Exemple #1
0
void cpu_execute(struct cpu* cpu) {
  cpu->pc += 2;
  uint8_t vx = cpu->v[cpu->opcode.x];
  uint8_t vy = cpu->v[cpu->opcode.y];
  switch (cpu->opcode.op) {
    case 0x0:
      switch (cpu->opcode.n) {
        case 0x0: return cpu_clear(cpu);
        case 0xE: return cpu_jump(cpu, cpu->stack[--cpu->sp]);
        default:  return cpu_error(cpu);
      }
    case 0x1: return cpu_jump(cpu, cpu->opcode.addr);
    case 0x2: return cpu_call(cpu, cpu->opcode.addr);
    case 0x3: return cpu_skip(cpu, vx == cpu->opcode.kk);
    case 0x4: return cpu_skip(cpu, vx != cpu->opcode.kk);
    case 0x5: return cpu_skip(cpu, vx == vy);
    case 0x6: return cpu_assign_register(cpu, cpu->opcode.x, cpu->opcode.kk);
    case 0x7: return cpu_assign_register(cpu, cpu->opcode.x, vx + cpu->opcode.kk);
    case 0x8:
      switch (cpu->opcode.n) {
        case 0x0: return cpu_assign_register(cpu, cpu->opcode.x, vy);
        case 0x1: return cpu_assign_register(cpu, cpu->opcode.x, vx | vy);
        case 0x2: return cpu_assign_register(cpu, cpu->opcode.x, vx & vy);
        case 0x3: return cpu_assign_register(cpu, cpu->opcode.x, vx ^ vy);
        case 0x4: return cpu_add_carry(cpu, vx, vy);
        case 0x5: return cpu_subtract_borrow(cpu, vx, vy);
        case 0x6: return cpu_shift_right(cpu);
        case 0x7: return cpu_subtract_borrow(cpu, vy, vx);
        case 0xE: return cpu_shift_left(cpu);
        default:  return cpu_error(cpu);
      }
    case 0x9: return cpu_skip(cpu, vx != vy);
    case 0xA: return cpu_assign_i(cpu, cpu->opcode.addr);
    case 0xB: return cpu_jump(cpu, cpu->opcode.addr + cpu->v[0]);
    case 0xC: return cpu_random(cpu);
    case 0xD: return cpu_draw(cpu);
    case 0xE:
      switch (cpu->opcode.kk) {
        case 0x9E: return cpu_skip(cpu, SDL_GetKeyboardState(NULL)[key_map[vx]]);
        case 0xA1: return cpu_skip(cpu, !SDL_GetKeyboardState(NULL)[key_map[vx]]);
        default:   return cpu_error(cpu);
      }
    case 0xF:
      switch (cpu->opcode.kk) {
        case 0x07: return cpu_assign_register(cpu, cpu->opcode.x, cpu->delay_timer);
        case 0x0A: return cpu_wait_key_press(cpu);
        case 0x15: return cpu_assign_delay_timer(cpu, vx);
        case 0x18: return cpu_assign_sound_timer(cpu, vx);
        case 0x1E: return cpu_assign_i(cpu, cpu->i + vx);
        case 0x29: return cpu_assign_i(cpu, vx * 5);
        case 0x33: return cpu_store_bcd(cpu);
        case 0x55: return cpu_copy_to_memory(cpu);
        case 0x65: return cpu_copy_from_memory(cpu);
        default:   return cpu_error(cpu);
      }
    }
  return cpu_error(cpu);
}
Exemple #2
0
void CALL(cpu_state_t *state,
		const enum ARG_TYPE arg0, const union REG_INPUT i0,
		const enum ARG_TYPE arg1, const union REG_INPUT i1)
{
	if(arg0 == ARG_TYPE_DATA16_UNSIGNED
		|| (arg0 == ARG_TYPE_NC   && !cpu_carry(state))
		|| (arg0 == ARG_TYPE_NZ   && !cpu_zero(state))
		|| (arg0 == ARG_TYPE_REG8 &&  cpu_carry(state)) //Actually the carry flag.
		|| (arg0 == ARG_TYPE_Z    &&  cpu_zero(state)))
	{
		cpu_call(state, state->arg);
	}
	else
	{
		state->success = 0;
	}
}
/* Process the current interrupt if there is one.  This operation must
   be called after each instruction to handle the interrupts.  If interrupts
   are masked, it does nothing.  */
int
interrupts_process (struct interrupts *interrupts)
{
  int id;
  uint8 ccr;

  /* See if interrupts are enabled/disabled and keep track of the
     number of cycles the interrupts are masked.  Such information is
     then reported by the info command.  */
  ccr = cpu_get_ccr (interrupts->cpu);
  if (ccr & M6811_I_BIT)
    {
      if (interrupts->start_mask_cycle < 0)
        interrupts->start_mask_cycle = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->start_mask_cycle >= 0
           && (ccr & M6811_I_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->start_mask_cycle;
      if (t < interrupts->min_mask_cycles)
        interrupts->min_mask_cycles = t;
      if (t > interrupts->max_mask_cycles)
        interrupts->max_mask_cycles = t;
      interrupts->start_mask_cycle = -1;
      interrupts->last_mask_cycles = t;
    }
  if (ccr & M6811_X_BIT)
    {
      if (interrupts->xirq_start_mask_cycle < 0)
        interrupts->xirq_start_mask_cycle
	  = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->xirq_start_mask_cycle >= 0
           && (ccr & M6811_X_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->xirq_start_mask_cycle;
      if (t < interrupts->xirq_min_mask_cycles)
        interrupts->xirq_min_mask_cycles = t;
      if (t > interrupts->xirq_max_mask_cycles)
        interrupts->xirq_max_mask_cycles = t;
      interrupts->xirq_start_mask_cycle = -1;
      interrupts->xirq_last_mask_cycles = t;
    }

  id = interrupts_get_current (interrupts);
  if (id >= 0)
    {
      uint16 addr;
      struct interrupt_history *h;

      /* Implement the breakpoint-on-interrupt.  */
      if (interrupts->interrupts[id].stop_mode & SIM_STOP_WHEN_TAKEN)
        {
          sim_io_printf (CPU_STATE (interrupts->cpu),
                         "Interrupt %s will be handled\n",
                         interrupt_names[id]);
          sim_engine_halt (CPU_STATE (interrupts->cpu),
                           interrupts->cpu,
                           0, cpu_get_pc (interrupts->cpu),
                           sim_stopped,
                           SIM_SIGTRAP);
        }

      cpu_push_all (interrupts->cpu);
      addr = memory_read16 (interrupts->cpu,
                            interrupts->vectors_addr + id * 2);
      cpu_call (interrupts->cpu, addr);

      /* Now, protect from nested interrupts.  */
      if (id == M6811_INT_XIRQ)
	{
	  cpu_set_ccr_X (interrupts->cpu, 1);
	}
      else
	{
	  cpu_set_ccr_I (interrupts->cpu, 1);
	}

      /* Update the interrupt history table.  */
      h = &interrupts->interrupts_history[interrupts->history_index];
      h->type = id;
      h->taken_cycle = cpu_current_cycle (interrupts->cpu);
      h->raised_cycle = interrupts->interrupts[id].cpu_cycle;
      
      if (interrupts->history_index >= MAX_INT_HISTORY-1)
        interrupts->history_index = 0;
      else
        interrupts->history_index++;

      interrupts->nb_interrupts_raised++;
      cpu_add_cycles (interrupts->cpu, 14);
      return 1;
    }
  return 0;
}
Exemple #4
0
/**
    This function exec byte code of instructions

    @param      code  array of byte code

    @return number of error(0 if no error)
*/
int cpu_run(char* addr_code)
{
    assert(addr_code);

    cpu_t* cpu = NULL;

    cpu_ctor(&cpu, CPU_STACK_MAX, addr_code);

    char* current_byte = addr_code;

    start_logging("logs.txt");


    while(FOREVER)
    {
        int cmd = *current_byte;
        current_byte++;

        //printf("%d \n",cmd);

        switch(cmd)
        {
        case PUSH:
            if(cpu_push(cpu, &current_byte)) printf("CPU CRASHED! PUSH HAVEN'T FULFILLED");
            break;

        case POP:
            if(cpu_pop(cpu, &current_byte)) printf("CPU CRASHED! POP HAVEN'T FULFILLED");
            break;

        case OK:
            if(cpu_ok(cpu)) printf("CPU CRASHED! CPU ISN'T OK");
            break;

        case DUMP:
            if(cpu_dump(cpu)) printf("CPU CRASHED! DUMP HAVEN'T FULFILLED");
            break;

        case ADD:
            if(cpu_add(cpu)) printf("CPU CRASHED! ADD HAVEN'T FULFILLED");
            break;

        case SUB:
            if(cpu_sub(cpu)) printf("CPU CRASHED! SUB HAVEN'T FULFILLED");
            break;

        case MUL:
            if(cpu_mul(cpu)) printf("CPU CRASHED! MUL HAVEN'T FULFILLED");
            break;

        case DIR:
            if(cpu_dir(cpu)) printf("CPU CRASHED! DIR HAVEN'T FULFILLED");
            break;

        case SIN:
            if(cpu_sin(cpu)) printf("CPU CRASHED! SIN HAVEN'T FULFILLED");
            break;

        case COS:
            if(cpu_cos(cpu)) printf("CPU CRASHED! COS HAVEN'T FULFILLED");
            break;

        case SQRT:
            if(cpu_sqrt(cpu)) printf("CPU CRASHED! SQRT HAVEN'T FULFILLED");
            break;

        case JA:
            if(cpu_ja(cpu, &current_byte)) printf("CPU CRASHED! JA HAVEN'T FULFILLED");
            break;

        case JAE:
            if(cpu_jae(cpu, &current_byte)) printf("CPU CRASHED! JAE HAVEN'T FULFILLED");
            break;

        case JB:
            if(cpu_jb(cpu, &current_byte)) printf("CPU CRASHED! JB HAVEN'T FULFILLED");
            break;

        case JBE:
            if(cpu_jbe(cpu, &current_byte)) printf("CPU CRASHED! JBE HAVEN'T FULFILLED");
            break;

        case JE:
            if(cpu_je(cpu, &current_byte)) printf("CPU CRASHED! JE HAVEN'T FULFILLED");
            break;

        case JNE:
            if(cpu_jne(cpu, &current_byte)) printf("CPU CRASHED! JNE HAVEN'T FULFILLED");
            break;

        case JMP:
            if(cpu_jmp(cpu, &current_byte)) printf("CPU CRASHED! JMP HAVEN'T FULFILLED");
            break;

        case OUT:
            if(cpu_out(cpu)) printf("CPU CRASHED! OUT HAVEN'T FULFILLED");
            break;

        case MOV:
            if(cpu_mov(cpu, &current_byte)) printf("CPU CRASHED! MOV HAVEN'T FULFILLED");
            break;

        case INC:
            if(cpu_inc(cpu, &current_byte)) printf("CPU CRASHED! INC HAVEN'T FULFILLED");
            break;

        case DEC:
            if(cpu_dec(cpu, &current_byte)) printf("CPU CRASHED! DEC HAVEN'T FULFILLED");
            break;

        case CALL:
            if(cpu_call(cpu, &current_byte)) printf("CPU CRASHED! CALL HAVEN'T FULFILLED");
            break;

        case RET:
            if(cpu_ret(cpu, &current_byte)) printf("CPU CRASHED! RET HAVEN'T FULFILLED");
            break;

        case END:
            return 0;
            break;
        default:
        {
            fprintf(stderr, "ERROR! Unknown command at address %o. \n", (int)current_byte);
            return 1;
        }

        }

    }
    return 0;
}
Exemple #5
0
/* Process the current interrupt if there is one.  This operation must
   be called after each instruction to handle the interrupts.  If interrupts
   are masked, it does nothing.  */
int
interrupts_process (struct interrupts *interrupts)
{
  int id;
  uint8 ccr;

  /* See if interrupts are enabled/disabled and keep track of the
     number of cycles the interrupts are masked.  Such information is
     then reported by the info command.  */
  ccr = cpu_get_ccr (interrupts->cpu);
  if (ccr & M6811_I_BIT)
    {
      if (interrupts->start_mask_cycle < 0)
        interrupts->start_mask_cycle = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->start_mask_cycle >= 0
           && (ccr & M6811_I_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->start_mask_cycle;
      if (t < interrupts->min_mask_cycles)
        interrupts->min_mask_cycles = t;
      if (t > interrupts->max_mask_cycles)
        interrupts->max_mask_cycles = t;
      interrupts->start_mask_cycle = -1;
      interrupts->last_mask_cycles = t;
    }
  if (ccr & M6811_X_BIT)
    {
      if (interrupts->xirq_start_mask_cycle < 0)
        interrupts->xirq_start_mask_cycle
	  = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->xirq_start_mask_cycle >= 0
           && (ccr & M6811_X_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->xirq_start_mask_cycle;
      if (t < interrupts->xirq_min_mask_cycles)
        interrupts->xirq_min_mask_cycles = t;
      if (t > interrupts->xirq_max_mask_cycles)
        interrupts->xirq_max_mask_cycles = t;
      interrupts->xirq_start_mask_cycle = -1;
      interrupts->xirq_last_mask_cycles = t;
    }

  id = interrupts_get_current (interrupts);
  if (id >= 0)
    {
      uint16 addr;
      
      cpu_push_all (interrupts->cpu);
      addr = memory_read16 (interrupts->cpu,
                            interrupts->vectors_addr + id * 2);
      cpu_call (interrupts->cpu, addr);

      /* Now, protect from nested interrupts.  */
      if (id == M6811_INT_XIRQ)
	{
	  cpu_set_ccr_X (interrupts->cpu, 1);
	}
      else
	{
	  cpu_set_ccr_I (interrupts->cpu, 1);
	}

      interrupts->nb_interrupts_raised++;
      cpu_add_cycles (interrupts->cpu, 14);
      return 1;
    }
  return 0;
}