Exemple #1
0
int main(int argc, char **argv)
{
    int     i;
    int     errors;
    DataSet *train_set;
    DataSet *test_set;
    Network *adultnn = create_network(14);
    double  e;
    double  acc;
    Class   predicted, desired;

    // training
    train_set = read_dataset("adult.train");

    if (train_set == NULL) {
        fprintf(stderr, "Error reading training set\n");
        exit(1);
    }

    add_layer(adultnn, 28);  // hidden layer
    add_layer(adultnn, 2);  // output layer
    initialize_weights(adultnn, SEED);
    print_network_structure(adultnn);

    printf("Training network with %d epochs...\n", EPOCHS);
    e = batch_train(adultnn, train_set, LEARNING_RATE, EPOCHS,
                   sigmoid, dsigmoid);
    printf("Training finished, approximate final SSE: %f\n", e);

    print_network_structure(adultnn);

    // testing
    test_set = read_dataset("adult.test");

    if (test_set == NULL) {
        fprintf(stderr, "Error reading test set\n");
        exit(1);
    }

    errors = 0;
    printf("Testing with %d cases...\n", test_set->n_cases);
    for (i = 0; i < test_set->n_cases; ++i) {
        predicted = predict_class(adultnn, test_set->input[i]);
        desired = output_to_class(test_set->output[i]);
        if (predicted != desired)
            ++errors;
        printf("Case %d | predicted: %s, desired: %s, outputs: %4.3f %4.3f \n", i,
               class_to_string(predicted), class_to_string(desired),
               adultnn->output_layer->y[0], adultnn->output_layer->y[1]);
    }

    acc = 100.0 - (100.0 * errors / test_set->n_cases);
    printf("Testing accuracy: %f\n", acc);
    printf("Total classificarion errors: %d\n", errors);

    destroy_dataset(train_set);
    destroy_dataset(test_set);

    return 0;
}
Exemple #2
0
int read_network(NETWORK *network, FILE *stream)
{
  fill_buffer(stream);
  create_network(network);
  get_degrees(network);
  read_edges(network);
  free_buffer();

  return 0;
}
Exemple #3
0
int main()
{
    int structure[3] = {2, 2, 1};
    float input[2] = {1,2};
    float output[1];
    struct network *net = create_network(3, structure);

    feedforward(net, input, output);
    vprint_float(1, output);
    network_save_to_file(net, "mynet.net");
    
    srand(time(NULL));
    network_set_random_weights_biases(net, -1, 1);

    network_load_from_file(net, "mynet.net");
    feedforward(net, input, output);
    vprint_float(1, output);
}
Exemple #4
0
int create_datacenter(provider *pv, int type, int nnodes){
    
    int i;

    pv->datacenters = malloc(sizeof(datacenter)*pv->ndc);
   
    for(i=0;i<pv->ndc;i++){    
      	pv->datacenters[i].type = type;
     	pv->datacenters[i].nnodes = nnodes;
     	pv->datacenters[i].allocation_policy = allocation_policy;
     	pv->datacenters[i].optimization_alg = optimization_alg;
	pv->datacenters[i].alloc_apps = malloc(sizeof(allocated_applications));
	pv->datacenters[i].alloc_apps->num_alloc_apps = 0;
	pv->datacenters[i].alloc_apps->first_app = NULL;
	pv->datacenters[i].alloc_apps->last_app = NULL;
	create_network(&pv->datacenters[i],type,nnodes);
    }
    return(1);
     
}
void main(int argc,char **argv)
{
FILE *fp;

  printf( "\nNetwork Generator for n-Component Kohonen Networks\n" );
  control_file=argv[1];
  if(argc==2)               
    if((fp=fopen(control_file,"r"))!=NULL){
       control(fp);  /* get information from control file */
       if ((IUnits <= 0) || (OUnits < 0) || (HUnits <= 0))
	 exit( 1 );
       create_network(weight_file);
       create_patterns(pattern_file,no_of_exemplars); /* if any */
       quit();
     }
    else
      printf("\nControl file %s could not be opened!",argv[1]);
else
  printf("\nUsage: convert2snns <control file>");
  printf("\n");

} /* main */
Exemple #6
0
void init(const char* datafile) {
    DBG("INIT");
    DBGV(NBTHREADS);
    sys("rm -rf data/*");
    sys("rm -rf plots/*");

    if(datafile[0]=='*') {
        generateData(&datafile[1]);
    }
    else X.load(datafile);
    if(LIMIT_NDATA!=-1 && X.height > LIMIT_NDATA) X.height = LIMIT_NDATA;
    n = X.height;
    D = X.width;

    create_network();

    int ndo = 0;
    for(int i=0; i<N-1; i++) {
        node[i].init(X, ndo, n/N);
        ndo += n/N;
    }
    node[N-1].init(X,ndo, n-ndo);

//	mat_plotall.create((D+1)*(int)(sqrt(N)+1),(D+1)*(int)(sqrt(N)+1));

    DBGV(LIMIT_NDATA);
    DBGV(N);
    DBGV(D);
    DBGV(n);
    if(USE_ENERGY) {
        DBGV(KEEP_ENERGY);
    }
    else {
        DBGV(q);
    }
}
Exemple #7
0
/* Function to be called from R */
void R_epidemics(int *seqLength, double *mutRate, int *npop, int *nHostPerPop, double *beta, int *nStart, int *t1, int *t2, int *Nsample, int *Tsample, int *duration, int *nbnb, int *listnb, double *pdisp){
	int i, nstep, counter_sample = 0, tabidx;

	/* Initialize random number generator */
	int j;
	time_t t;
	t = time(NULL); // time in seconds, used to change the seed of the random generator
	gsl_rng * rng;
	const gsl_rng_type *typ;
	gsl_rng_env_setup();
	typ=gsl_rng_default;
	rng=gsl_rng_alloc(typ);
	gsl_rng_set(rng,t); // changes the seed of the random generator


	/* transfer simulation parameters */
	struct param * par;
	par = (struct param *) malloc(sizeof(struct param));
	par->L = *seqLength;
	par->mu = *mutRate;
	par->muL = par->mu * par->L;
	par->rng = rng;
	par->npop = *npop;
	par->popsizes = nHostPerPop;
	par->beta = *beta;
	par->nstart = *nStart;
	par->t1 = *t1;
	par->t2 = *t2;
	par->t_sample = Tsample;
	par->n_sample = *Nsample;
	par->duration = *duration;
	par->cn_nb_nb = nbnb;
	par->cn_list_nb = listnb;
	par->cn_weights = pdisp;

	/* check/print parameters */
	check_param(par);
	print_param(par);

	/* dispersal matrix */
	struct network *cn = create_network(par);
	/* print_network(cn, TRUE); */

	/* group sizes */
	struct ts_groupsizes * grpsizes = create_ts_groupsizes(par);

	/* initiate population */
	struct metapopulation * metapop;
	metapop = create_metapopulation(par);

	/* get sampling schemes (timestep+effectives) */
	translate_dates(par);
	struct table_int *tabdates = get_table_int(par->t_sample, par->n_sample);
	printf("\n\nsampling at timesteps:");
	print_table_int(tabdates);

	/* create sample */
	struct sample ** samplist = (struct sample **) malloc(tabdates->n * sizeof(struct sample *));
	struct sample *samp;


	/* MAKE METAPOPULATION EVOLVE */
	nstep = 0;
	while(get_total_nsus(metapop)>0 && (get_total_ninf(metapop)+get_total_nexp(metapop))>0 && nstep<par->duration){
		nstep++;

		/* age metapopulation */
		age_metapopulation(metapop, par);

		/* process infections */
		for(j=0;j<get_npop(metapop);j++){
			process_infections(get_populations(metapop)[j], metapop, cn, par);
		}

		/* draw samples */
		if((tabidx = int_in_vec(nstep, tabdates->items, tabdates->n)) > -1){ /* TRUE if step must be sampled */
			samplist[counter_sample++] = draw_sample(metapop, tabdates->times[tabidx], par);
		}

		fill_ts_groupsizes(grpsizes, metapop, nstep);

	}

	/* we stopped after 'nstep' steps */
	if(nstep < par->duration){
		printf("\nEpidemics ended at time %d, before last sampling time (%d).\n", nstep, par->duration);
	} else {

		/* printf("\n\n-- FINAL METAPOPULATION --"); */
		/* print_metapopulation(metapop, FALSE); */

		/* merge samples */
		samp = merge_samples(samplist, tabdates->n, par);

		/* write sample to file */
		printf("\n\nWriting sample to file 'out-sample.txt'\n");
		write_sample(samp);

		/* free memory */
		free_sample(samp);

	}

	/* write group sizes to file */
	printf("\n\nPrinting group sizes to file 'out-popsize.txt'\n");
	write_ts_groupsizes(grpsizes);


	/* free memory */
	free_metapopulation(metapop);
	free_param(par);
	for(i=0;i<counter_sample;i++) free_sample(samplist[i]);
	free(samplist);
	free_table_int(tabdates);
	free_network(cn);
	free_ts_groupsizes(grpsizes);
}
Exemple #8
0
/* all-in-one function testing epidemics growth, summary statistics, etc. */
void test_epidemics(int seqLength, double mutRate, int npop, int *nHostPerPop, double beta, int nStart, int t1, int t2, int Nsample, int *Tsample, int duration, int *nbnb, int *listnb, double *pdisp){
	int i, j, nstep=0, tabidx, counter_sample = 0;

	/* Initialize random number generator */
	time_t t;
	t = time(NULL); // time in seconds, used to change the seed of the random generator
	gsl_rng * rng;
	const gsl_rng_type *typ;
	gsl_rng_env_setup();
	typ=gsl_rng_default;
	rng=gsl_rng_alloc(typ);
	gsl_rng_set(rng,t); // changes the seed of the random generator


	/* transfer simulation parameters */
	struct param * par;
	par = (struct param *) malloc(sizeof(struct param));
	par->L = seqLength;
	par->mu = mutRate;
	par->muL = par->mu * par->L;
	par->rng = rng;
	par->npop = npop;
	par->npop = npop;
	par->popsizes = nHostPerPop;
	par->beta = beta;
	par->nstart = nStart;
	par->t1 = t1;
	par->t2 = t2;
	par->t_sample = Tsample;
	par->n_sample = Nsample;
	par->duration = duration;
	par->cn_nb_nb = nbnb;
	par->cn_list_nb = listnb;
	par->cn_weights = pdisp;

	/* check/print parameters */
	check_param(par);
	print_param(par);

	/* dispersal matrix */
	struct network *cn = create_network(par);

	/* group sizes */
	struct ts_groupsizes * grpsizes = create_ts_groupsizes(par);


	/* initiate population */
	struct metapopulation * metapop;
	metapop = create_metapopulation(par);


	/* get sampling schemes (timestep+effectives) */
	translate_dates(par);
	struct table_int *tabdates = get_table_int(par->t_sample, par->n_sample);
	printf("\n\nsampling at timesteps:");
	print_table_int(tabdates);

	/* create sample */
	struct sample ** samplist = (struct sample **) malloc(tabdates->n * sizeof(struct sample *));
	struct sample *samp;


	/* MAKE METAPOPULATION EVOLVE */
	nstep = 0;
	while(get_total_nsus(metapop)>0 && (get_total_ninf(metapop)+get_total_nexp(metapop))>0 && nstep<par->duration){
		nstep++;

		/* age metapopulation */
		age_metapopulation(metapop, par);

		/* process infections */
		for(j=0;j<get_npop(metapop);j++){
			process_infections(get_populations(metapop)[j], metapop, cn, par);
		}

		/* draw samples */
		if((tabidx = int_in_vec(nstep, tabdates->items, tabdates->n)) > -1){ /* TRUE if step must be sampled */
			samplist[counter_sample++] = draw_sample(metapop, tabdates->times[tabidx], par);
		}

		fill_ts_groupsizes(grpsizes, metapop, nstep);

	}


	/* we stopped after 'nstep' steps */
	if(nstep < par->duration){
		printf("\nEpidemics ended at time %d, before last sampling time (%d).\n", nstep, par->duration);
	} else {

		printf("\n\n-- FINAL METAPOPULATION --");
		print_metapopulation(metapop, TRUE);

		/* test samples */
		for(i=0;i<tabdates->n;i++) {
			printf("\nsample %d\n", i);
			print_sample(samplist[i], TRUE);
		}
		samp = merge_samples(samplist, tabdates->n, par) ;
		print_sample(samp, TRUE);

		/* test allele listing */
		struct snplist *snpbilan;
		snpbilan = list_snps(samp, par);
		print_snplist(snpbilan);

		/* test allele frequencies */
		struct allfreq *freq;
		freq = get_frequencies(samp, par);
		print_allfreq(freq);

		/* test Hs*/
		double Hs = hs(samp,par);
		printf("\nHs = %0.3f\n", Hs);

		/* test Hs full genome */
		Hs = hs_full_genome(samp,par);
		printf("\nHs (full genome) = %0.5f\n", Hs);

		/* test nb of snps */
		int nball = nb_snps(samp,par);
		printf("\nnumber of SNPs = %d\n", nball);

		/* test mean nb of snps */
		double temp = mean_nb_snps(samp);
		printf("\nmean number of SNPs = %.2f\n", temp);

		/* test var nb of snps */
		temp = var_nb_snps(samp);
		printf("\nvariance of number of alleles = %.2f\n", temp);

		/* test pairwise distances */
		struct distmat_int *mat = pairwise_dist(samp, par);
		print_distmat_int(mat);

		/* test mean pairwise distances */
		temp = mean_pairwise_dist(samp,par);
		printf("\nmean pairwise distance: %.2f", temp);

		/* test variance of pairwise distances */
		temp = var_pairwise_dist(samp,par);
		printf("\nvar pairwise distance: %.2f", temp);

		/* test Fst */
		temp = fst(samp,par);
		printf("\nfst: %.2f", temp);


		printf("\n\n");

		/* free memory */
		free_sample(samp);
		free_snplist(snpbilan);
		free_allfreq(freq);
		free_distmat_int(mat);

	}

	/* write group sizes to file */
	printf("\n\nPrinting group sizes to file 'out-popsize.txt'");
	write_ts_groupsizes(grpsizes);

	/* free memory */
	free_metapopulation(metapop);
	free_param(par);
	for(i=0;i<counter_sample;i++) free_sample(samplist[i]);
	free(samplist);
	free_table_int(tabdates);
	free_network(cn);
	free_ts_groupsizes(grpsizes);
}
Exemple #9
0
/* Function to be called from R */
void R_monitor_epidemics(int *seqLength, double *mutRate, int *npop, int *nHostPerPop, double *beta, int *nStart, int *t1, int *t2, int *Nsample, int *Tsample, int *duration, int *nbnb, int *listnb, double *pdisp, int *minSize){
		int nstep;

	/* Initialize random number generator */
	int j;
	time_t t;
	t = time(NULL); // time in seconds, used to change the seed of the random generator
	gsl_rng * rng;
	const gsl_rng_type *typ;
	gsl_rng_env_setup();
	typ=gsl_rng_default;
	rng=gsl_rng_alloc(typ);
	gsl_rng_set(rng,t); // changes the seed of the random generator


	/* transfer simulation parameters */
	struct param * par;
	par = (struct param *) malloc(sizeof(struct param));
	par->L = *seqLength;
	par->mu = *mutRate;
	par->muL = par->mu * par->L;
	par->rng = rng;
	par->npop = *npop;
	par->popsizes = nHostPerPop;
	par->beta = *beta;
	par->nstart = *nStart;
	par->t1 = *t1;
	par->t2 = *t2;
	par->t_sample = Tsample;
	par->n_sample = *Nsample;
	par->duration = *duration;
	par->cn_nb_nb = nbnb;
	par->cn_list_nb = listnb;
	par->cn_weights = pdisp;

	/* check/print parameters */
	check_param(par);
	print_param(par);

	/* dispersal matrix */
	struct network *cn = create_network(par);
	/* print_network(cn, TRUE); */

	/* group sizes */
	struct ts_groupsizes * grpsizes = create_ts_groupsizes(par);
	struct ts_sumstat * sumstats = create_ts_sumstat(par);

	/* initiate population */
	struct metapopulation * metapop;
	metapop = create_metapopulation(par);

	/* get sampling schemes (timestep+effectives) */
	translate_dates(par);
	struct table_int *tabdates = get_table_int(par->t_sample, par->n_sample);
	printf("\n\nsampling at timesteps:");
	print_table_int(tabdates);

	/* create sample */
	struct sample *samp;


	/* MAKE METAPOPULATION EVOLVE */
	nstep = 0;
	while(get_total_nsus(metapop)>0 && (get_total_ninf(metapop)+get_total_nexp(metapop))>0 && nstep<par->duration){
		nstep++;

		/* age metapopulation */
		age_metapopulation(metapop, par);

		/* process infections */
		for(j=0;j<get_npop(metapop);j++){
			process_infections(get_populations(metapop)[j], metapop, cn, par);
		}


		/* draw sample */
		samp = draw_sample(metapop, par->n_sample, par);

		/* compute statistics */
		if(get_total_ninf(metapop)> *minSize) fill_ts_sumstat(sumstats, samp, nstep, par);

		/* get group sizes */
		fill_ts_groupsizes(grpsizes, metapop, nstep);
	}

	/* write group sizes to file */
	printf("\n\nWriting results to file...");
	write_ts_groupsizes(grpsizes);
	write_ts_sumstat(sumstats);
	printf("done.\n\n");

	/* free memory */
	free_sample(samp);
	free_metapopulation(metapop);
	free_param(par);
	free_network(cn);
	free_ts_groupsizes(grpsizes);
	free_ts_sumstat(sumstats);
}
Exemple #10
0
NN::NN(vector<int> layers) 
{
  create_network(layers);
}
int main(int argc, char *argv[])
{
	unsigned int moment;
	unsigned int node_index;
	unsigned int moment_index;
	node_t *node;

	Display *display;
	GC gc;
	int screen_number;
	int window_x;
	int window_y;
	unsigned int each_x;
	unsigned int each_y;
	unsigned int window_border_width;
	unsigned int window_height;
	unsigned int window_width;
	unsigned long gc_value_mask;
	unsigned long window_background_color;
	unsigned long window_border_color;
	Window root_window;
	Window window;
	XGCValues gc_values;
	Visual* default_visual;
	Colormap colormap;
	XColor system_color;
	XColor exact_color;
	unsigned int window_display_x_modulus;
	unsigned int window_display_y_modulus;
	unsigned int window_x_pixel;
	unsigned int window_y_pixel;

	display = XOpenDisplay(NULL);
	screen_number = DefaultScreen(display);
	root_window = RootWindow(display, screen_number);
	window_x = 0;
	window_y = 0;
	window_width = XWINDOW_WIDTH;
	window_height = XWINDOW_HEIGHT;
	window_border_width = 0;
	window_border_color = BlackPixel(display, screen_number);
	window_background_color = WhitePixel(display, screen_number);
	window = XCreateSimpleWindow(display, root_window, window_x, window_y,
			window_width, window_height, window_border_width,
			window_border_color, window_background_color);
	XMapWindow(display, window);
	XFlush(display);
	gc_value_mask = 0;
	gc = XCreateGC(display, window, gc_value_mask, &gc_values);
	default_visual = DefaultVisual(display, DefaultScreen(display));
	colormap = XCreateColormap(display, window, default_visual, AllocNone);
	XSync(display, False);
	window_display_x_modulus = NODES / XWINDOW_WIDTH;
	window_display_y_modulus = TIME / XWINDOW_HEIGHT;

	srandom(SEED);
	/*  init_action_tables();  */
	network = create_network();

	window_y_pixel = 0;
	for (moment = 0; moment < TIME; moment++) {
		if (0 == (moment % window_display_y_modulus)) {
			window_x_pixel = 0;
			for (node_index = 0; node_index < NODES; node_index++) {
				if (0 != (node_index % window_display_x_modulus)) {
					continue;
				}

				node = network->nodes_display_order[node_index];

				system_color.red = 0;

				if (0 == node->value) {
					system_color.green = USHRT_MAX / 4;
					system_color.blue = USHRT_MAX;
				}
				else if (1 == node->value) {
					system_color.green = USHRT_MAX;
					system_color.blue = USHRT_MAX / 4;
				}
				else {
					exit(100);
				}
				/*
				  system_color.blue = 0;
				*/

				if (2 == node->link_count) {
					system_color.green /= 2;
					system_color.blue /= 2;
				}
				/*
				  system_color.green = 0;
				*/

				XAllocColor(display, colormap, &system_color);
				XSetForeground(display, gc, system_color.pixel);

				XDrawPoint(display, window, gc, window_x_pixel,
						window_y_pixel);
				window_x_pixel++;
			}
			XFlush(display);
			window_y_pixel++;
		}
		iterate_network(network);
	}

	while (1) {
		usleep(SLEEP);
	}

	destroy_network(network);

	XUnmapWindow(display, window);
	XDestroyWindow(display, window);
	XCloseDisplay(display);

	return 0;
}