Exemple #1
0
//-------------------------------------------------------------------------------------------------
// crNl
std::cstring_t &
Const::crNlA()
{
    static std::cstring_t sRv(crA() + nlA());

    return sRv;
}
void BodyPair2DSW::solve(float p_step) {

	if (!collided)
		return;

	for (int i = 0; i < contact_count; ++i) {

		Contact& c = contacts[i];
		cc++;

		if (!c.active)
			continue;


		// Relative velocity at contact

		Vector2 crA( -A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x );
		Vector2 crB( -B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x );
		Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;

		Vector2 crbA( -A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x );
		Vector2 crbB( -B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x );
		Vector2 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;


		real_t vn = dv.dot(c.normal);
		real_t vbn = dbv.dot(c.normal);
		Vector2 tangent = c.normal.tangent();
		real_t vt = dv.dot(tangent);


		real_t jbn = (c.bias - vbn)*c.mass_normal;
		real_t jbnOld = c.acc_bias_impulse;
		c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);

		Vector2 jb = c.normal * (c.acc_bias_impulse - jbnOld);

		A->apply_bias_impulse(c.rA,-jb);
		B->apply_bias_impulse(c.rB, jb);

		real_t jn = -(c.bounce + vn)*c.mass_normal;
		real_t jnOld = c.acc_normal_impulse;
		c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);


		real_t friction = A->get_friction() * B->get_friction();

		real_t jtMax = friction*c.acc_normal_impulse;
		real_t jt = -vt*c.mass_tangent;
		real_t jtOld = c.acc_tangent_impulse;
		c.acc_tangent_impulse = CLAMP(jtOld + jt, -jtMax, jtMax);

		Vector2 j =c.normal * (c.acc_normal_impulse - jnOld) + tangent * ( c.acc_tangent_impulse - jtOld );

		A->apply_impulse(c.rA,-j);
		B->apply_impulse(c.rB, j);


	}
}
DGKTSD& DGKTSD::useKrylovMethod(const DKTS& a,  const DKTS& xi)
 {
    (*this)
     .invertA(0.0, 1.0)
    ;
    
    // ALS - Test
   //evaluateAinv(attr_gradient, attr_direction);
    
    //cr(a, xi);
    crA(a, xi);        
    evaluateW(attr_direction);
    
    /*
    const LongReal c = 1.0e-6;
    
    const DKTVector&  g = attr_gradient();
    DKTVector&        d = attr_direction();
    
    const LongReal l2_g = l2(g);
    
    const LongReal cosDG = innerProduct(d,g)/l2(d)/l2_g;
       
    if( cosDG < c*MIN(1,l2_g))
     {
        cout << "+";
        d = g;
     }        
    */

   return(*this);
 }
Exemple #4
0
bool BodyPair2DSW::setup(real_t p_step) {

	//cannot collide
	if (!A->test_collision_mask(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self()) || (A->get_mode() <= Physics2DServer::BODY_MODE_KINEMATIC && B->get_mode() <= Physics2DServer::BODY_MODE_KINEMATIC && A->get_max_contacts_reported() == 0 && B->get_max_contacts_reported() == 0)) {
		collided = false;
		return false;
	}

	if (A->is_shape_set_as_disabled(shape_A) || B->is_shape_set_as_disabled(shape_B)) {
		collided = false;
		return false;
	}

	//use local A coordinates to avoid numerical issues on collision detection
	offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();

	_validate_contacts();

	Vector2 offset_A = A->get_transform().get_origin();
	Transform2D xform_Au = A->get_transform().untranslated();
	Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);

	Transform2D xform_Bu = B->get_transform();
	xform_Bu.elements[2] -= A->get_transform().get_origin();
	Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);

	Shape2DSW *shape_A_ptr = A->get_shape(shape_A);
	Shape2DSW *shape_B_ptr = B->get_shape(shape_B);

	Vector2 motion_A, motion_B;

	if (A->get_continuous_collision_detection_mode() == Physics2DServer::CCD_MODE_CAST_SHAPE) {
		motion_A = A->get_motion();
	}
	if (B->get_continuous_collision_detection_mode() == Physics2DServer::CCD_MODE_CAST_SHAPE) {
		motion_B = B->get_motion();
	}
	//faster to set than to check..

	//bool prev_collided=collided;

	collided = CollisionSolver2DSW::solve(shape_A_ptr, xform_A, motion_A, shape_B_ptr, xform_B, motion_B, _add_contact, this, &sep_axis);
	if (!collided) {

		//test ccd (currently just a raycast)

		if (A->get_continuous_collision_detection_mode() == Physics2DServer::CCD_MODE_CAST_RAY && A->get_mode() > Physics2DServer::BODY_MODE_KINEMATIC) {
			if (_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B))
				collided = true;
		}

		if (B->get_continuous_collision_detection_mode() == Physics2DServer::CCD_MODE_CAST_RAY && B->get_mode() > Physics2DServer::BODY_MODE_KINEMATIC) {
			if (_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A, true))
				collided = true;
		}

		if (!collided) {
			oneway_disabled = false;
			return false;
		}
	}

	if (oneway_disabled)
		return false;

	//if (!prev_collided) {
	{

		if (A->is_shape_set_as_one_way_collision(shape_A)) {
			Vector2 direction = xform_A.get_axis(1).normalized();
			bool valid = false;
			if (B->get_linear_velocity().dot(direction) >= 0) {
				for (int i = 0; i < contact_count; i++) {
					Contact &c = contacts[i];
					if (!c.reused)
						continue;
					if (c.normal.dot(direction) < 0)
						continue;

					valid = true;
					break;
				}
			}

			if (!valid) {
				collided = false;
				oneway_disabled = true;
				return false;
			}
		}

		if (B->is_shape_set_as_one_way_collision(shape_B)) {
			Vector2 direction = xform_B.get_axis(1).normalized();
			bool valid = false;
			if (A->get_linear_velocity().dot(direction) >= 0) {
				for (int i = 0; i < contact_count; i++) {
					Contact &c = contacts[i];
					if (!c.reused)
						continue;
					if (c.normal.dot(direction) < 0)
						continue;

					valid = true;
					break;
				}
			}
			if (!valid) {
				collided = false;
				oneway_disabled = true;
				return false;
			}
		}
	}

	real_t max_penetration = space->get_contact_max_allowed_penetration();

	real_t bias = 0.3;
	if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {

		if (shape_A_ptr->get_custom_bias() == 0)
			bias = shape_B_ptr->get_custom_bias();
		else if (shape_B_ptr->get_custom_bias() == 0)
			bias = shape_A_ptr->get_custom_bias();
		else
			bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
	}

	cc = 0;

	real_t inv_dt = 1.0 / p_step;

	bool do_process = false;

	for (int i = 0; i < contact_count; i++) {

		Contact &c = contacts[i];

		Vector2 global_A = xform_Au.xform(c.local_A);
		Vector2 global_B = xform_Bu.xform(c.local_B);

		real_t depth = c.normal.dot(global_A - global_B);

		if (depth <= 0 || !c.reused) {
			c.active = false;
			continue;
		}

		c.active = true;
#ifdef DEBUG_ENABLED
		if (space->is_debugging_contacts()) {
			space->add_debug_contact(global_A + offset_A);
			space->add_debug_contact(global_B + offset_A);
		}
#endif
		int gather_A = A->can_report_contacts();
		int gather_B = B->can_report_contacts();

		c.rA = global_A;
		c.rB = global_B - offset_B;

		if (gather_A | gather_B) {

			//Vector2 crB( -B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x );

			global_A += offset_A;
			global_B += offset_A;

			if (gather_A) {
				Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
				A->add_contact(global_A, -c.normal, depth, shape_A, global_B, shape_B, B->get_instance_id(), B->get_self(), crB + B->get_linear_velocity());
			}
			if (gather_B) {

				Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
				B->add_contact(global_B, c.normal, depth, shape_B, global_A, shape_A, A->get_instance_id(), A->get_self(), crA + A->get_linear_velocity());
			}
		}

		if ((A->get_mode() <= Physics2DServer::BODY_MODE_KINEMATIC && B->get_mode() <= Physics2DServer::BODY_MODE_KINEMATIC)) {
			c.active = false;
			collided = false;
			continue;
		}

		// Precompute normal mass, tangent mass, and bias.
		real_t rnA = c.rA.dot(c.normal);
		real_t rnB = c.rB.dot(c.normal);
		real_t kNormal = A->get_inv_mass() + B->get_inv_mass();
		kNormal += A->get_inv_inertia() * (c.rA.dot(c.rA) - rnA * rnA) + B->get_inv_inertia() * (c.rB.dot(c.rB) - rnB * rnB);
		c.mass_normal = 1.0f / kNormal;

		Vector2 tangent = c.normal.tangent();
		real_t rtA = c.rA.dot(tangent);
		real_t rtB = c.rB.dot(tangent);
		real_t kTangent = A->get_inv_mass() + B->get_inv_mass();
		kTangent += A->get_inv_inertia() * (c.rA.dot(c.rA) - rtA * rtA) + B->get_inv_inertia() * (c.rB.dot(c.rB) - rtB * rtB);
		c.mass_tangent = 1.0f / kTangent;

		c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
		c.depth = depth;
		//c.acc_bias_impulse=0;

#ifdef ACCUMULATE_IMPULSES
		{
			// Apply normal + friction impulse
			Vector2 P = c.acc_normal_impulse * c.normal + c.acc_tangent_impulse * tangent;

			A->apply_impulse(c.rA, -P);
			B->apply_impulse(c.rB, P);
		}

#endif

		c.bounce = MAX(A->get_bounce(), B->get_bounce());
		if (c.bounce) {

			Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
			Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
			Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
			c.bounce = c.bounce * dv.dot(c.normal);
		}

		do_process = true;
	}

	return do_process;
}