caf::behavior init_buffer() {
   // Initial send tasks
   auto pending_chunks = std::make_shared<int>(workers_.size());
   auto pending_jobs   = std::make_shared<int>(buffer_min_size_);
   send_job();
   return {
     [=](const std::vector<uint16_t>& data, uint32_t id) {
       concat_data(data, id);
       if (! --*pending_chunks) {
         if (--*pending_jobs) {
          send_job();
           *pending_chunks = workers_.size();
         } else {
           become(main_phase());
         }
       }
     },
     [=](resize_atom, uint32_t w, uint32_t h) {
       resize(w,h);
     },
     [=](limit_atom, normal_atom, uint32_t workers) {
       become(make_behavior());
       send(this, calc_weights_atom::value, size_t{workers});
     },
     caf::others() >> [=] {
       std::cout << to_string(current_message()) << std::endl;
     }
   };
 }
 caf::behavior main_phase() {
   send(this, tick_atom::value);
   return {
     [=](const std::vector<uint16_t>& data, uint32_t id) {
       concat_data(data, id);
     },
     [=](tick_atom) {
       delayed_send(this, tick_rate_, tick_atom::value);
       if (cache_.empty()) {
         std::cout << "[WARNING] Cache empty..." << std::endl;
         return;
       }
       send(sink_, image_width_, cache_.front());
       cache_.pop();
       send_job();
     },
     [=](resize_atom, uint32_t w, uint32_t h) {
       resize(w,h);
     },
     [=](limit_atom, normal_atom, uint32_t workers) {
       become(make_behavior());
       send(this, calc_weights_atom::value, size_t{workers});
     },
     caf::others() >> [=] {
       std::cout << to_string(current_message()) << std::endl;
     }
   };
 }
Exemple #3
0
hash_digest build_merkle_tree(hash_list& merkle)
{
    // Stop if hash list is empty.
    if (merkle.empty())
        return null_hash;
    else if (merkle.size() == 1)
        return merkle[0];

    // While there is more than 1 hash in the list, keep looping...
    while (merkle.size() > 1)
    {
        // If number of hashes is odd, duplicate last hash in the list.
        if (merkle.size() % 2 != 0)
            merkle.push_back(merkle.back());
        // List size is now even.
        BITCOIN_ASSERT(merkle.size() % 2 == 0);

        // New hash list.
        hash_list new_merkle;
        // Loop through hashes 2 at a time.
        for (auto it = merkle.begin(); it != merkle.end(); it += 2)
        {
            // Join both current hashes together (concatenate).
            data_chunk concat_data(hash_size * 2);
            auto concat = make_serializer(concat_data.begin());
            concat.write_hash(*it);
            concat.write_hash(*(it + 1));
            BITCOIN_ASSERT(concat.iterator() == concat_data.end());
            // Hash both of the hashes.
            hash_digest new_root = bitcoin_hash(concat_data);
            // Add this to the new list.
            new_merkle.push_back(new_root);
        }
        // This is the new list.
        merkle = new_merkle;
    }
    // Finally we end up with a single item.
    return merkle[0];
}
Exemple #4
0
void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display)
{
#ifdef GPU
    //char *train_images = "/home/kunle12/data/coco/train1.txt";
    //char *train_images = "/home/kunle12/data/coco/trainvalno5k.txt";
    char *train_images = "/home/kunle12/data/imagenet/imagenet1k.train.list";
    char *backup_directory = "/home/kunle12/backup/";
    srand(time(0));
    char *base = basecfg(cfg);
    char *abase = basecfg(acfg);
    printf("%s\n", base);
    network *net = load_network(cfg, weight, clear);
    network *anet = load_network(acfg, aweight, clear);

    int i, j, k;
    layer imlayer = {0};
    for (i = 0; i < net->n; ++i) {
        if (net->layers[i].out_c == 3) {
            imlayer = net->layers[i];
            break;
        }
    }

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
    int imgs = net->batch*net->subdivisions;
    i = *net->seen/imgs;
    data train, buffer;


    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args= get_base_args(net);
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;

    args.type = CLASSIFICATION_DATA;
    args.classes = 1;
    char *ls[2] = {"imagenet"};
    args.labels = ls;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;

    int x_size = net->inputs*net->batch;
    //int y_size = x_size;
    net->delta = 0;
    net->train = 1;
    float *pixs = calloc(x_size, sizeof(float));
    float *graypixs = calloc(x_size, sizeof(float));
    //float *y = calloc(y_size, sizeof(float));

    //int ay_size = anet->outputs*anet->batch;
    anet->delta = 0;
    anet->train = 1;

    float *imerror = cuda_make_array(0, imlayer.outputs*imlayer.batch);

    float aloss_avg = -1;
    float gloss_avg = -1;

    //data generated = copy_data(train);

    while (get_current_batch(net) < net->max_batches) {
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        data gray = copy_data(train);
        for(j = 0; j < imgs; ++j){
            image gim = float_to_image(net->w, net->h, net->c, gray.X.vals[j]);
            grayscale_image_3c(gim);
            train.y.vals[j][0] = .95;
            gray.y.vals[j][0] = .05;
        }
        time=clock();
        float gloss = 0;

        for(j = 0; j < net->subdivisions; ++j){
            get_next_batch(train, net->batch, j*net->batch, pixs, 0);
            get_next_batch(gray, net->batch, j*net->batch, graypixs, 0);
            cuda_push_array(net->input_gpu, graypixs, net->inputs*net->batch);
            cuda_push_array(net->truth_gpu, pixs, net->truths*net->batch);
            /*
               image origi = float_to_image(net->w, net->h, 3, pixs);
               image grayi = float_to_image(net->w, net->h, 3, graypixs);
               show_image(grayi, "gray");
               show_image(origi, "orig");
               cvWaitKey(0);
             */
            *net->seen += net->batch;
            forward_network_gpu(net);

            fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
            copy_gpu(anet->inputs*anet->batch, imlayer.output_gpu, 1, anet->input_gpu, 1);
            fill_gpu(anet->inputs*anet->batch, .95, anet->truth_gpu, 1);
            anet->delta_gpu = imerror;
            forward_network_gpu(anet);
            backward_network_gpu(anet);

            scal_gpu(imlayer.outputs*imlayer.batch, 1./100., net->layers[net->n-1].delta_gpu, 1);

            scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);

            printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
            printf("features %f\n", cuda_mag_array(net->layers[net->n-1].delta_gpu, imlayer.outputs*imlayer.batch));

            axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, net->layers[net->n-1].delta_gpu, 1);

            backward_network_gpu(net);


            gloss += *net->cost /(net->subdivisions*net->batch);

            for(k = 0; k < net->batch; ++k){
                int index = j*net->batch + k;
                copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1);
            }
        }
        harmless_update_network_gpu(anet);

        data merge = concat_data(train, gray);
        //randomize_data(merge);
        float aloss = train_network(anet, merge);

        update_network_gpu(net);

#ifdef OPENCV
        if(display){
            image im = float_to_image(anet->w, anet->h, anet->c, gray.X.vals[0]);
            image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
            show_image(im, "gen", 1);
            show_image(im2, "train", 1);
        }
#endif
        free_data(merge);
        free_data(train);
        free_data(gray);
        if (aloss_avg < 0) aloss_avg = aloss;
        aloss_avg = aloss_avg*.9 + aloss*.1;
        gloss_avg = gloss_avg*.9 + gloss*.1;

        printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
            sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
            save_weights(anet, buff);
        }
        if(i%100==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(net, buff);
            sprintf(buff, "%s/%s.backup", backup_directory, abase);
            save_weights(anet, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
#endif
}
Exemple #5
0
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch)
{
#ifdef GPU
    char *backup_directory = "/home/kunle12/backup/";
    srand(time(0));
    char *base = basecfg(cfg);
    char *abase = basecfg(acfg);
    printf("%s\n", base);
    network *gnet = load_network(cfg, weight, clear);
    network *anet = load_network(acfg, aweight, clear);
    //float orig_rate = anet->learning_rate;

    int i, j, k;
    layer imlayer = {0};
    for (i = 0; i < gnet->n; ++i) {
        if (gnet->layers[i].out_c == 3) {
            imlayer = gnet->layers[i];
            break;
        }
    }

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay);
    int imgs = gnet->batch*gnet->subdivisions;
    i = *gnet->seen/imgs;
    data train, buffer;


    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args= get_base_args(anet);
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;
    args.threads=16;
    args.classes = 1;
    char *ls[2] = {"imagenet", "zzzzzzzz"};
    args.labels = ls;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;

    gnet->train = 1;
    anet->train = 1;

    int x_size = gnet->inputs*gnet->batch;
    int y_size = gnet->truths*gnet->batch;
    float *imerror = cuda_make_array(0, y_size);

    //int ay_size = anet->truths*anet->batch;

    float aloss_avg = -1;

    //data generated = copy_data(train);

    if (maxbatch == 0) maxbatch = gnet->max_batches;
    while (get_current_batch(gnet) < maxbatch) {
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;

        //translate_data_rows(train, -.5);
        //scale_data_rows(train, 2);

        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        data gen = copy_data(train);
        for (j = 0; j < imgs; ++j) {
            train.y.vals[j][0] = 1;
            gen.y.vals[j][0] = 0;
        }
        time=clock();

        for(j = 0; j < gnet->subdivisions; ++j){
            get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0);
            int z;
            for(z = 0; z < x_size; ++z){
                gnet->input[z] = rand_normal();
            }
            for(z = 0; z < gnet->batch; ++z){
                float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs);
                scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag);
            }
            /*
               for(z = 0; z < 100; ++z){
               printf("%f, ", gnet->input[z]);
               }
               printf("\n");
               printf("input: %f %f\n", mean_array(gnet->input, x_size), variance_array(gnet->input, x_size));
             */

            //cuda_push_array(gnet->input_gpu, gnet->input, x_size);
            //cuda_push_array(gnet->truth_gpu, gnet->truth, y_size);
            *gnet->seen += gnet->batch;
            forward_network(gnet);

            fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
            fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1);
            copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1);
            anet->delta_gpu = imerror;
            forward_network(anet);
            backward_network(anet);

            //float genaloss = *anet->cost / anet->batch;
            //printf("%f\n", genaloss);

            scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
            scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1);

            //printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
            //printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch));

            axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1);

            backward_network(gnet);

            /*
               for(k = 0; k < gnet->n; ++k){
               layer l = gnet->layers[k];
               cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
               printf("%d: %f %f\n", k, mean_array(l.output, l.outputs*l.batch), variance_array(l.output, l.outputs*l.batch));
               }
             */

            for(k = 0; k < gnet->batch; ++k){
                int index = j*gnet->batch + k;
                copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1);
            }
        }
        harmless_update_network_gpu(anet);

        data merge = concat_data(train, gen);
        //randomize_data(merge);
        float aloss = train_network(anet, merge);

        //translate_image(im, 1);
        //scale_image(im, .5);
        //translate_image(im2, 1);
        //scale_image(im2, .5);
#ifdef OPENCV
        if(display){
            image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
            image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
            show_image(im, "gen", 1);
            show_image(im2, "train", 1);
            save_image(im, "gen");
            save_image(im2, "train");
        }
#endif

        /*
           if(aloss < .1){
           anet->learning_rate = 0;
           } else if (aloss > .3){
           anet->learning_rate = orig_rate;
           }
         */

        update_network_gpu(gnet);

        free_data(merge);
        free_data(train);
        free_data(gen);
        if (aloss_avg < 0) aloss_avg = aloss;
        aloss_avg = aloss_avg*.9 + aloss*.1;

        printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
        if(i%10000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
            save_weights(anet, buff);
        }
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s.backup", backup_directory, abase);
            save_weights(anet, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(gnet, buff);
#endif
    free_network(gnet);
    free_network(anet);
}
Exemple #6
0
void train_prog(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch)
{
#ifdef GPU
    char *backup_directory = "/home/kunle12/backup/";
    srand(time(0));
    char *base = basecfg(cfg);
    char *abase = basecfg(acfg);
    printf("%s\n", base);
    network *gnet = load_network(cfg, weight, clear);
    network *anet = load_network(acfg, aweight, clear);

    int i, j, k;
    layer imlayer = gnet->layers[gnet->n-1];

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay);
    int imgs = gnet->batch*gnet->subdivisions;
    i = *gnet->seen/imgs;
    data train, buffer;


    list *plist = get_paths(train_images);
    char **paths = (char **)list_to_array(plist);

    load_args args= get_base_args(anet);
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;
    args.threads=16;
    args.classes = 1;
    char *ls[2] = {"imagenet", "zzzzzzzz"};
    args.labels = ls;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;

    gnet->train = 1;
    anet->train = 1;

    int x_size = gnet->inputs*gnet->batch;
    int y_size = gnet->truths*gnet->batch;
    float *imerror = cuda_make_array(0, y_size);

    float aloss_avg = -1;

    if (maxbatch == 0) maxbatch = gnet->max_batches;
    while (get_current_batch(gnet) < maxbatch) {
        {
            int cb = get_current_batch(gnet);
            float alpha = (float) cb / (maxbatch/2);
            if(alpha > 1) alpha = 1;
            float beta = 1 - alpha;
            printf("%f %f\n", alpha, beta);
            set_network_alpha_beta(gnet, alpha, beta);
            set_network_alpha_beta(anet, beta, alpha);
        }

        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;

        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        data gen = copy_data(train);
        for (j = 0; j < imgs; ++j) {
            train.y.vals[j][0] = 1;
            gen.y.vals[j][0] = 0;
        }
        time=clock();

        for (j = 0; j < gnet->subdivisions; ++j) {
            get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0);
            int z;
            for(z = 0; z < x_size; ++z){
                gnet->input[z] = rand_normal();
            }
            /*
               for(z = 0; z < gnet->batch; ++z){
               float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs);
               scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag);
               }
             */
            *gnet->seen += gnet->batch;
            forward_network(gnet);

            fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
            fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1);
            copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1);
            anet->delta_gpu = imerror;
            forward_network(anet);
            backward_network(anet);

            //float genaloss = *anet->cost / anet->batch;

            scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
            scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1);

            axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1);

            backward_network(gnet);

            for(k = 0; k < gnet->batch; ++k){
                int index = j*gnet->batch + k;
                copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1);
            }
        }
        harmless_update_network_gpu(anet);

        data merge = concat_data(train, gen);
        float aloss = train_network(anet, merge);

#ifdef OPENCV
        if(display){
            image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
            image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
            show_image(im, "gen", 1);
            show_image(im2, "train", 1);
            save_image(im, "gen");
            save_image(im2, "train");
        }
#endif

        update_network_gpu(gnet);

        free_data(merge);
        free_data(train);
        free_data(gen);
        if (aloss_avg < 0) aloss_avg = aloss;
        aloss_avg = aloss_avg*.9 + aloss*.1;

        printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
        if(i%10000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
            save_weights(anet, buff);
        }
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s.backup", backup_directory, abase);
            save_weights(anet, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(gnet, buff);
#endif
  free_network( gnet );
  free_network( anet );
}
Exemple #7
0
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear)
{
#ifdef GPU
    char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    if(clear) *net.seen = 0;

    char *abase = basecfg(acfgfile);
    network anet = parse_network_cfg(acfgfile);
    if(aweightfile){
        load_weights(&anet, aweightfile);
    }
    if(clear) *anet.seen = 0;

    int i, j, k;
    layer imlayer = {};
    for (i = 0; i < net.n; ++i) {
        if (net.layers[i].out_c == 3) {
            imlayer = net.layers[i];
            break;
        }
    }

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    i = *net.seen/imgs;
    data train, buffer;


    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args = {};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;

    args.min = net.min_crop;
    args.max = net.max_crop;
    args.angle = net.angle;
    args.aspect = net.aspect;
    args.exposure = net.exposure;
    args.saturation = net.saturation;
    args.hue = net.hue;
    args.size = net.w;
    args.type = CLASSIFICATION_DATA;
    args.classes = 1;
    char *ls[1] = {"coco"};
    args.labels = ls;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;

    network_state gstate = {};
    gstate.index = 0;
    gstate.net = net;
    int x_size = get_network_input_size(net)*net.batch;
    int y_size = 1*net.batch;
    gstate.input = cuda_make_array(0, x_size);
    gstate.truth = 0;
    gstate.delta = 0;
    gstate.train = 1;
    float *X = (float*)calloc(x_size, sizeof(float));
    float *y = (float*)calloc(y_size, sizeof(float));

    network_state astate = {};
    astate.index = 0;
    astate.net = anet;
    int ay_size = get_network_output_size(anet)*anet.batch;
    astate.input = 0;
    astate.truth = 0;
    astate.delta = 0;
    astate.train = 1;

    float *imerror = cuda_make_array(0, imlayer.outputs);
    float *ones_gpu = cuda_make_array(0, ay_size);
    fill_ongpu(ay_size, 1, ones_gpu, 1);

    float aloss_avg = -1;
    float gloss_avg = -1;

    //data generated = copy_data(train);

    while (get_current_batch(net) < net.max_batches) {
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        data generated = copy_data(train);
        time=clock();
        float gloss = 0;

        for(j = 0; j < net.subdivisions; ++j){
            get_next_batch(train, net.batch, j*net.batch, X, y);
            cuda_push_array(gstate.input, X, x_size);
            *net.seen += net.batch;
            forward_network_gpu(net, gstate);

            fill_ongpu(imlayer.outputs, 0, imerror, 1);
            astate.input = imlayer.output_gpu;
            astate.delta = imerror;
            astate.truth = ones_gpu;
            forward_network_gpu(anet, astate);
            backward_network_gpu(anet, astate);

            scal_ongpu(imlayer.outputs, 1, imerror, 1);
            axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);

            backward_network_gpu(net, gstate);

            printf("features %f\n", cuda_mag_array(imlayer.delta_gpu, imlayer.outputs));
            printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));

            gloss += get_network_cost(net) /(net.subdivisions*net.batch);

            cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size);
            for(k = 0; k < net.batch; ++k){
                int index = j*net.batch + k;
                copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
                generated.y.vals[index][0] = 0;
            }
        }
        harmless_update_network_gpu(anet);

        data merge = concat_data(train, generated);
        randomize_data(merge);
        float aloss = train_network(anet, merge);

        update_network_gpu(net);
        update_network_gpu(anet);
        free_data(merge);
        free_data(train);
        free_data(generated);
        if (aloss_avg < 0) aloss_avg = aloss;
        aloss_avg = aloss_avg*.9 + aloss*.1;
        gloss_avg = gloss_avg*.9 + gloss*.1;

        printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
            sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
            save_weights(anet, buff);
        }
        if(i%100==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(net, buff);
            sprintf(buff, "%s/%s.backup", backup_directory, abase);
            save_weights(anet, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
#endif
}
Exemple #8
0
void train_lsd3(char *fcfg, char *fweight, char *gcfg, char *gweight, char *acfg, char *aweight, int clear)
{
#ifdef GPU
    //char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
    char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
    //char *style_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
    char *style_images = "/home/pjreddie/zelda.txt";
    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    network fnet = load_network(fcfg, fweight, clear);
    network gnet = load_network(gcfg, gweight, clear);
    network anet = load_network(acfg, aweight, clear);
    char *gbase = basecfg(gcfg);
    char *abase = basecfg(acfg);

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet.learning_rate, gnet.momentum, gnet.decay);
    int imgs = gnet.batch*gnet.subdivisions;
    int i = *gnet.seen/imgs;
    data train, tbuffer;
    data style, sbuffer;


    list *slist = get_paths(style_images);
    char **spaths = (char **)list_to_array(slist);

    list *tlist = get_paths(train_images);
    char **tpaths = (char **)list_to_array(tlist);

    load_args targs= get_base_args(gnet);
    targs.paths = tpaths;
    targs.n = imgs;
    targs.m = tlist->size;
    targs.d = &tbuffer;
    targs.type = CLASSIFICATION_DATA;
    targs.classes = 1;
    char *ls[1] = {"zelda"};
    targs.labels = ls;

    load_args sargs = get_base_args(gnet);
    sargs.paths = spaths;
    sargs.n = imgs;
    sargs.m = slist->size;
    sargs.d = &sbuffer;
    sargs.type = CLASSIFICATION_DATA;
    sargs.classes = 1;
    sargs.labels = ls;

    pthread_t tload_thread = load_data_in_thread(targs);
    pthread_t sload_thread = load_data_in_thread(sargs);
    clock_t time;

    float aloss_avg = -1;
    float floss_avg = -1;

    network_state fstate = {};
    fstate.index = 0;
    fstate.net = fnet;
    int x_size = get_network_input_size(fnet)*fnet.batch;
    int y_size = get_network_output_size(fnet)*fnet.batch;
    fstate.input = cuda_make_array(0, x_size);
    fstate.truth = cuda_make_array(0, y_size);
    fstate.delta = cuda_make_array(0, x_size);
    fstate.train = 1;
    float *X = (float*)calloc(x_size, sizeof(float));
    float *y = (float*)calloc(y_size, sizeof(float));

    float *ones = cuda_make_array(0, anet.batch);
    float *zeros = cuda_make_array(0, anet.batch);
    fill_ongpu(anet.batch, .99, ones, 1);
    fill_ongpu(anet.batch, .01, zeros, 1);

    network_state astate = {};
    astate.index = 0;
    astate.net = anet;
    int ax_size = get_network_input_size(anet)*anet.batch;
    int ay_size = get_network_output_size(anet)*anet.batch;
    astate.input = 0;
    astate.truth = ones;
    astate.delta = cuda_make_array(0, ax_size);
    astate.train = 1;

    network_state gstate = {};
    gstate.index = 0;
    gstate.net = gnet;
    int gx_size = get_network_input_size(gnet)*gnet.batch;
    int gy_size = get_network_output_size(gnet)*gnet.batch;
    gstate.input = cuda_make_array(0, gx_size);
    gstate.truth = 0;
    gstate.delta = 0;
    gstate.train = 1;

    while (get_current_batch(gnet) < gnet.max_batches) {
        i += 1;
        time=clock();
        pthread_join(tload_thread, 0);
        pthread_join(sload_thread, 0);
        train = tbuffer;
        style = sbuffer;
        tload_thread = load_data_in_thread(targs);
        sload_thread = load_data_in_thread(sargs);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        data generated = copy_data(train);
        time=clock();

        int j, k;
        float floss = 0;
        for(j = 0; j < fnet.subdivisions; ++j){
            layer imlayer = gnet.layers[gnet.n - 1];
            get_next_batch(train, fnet.batch, j*fnet.batch, X, y);

            cuda_push_array(fstate.input, X, x_size);
            cuda_push_array(gstate.input, X, gx_size);
            *gnet.seen += gnet.batch;

            forward_network_gpu(fnet, fstate);
            float *feats = fnet.layers[fnet.n - 2].output_gpu;
            copy_ongpu(y_size, feats, 1, fstate.truth, 1);

            forward_network_gpu(gnet, gstate);
            float *gen = gnet.layers[gnet.n-1].output_gpu;
            copy_ongpu(x_size, gen, 1, fstate.input, 1);

            fill_ongpu(x_size, 0, fstate.delta, 1);
            forward_network_gpu(fnet, fstate);
            backward_network_gpu(fnet, fstate);
            //HERE

            astate.input = gen;
            fill_ongpu(ax_size, 0, astate.delta, 1);
            forward_network_gpu(anet, astate);
            backward_network_gpu(anet, astate);

            float *delta = imlayer.delta_gpu;
            fill_ongpu(x_size, 0, delta, 1);
            scal_ongpu(x_size, 100, astate.delta, 1);
            scal_ongpu(x_size, .00001, fstate.delta, 1);
            axpy_ongpu(x_size, 1, fstate.delta, 1, delta, 1);
            axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);

            //fill_ongpu(x_size, 0, delta, 1);
            //cuda_push_array(delta, X, x_size);
            //axpy_ongpu(x_size, -1, imlayer.output_gpu, 1, delta, 1);
            //printf("pix error: %f\n", cuda_mag_array(delta, x_size));
            printf("fea error: %f\n", cuda_mag_array(fstate.delta, x_size));
            printf("adv error: %f\n", cuda_mag_array(astate.delta, x_size));
            //axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);

            backward_network_gpu(gnet, gstate);

            floss += get_network_cost(fnet) /(fnet.subdivisions*fnet.batch);

            cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size);
            for(k = 0; k < gnet.batch; ++k){
                int index = j*gnet.batch + k;
                copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
                generated.y.vals[index][0] = .01;
            }
        }

/*
        image sim = float_to_image(anet.w, anet.h, anet.c, style.X.vals[j]);
        show_image(sim, "style");
        cvWaitKey(0);
        */

        harmless_update_network_gpu(anet);

        data merge = concat_data(style, generated);
        randomize_data(merge);
        float aloss = train_network(anet, merge);

        update_network_gpu(gnet);

        free_data(merge);
        free_data(train);
        free_data(generated);
        free_data(style);
        if (aloss_avg < 0) aloss_avg = aloss;
        if (floss_avg < 0) floss_avg = floss;
        aloss_avg = aloss_avg*.9 + aloss*.1;
        floss_avg = floss_avg*.9 + floss*.1;

        printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, floss, aloss, floss_avg, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, gbase, i);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
            save_weights(anet, buff);
        }
        if(i%100==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, gbase);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s.backup", backup_directory, abase);
            save_weights(anet, buff);
        }
    }
#endif
}