictionDisk( const VectorXs& q, const VectorXs& v, const int start_column, SparseMatrixsc& D ) const { assert( start_column >= 0 ); assert( start_column < D.cols() ); assert( start_column+1 < D.cols() ); assert( q.size() % 12 == 0 ); assert( q.size() == 2 * v.size() ); std::vector<Vector3s> friction_disk{ 2 }; // Compute the relative velocity to use as a direction for the tangent sample friction_disk[0] = computeRelativeVelocity( q, v ); // If the relative velocity is zero, any vector will do if( friction_disk[0].cross( m_n ).squaredNorm() < 1.0e-9 ) { friction_disk[0] = FrictionUtilities::orthogonalVector( m_n ); } // Otherwise project out the component along the normal and normalize the relative velocity else { friction_disk[0] = ( friction_disk[0] - friction_disk[0].dot( m_n ) * m_n ).normalized(); } // Invert the tangent vector in order to oppose friction_disk[0] *= -1.0; // Create a second orthogonal sample in the tangent plane friction_disk[1] = m_n.cross( friction_disk[0] ).normalized(); // Don't need to normalize but it won't hurt assert( MathUtilities::isRightHandedOrthoNormal( m_n, friction_disk[0], friction_disk[1], 1.0e-6 ) ); // For each sample of the friction disk assert( m_idx0 < m_idx1 ); const unsigned nbodies{ static_cast<unsigned>( q.size() / 12 ) }; for( int i = 0; i < 2; ++i ) { const int cur_col = start_column + i; assert( cur_col >= 0 ); assert( cur_col < D.cols() ); // Effect on center of mass of body i D.insert( 3 * m_idx0 + 0, cur_col ) = friction_disk[i].x(); D.insert( 3 * m_idx0 + 1, cur_col ) = friction_disk[i].y(); D.insert( 3 * m_idx0 + 2, cur_col ) = friction_disk[i].z(); // Effect on orientation of body i { const Vector3s ntilde0{ m_r0.cross( friction_disk[i] ) }; D.insert( 3 * ( m_idx0 + nbodies ) + 0, cur_col ) = ntilde0.x(); D.insert( 3 * ( m_idx0 + nbodies ) + 1, cur_col ) = ntilde0.y(); D.insert( 3 * ( m_idx0 + nbodies ) + 2, cur_col ) = ntilde0.z(); } // Effect on center of mass of body j D.insert( 3 * m_idx1 + 0, cur_col ) = - friction_disk[i].x(); D.insert( 3 * m_idx1 + 1, cur_col ) = - friction_disk[i].y(); D.insert( 3 * m_idx1 + 2, cur_col ) = - friction_disk[i].z(); // Effect on orientation of body j { const Vector3s ntilde1{ m_r1.cross( friction_disk[i] ) }; D.insert( 3 * ( m_idx1 + nbodies ) + 0, cur_col ) = - ntilde1.x(); D.insert( 3 * ( m_idx1 + nbodies ) + 1, cur_col ) = - ntilde1.y(); D.insert( 3 * ( m_idx1 + nbodies ) + 2, cur_col ) = - ntilde1.z(); } } }