PetscErrorCode cHamiltonianMatrix::assemblance(){
	/*
	    Assemble matrix.
	*/
	int nonzeros; // TODO: check if nonzeros < __MAXNOZEROS__ is true.
	  int spin_flag;
	  //	  PetscReal _val_;
	  for (ROW=rstart; ROW<rend; ROW++) {
		  nonzeros = 0;

//		  cout << "row is " << ROW << endl;

		  block(ROW,_jdim1,_jdim2);
//		  cout << _jdim1 << '\t' << _jdim2 << endl;
		  // random potential and interaction terms are diagonal.
		  col[nonzeros] = ROW;value[nonzeros] = compute_diag();nonzeros++;
		  // hopping terms are off-diagonal.
		  // --------- hopping of spin down -------------
		  spin_flag = 2; // to be consistent with convention in construct_basis member function.
		  compute_hopping(nonzeros,spin_flag);
		  // ----------- hopping of spin up ---------------
		  spin_flag = 1;
		  compute_hopping(nonzeros,spin_flag);
		 if (nonzeros > __MAXNOZEROS__){
	        	cerr << "nonzeros on a row " <<  nonzeros << " is larger than the pre-allocated range of"
	        	<<  __MAXNOZEROS__ <<" const arrays. Try increasing the max number in polaron.h" << endl;
	        	exit(1);
	        } else {
	        	ierr   = MatSetValues(Hpolaron,1,&ROW,nonzeros,col,value,INSERT_VALUES);CHKERRQ(ierr);
	        }
	  }
	return ierr;
}
static int
set (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale)
{
  hybrid_state_t *state = (hybrid_state_t *) vstate;

  gsl_matrix *J = state->J;
  gsl_matrix *q = state->q;
  gsl_matrix *r = state->r;
  gsl_vector *tau = state->tau;
  gsl_vector *diag = state->diag;
  
  GSL_MULTIROOT_FN_EVAL (func, x, f);

  gsl_multiroot_fdjacobian (func, x, f, GSL_SQRT_DBL_EPSILON, J) ;

  state->iter = 1;
  state->fnorm = enorm (f);
  state->ncfail = 0;
  state->ncsuc = 0;
  state->nslow1 = 0;
  state->nslow2 = 0;

  gsl_vector_set_all (dx, 0.0);

  /* Store column norms in diag */

  if (scale)
    compute_diag (J, diag);
  else
    gsl_vector_set_all (diag, 1.0);

  /* Set delta to factor |D x| or to factor if |D x| is zero */

  state->delta = compute_delta (diag, x);

  /* Factorize J into QR decomposition */

  gsl_linalg_QR_decomp (J, tau);
  gsl_linalg_QR_unpack (J, tau, q, r);

  return GSL_SUCCESS;
}
static int
iterate (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale)
{
  hybrid_state_t *state = (hybrid_state_t *) vstate;

  const double fnorm = state->fnorm;

  gsl_matrix *J = state->J;
  gsl_matrix *q = state->q;
  gsl_matrix *r = state->r;
  gsl_vector *tau = state->tau;
  gsl_vector *diag = state->diag;
  gsl_vector *qtf = state->qtf;
  gsl_vector *x_trial = state->x_trial;
  gsl_vector *f_trial = state->f_trial;
  gsl_vector *df = state->df;
  gsl_vector *qtdf = state->qtdf;
  gsl_vector *rdx = state->rdx;
  gsl_vector *w = state->w;
  gsl_vector *v = state->v;

  double prered, actred;
  double pnorm, fnorm1, fnorm1p;
  double ratio;
  double p1 = 0.1, p5 = 0.5, p001 = 0.001, p0001 = 0.0001;

  /* Compute qtf = Q^T f */

  compute_qtf (q, f, qtf);

  /* Compute dogleg step */

  dogleg (r, qtf, diag, state->delta, state->newton, state->gradient, dx);

  /* Take a trial step */

  compute_trial_step (x, dx, state->x_trial);

  pnorm = scaled_enorm (diag, dx);

  if (state->iter == 1)
    {
      if (pnorm < state->delta)
	{
	  state->delta = pnorm;
	}
    }

  /* Evaluate function at x + p */

  {
    int status = GSL_MULTIROOT_FN_EVAL (func, x_trial, f_trial);

    if (status != GSL_SUCCESS) 
      {
        return GSL_EBADFUNC;
      }
  }
  
  /* Set df = f_trial - f */

  compute_df (f_trial, f, df);

  /* Compute the scaled actual reduction */

  fnorm1 = enorm (f_trial);

  actred = compute_actual_reduction (fnorm, fnorm1);

  /* Compute rdx = R dx */

  compute_rdx (r, dx, rdx);

  /* Compute the scaled predicted reduction phi1p = |Q^T f + R dx| */

  fnorm1p = enorm_sum (qtf, rdx);

  prered = compute_predicted_reduction (fnorm, fnorm1p);

  /* Compute the ratio of the actual to predicted reduction */

  if (prered > 0)
    {
      ratio = actred / prered;
    }
  else
    {
      ratio = 0;
    }

  /* Update the step bound */

  if (ratio < p1)
    {
      state->ncsuc = 0;
      state->ncfail++;
      state->delta *= p5;
    }
  else
    {
      state->ncfail = 0;
      state->ncsuc++;

      if (ratio >= p5 || state->ncsuc > 1)
	state->delta = GSL_MAX (state->delta, pnorm / p5);
      if (fabs (ratio - 1) <= p1)
	state->delta = pnorm / p5;
    }

  /* Test for successful iteration */

  if (ratio >= p0001)
    {
      gsl_vector_memcpy (x, x_trial);
      gsl_vector_memcpy (f, f_trial);
      state->fnorm = fnorm1;
      state->iter++;
    }

  /* Determine the progress of the iteration */

  state->nslow1++;
  if (actred >= p001)
    state->nslow1 = 0;

  if (actred >= p1)
    state->nslow2 = 0;

  if (state->ncfail == 2)
    {
      gsl_multiroot_fdjacobian (func, x, f, GSL_SQRT_DBL_EPSILON, J) ;

      state->nslow2++;

      if (state->iter == 1)
	{
          if (scale)
            compute_diag (J, diag);
	  state->delta = compute_delta (diag, x);
	}
      else
        {
          if (scale)
            update_diag (J, diag);
        }

      /* Factorize J into QR decomposition */

      gsl_linalg_QR_decomp (J, tau);
      gsl_linalg_QR_unpack (J, tau, q, r);

      return GSL_SUCCESS;
    }

  /* Compute qtdf = Q^T df, w = (Q^T df - R dx)/|dx|,  v = D^2 dx/|dx| */

  compute_qtf (q, df, qtdf);

  compute_wv (qtdf, rdx, dx, diag, pnorm, w, v);

  /* Rank-1 update of the jacobian Q'R' = Q(R + w v^T) */

  gsl_linalg_QR_update (q, r, w, v);

  /* No progress as measured by jacobian evaluations */

  if (state->nslow2 == 5)
    {
      return GSL_ENOPROGJ;
    }

  /* No progress as measured by function evaluations */

  if (state->nslow1 == 10)
    {
      return GSL_ENOPROG;
    }

  return GSL_SUCCESS;
}
Exemple #4
0
static int
set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale)
{
  lmder_state_t *state = (lmder_state_t *) vstate;

  gsl_matrix *r = state->r;
  gsl_vector *tau = state->tau;
  gsl_vector *diag = state->diag;
  gsl_vector *work1 = state->work1;
  gsl_permutation *perm = state->perm;

  int signum;

  /* Evaluate function at x */
  /* return immediately if evaluation raised error */
  {
    int status = GSL_MULTIFIT_FN_EVAL_F_DF (fdf, x, f, J);
    if (status)
      return status;
  }

  state->par = 0;
  state->iter = 1;
  state->fnorm = enorm (f);

  gsl_vector_set_all (dx, 0.0);

  /* store column norms in diag */

  if (scale)
    {
      compute_diag (J, diag);
    }
  else
    {
      gsl_vector_set_all (diag, 1.0);
    }

  /* set delta to 100 |D x| or to 100 if |D x| is zero */

  state->xnorm = scaled_enorm (diag, x);
  state->delta = compute_delta (diag, x);

  /* Factorize J into QR decomposition */

  gsl_matrix_memcpy (r, J);
  gsl_linalg_QRPT_decomp (r, tau, perm, &signum, work1);

  gsl_vector_set_zero (state->rptdx);
  gsl_vector_set_zero (state->w);

  /* Zero the trial vector, as in the alloc function */

  gsl_vector_set_zero (state->f_trial);

#ifdef DEBUG
  printf("r = "); gsl_matrix_fprintf(stdout, r, "%g");
  printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d");
  printf("tau = "); gsl_vector_fprintf(stdout, tau, "%g");
#endif

  return GSL_SUCCESS;
}