TEST_P(InterpolatorTest, MultiThreadReproducibility) { if (cv::getNumberOfCPUs() == 1) return; double MAX_DIF = 1.0; double MAX_MEAN_DIF = 1.0 / 256.0; int loopsCount = 2; RNG rng(0); InterpolatorParams params = GetParam(); Size size = get<0>(params); int guideType = get<1>(params); Mat from(size, guideType); randu(from, 0, 255); int num_matches = rng.uniform(5,SHRT_MAX-1); vector<Point2f> from_points; vector<Point2f> to_points; for(int i=0;i<num_matches;i++) { from_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f))); to_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f))); } int nThreads = cv::getNumThreads(); if (nThreads == 1) throw SkipTestException("Single thread environment"); for (int iter = 0; iter <= loopsCount; iter++) { int K = rng.uniform(4,512); float sigma = rng.uniform(0.01f,0.5f); float FGSlambda = rng.uniform(100.0f, 10000.0f); float FGSsigma = rng.uniform(0.5f, 100.0f); Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator(); interpolator->setK(K); interpolator->setSigma(sigma); interpolator->setUsePostProcessing(true); interpolator->setFGSLambda(FGSlambda); interpolator->setFGSSigma(FGSsigma); cv::setNumThreads(nThreads); Mat resMultiThread; interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread); cv::setNumThreads(1); Mat resSingleThread; interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total()); } }
TEST(InterpolatorTest, ReferenceAccuracy) { double MAX_DIF = 1.0; double MAX_MEAN_DIF = 1.0 / 256.0; string dir = getDataDir() + "cv/sparse_match_interpolator"; Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR); ASSERT_FALSE(src.empty()); Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo"); ASSERT_FALSE(ref_flow.empty()); ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str()); float from_x,from_y,to_x,to_y; vector<Point2f> from_points; vector<Point2f> to_points; while(file >> from_x >> from_y >> to_x >> to_y) { from_points.push_back(Point2f(from_x,from_y)); to_points.push_back(Point2f(to_x,to_y)); } cv::setNumThreads(cv::getNumberOfCPUs()); Mat res_flow; Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator(); interpolator->setK(128); interpolator->setSigma(0.05f); interpolator->setUsePostProcessing(true); interpolator->setFGSLambda(500.0f); interpolator->setFGSSigma(1.5f); interpolator->interpolate(src,from_points,Mat(),to_points,res_flow); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total()); }