Exemple #1
0
/* Subroutine */
int chbgvd_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, real *w, complex *z__, integer *ldz, complex *work, integer *lwork, real *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
    /* Local variables */
    integer inde;
    char vect[1];
    integer llwk2;
    extern /* Subroutine */
    int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *);
    extern logical lsame_(char *, char *);
    integer iinfo, lwmin;
    logical upper;
    integer llrwk;
    logical wantz;
    integer indwk2;
    extern /* Subroutine */
    int cstedc_(char *, integer *, real *, real *, complex *, integer *, complex *, integer *, real *, integer *, integer *, integer *, integer *), chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *), chbgst_(char *, char *, integer *, integer *, integer *, complex * , integer *, complex *, integer *, complex *, integer *, complex * , real *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *), cpbstf_(char *, integer *, integer *, complex *, integer *, integer *);
    integer indwrk, liwmin;
    extern /* Subroutine */
    int ssterf_(integer *, real *, real *, integer *);
    integer lrwmin;
    logical lquery;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
    *info = 0;
    if (*n <= 1)
    {
        lwmin = *n + 1;
        lrwmin = *n + 1;
        liwmin = 1;
    }
    else if (wantz)
    {
        /* Computing 2nd power */
        i__1 = *n;
        lwmin = i__1 * i__1 << 1;
        /* Computing 2nd power */
        i__1 = *n;
        lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
        liwmin = *n * 5 + 3;
    }
    else
    {
        lwmin = *n;
        lrwmin = *n;
        liwmin = 1;
    }
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (upper || lsame_(uplo, "L")))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    else if (*ka < 0)
    {
        *info = -4;
    }
    else if (*kb < 0 || *kb > *ka)
    {
        *info = -5;
    }
    else if (*ldab < *ka + 1)
    {
        *info = -7;
    }
    else if (*ldbb < *kb + 1)
    {
        *info = -9;
    }
    else if (*ldz < 1 || wantz && *ldz < *n)
    {
        *info = -12;
    }
    if (*info == 0)
    {
        work[1].r = (real) lwmin;
        work[1].i = 0.f; // , expr subst
        rwork[1] = (real) lrwmin;
        iwork[1] = liwmin;
        if (*lwork < lwmin && ! lquery)
        {
            *info = -14;
        }
        else if (*lrwork < lrwmin && ! lquery)
        {
            *info = -16;
        }
        else if (*liwork < liwmin && ! lquery)
        {
            *info = -18;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHBGVD", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Form a split Cholesky factorization of B. */
    cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0)
    {
        *info = *n + *info;
        return 0;
    }
    /* Transform problem to standard eigenvalue problem. */
    inde = 1;
    indwrk = inde + *n;
    indwk2 = *n * *n + 1;
    llwk2 = *lwork - indwk2 + 2;
    llrwk = *lrwork - indwrk + 2;
    chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo);
    /* Reduce Hermitian band matrix to tridiagonal form. */
    if (wantz)
    {
        *(unsigned char *)vect = 'U';
    }
    else
    {
        *(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo);
    /* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC. */
    if (! wantz)
    {
        ssterf_(n, &w[1], &rwork[inde], info);
    }
    else
    {
        cstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], & llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info);
        cgemm_("N", "N", n, n, n, &c_b1, &z__[z_offset], ldz, &work[1], n, & c_b2, &work[indwk2], n);
        clacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz);
    }
    work[1].r = (real) lwmin;
    work[1].i = 0.f; // , expr subst
    rwork[1] = (real) lrwmin;
    iwork[1] = liwmin;
    return 0;
    /* End of CHBGVD */
}
/* Subroutine */ int chbgvd_(char *jobz, char *uplo, integer *n, integer *ka, 
	integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, 
	real *w, complex *z__, integer *ldz, complex *work, integer *lwork, 
	real *rwork, integer *lrwork, integer *iwork, integer *liwork, 
	integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;

    /* Local variables */
    integer inde;
    char vect[1];
    integer llwk2;
    integer iinfo, lwmin;
    logical upper;
    integer llrwk;
    logical wantz;
    integer indwk2;
    integer indwrk, liwmin;
    integer lrwmin;
    logical lquery;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CHBGVD computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a complex generalized Hermitian-definite banded eigenproblem, of */
/*  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */
/*  and banded, and B is also positive definite.  If eigenvectors are */
/*  desired, it uses a divide and conquer algorithm. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  KA      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. */

/*  KB      (input) INTEGER */
/*          The number of superdiagonals of the matrix B if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. */

/*  AB      (input/output) COMPLEX array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first ka+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */

/*          On exit, the contents of AB are destroyed. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KA+1. */

/*  BB      (input/output) COMPLEX array, dimension (LDBB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix B, stored in the first kb+1 rows of the array.  The */
/*          j-th column of B is stored in the j-th column of the array BB */
/*          as follows: */
/*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */

/*          On exit, the factor S from the split Cholesky factorization */
/*          B = S**H*S, as returned by CPBSTF. */

/*  LDBB    (input) INTEGER */
/*          The leading dimension of the array BB.  LDBB >= KB+1. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors, with the i-th column of Z holding the */
/*          eigenvector associated with W(i). The eigenvectors are */
/*          normalized so that Z**H*B*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= N. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO=0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If N <= 1,               LWORK >= 1. */
/*          If JOBZ = 'N' and N > 1, LWORK >= N. */
/*          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
/*          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. */

/*  LRWORK  (input) INTEGER */
/*          The dimension of array RWORK. */
/*          If N <= 1,               LRWORK >= 1. */
/*          If JOBZ = 'N' and N > 1, LRWORK >= N. */
/*          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of array IWORK. */
/*          If JOBZ = 'N' or N <= 1, LIWORK >= 1. */
/*          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is: */
/*             <= N:  the algorithm failed to converge: */
/*                    i off-diagonal elements of an intermediate */
/*                    tridiagonal form did not converge to zero; */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF */
/*                    returned INFO = i: B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

    *info = 0;
    if (*n <= 1) {
	lwmin = 1;
	lrwmin = 1;
	liwmin = 1;
    } else if (wantz) {
/* Computing 2nd power */
	i__1 = *n;
	lwmin = i__1 * i__1 << 1;
/* Computing 2nd power */
	i__1 = *n;
	lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
	liwmin = *n * 5 + 3;
    } else {
	lwmin = *n;
	lrwmin = *n;
	liwmin = 1;
    }
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ka < 0) {
	*info = -4;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -5;
    } else if (*ldab < *ka + 1) {
	*info = -7;
    } else if (*ldbb < *kb + 1) {
	*info = -9;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -12;
    }

    if (*info == 0) {
	work[1].r = (real) lwmin, work[1].i = 0.f;
	rwork[1] = (real) lrwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -14;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -16;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -18;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBGVD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    inde = 1;
    indwrk = inde + *n;
    indwk2 = *n * *n + 1;
    llwk2 = *lwork - indwk2 + 2;
    llrwk = *lrwork - indwrk + 2;
    chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
	     &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo);

/*     Reduce Hermitian band matrix to tridiagonal form. */

    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
	    z__[z_offset], ldz, &work[1], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call CSTEDC. */

    if (! wantz) {
	ssterf_(n, &w[1], &rwork[inde], info);
    } else {
	cstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], &
		llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info);
	cgemm_("N", "N", n, n, n, &c_b1, &z__[z_offset], ldz, &work[1], n, &
		c_b2, &work[indwk2], n);
	clacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz);
    }

    work[1].r = (real) lwmin, work[1].i = 0.f;
    rwork[1] = (real) lrwmin;
    iwork[1] = liwmin;
    return 0;

/*     End of CHBGVD */

} /* chbgvd_ */
Exemple #3
0
/* Subroutine */
int chpevd_(char *jobz, char *uplo, integer *n, complex *ap, real *w, complex *z__, integer *ldz, complex *work, integer *lwork, real *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    real r__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */
    int sscal_(integer *, real *, real *, integer *);
    integer lwmin, llrwk, llwrk;
    logical wantz;
    integer iscale;
    extern real clanhp_(char *, char *, integer *, complex *, real *);
    extern /* Subroutine */
    int cstedc_(char *, integer *, real *, real *, complex *, integer *, complex *, integer *, real *, integer *, integer *, integer *, integer *);
    extern real slamch_(char *);
    extern /* Subroutine */
    int csscal_(integer *, real *, complex *, integer *);
    real safmin;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    real bignum;
    integer indtau;
    extern /* Subroutine */
    int chptrd_(char *, integer *, complex *, real *, real *, complex *, integer *);
    integer indrwk, indwrk, liwmin;
    extern /* Subroutine */
    int ssterf_(integer *, real *, real *, integer *);
    integer lrwmin;
    extern /* Subroutine */
    int cupmtr_(char *, char *, char *, integer *, integer *, complex *, complex *, complex *, integer *, complex *, integer *);
    real smlnum;
    logical lquery;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (lsame_(uplo, "L") || lsame_(uplo, "U")))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    else if (*ldz < 1 || wantz && *ldz < *n)
    {
        *info = -7;
    }
    if (*info == 0)
    {
        if (*n <= 1)
        {
            lwmin = 1;
            liwmin = 1;
            lrwmin = 1;
        }
        else
        {
            if (wantz)
            {
                lwmin = *n << 1;
                /* Computing 2nd power */
                i__1 = *n;
                lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
                liwmin = *n * 5 + 3;
            }
            else
            {
                lwmin = *n;
                lrwmin = *n;
                liwmin = 1;
            }
        }
        work[1].r = (real) lwmin;
        work[1].i = 0.f; // , expr subst
        rwork[1] = (real) lrwmin;
        iwork[1] = liwmin;
        if (*lwork < lwmin && ! lquery)
        {
            *info = -9;
        }
        else if (*lrwork < lrwmin && ! lquery)
        {
            *info = -11;
        }
        else if (*liwork < liwmin && ! lquery)
        {
            *info = -13;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHPEVD", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        w[1] = ap[1].r;
        if (wantz)
        {
            i__1 = z_dim1 + 1;
            z__[i__1].r = 1.f;
            z__[i__1].i = 0.f; // , expr subst
        }
        return 0;
    }
    /* Get machine constants. */
    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);
    /* Scale matrix to allowable range, if necessary. */
    anrm = clanhp_("M", uplo, n, &ap[1], &rwork[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin)
    {
        iscale = 1;
        sigma = rmin / anrm;
    }
    else if (anrm > rmax)
    {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1)
    {
        i__1 = *n * (*n + 1) / 2;
        csscal_(&i__1, &sigma, &ap[1], &c__1);
    }
    /* Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. */
    inde = 1;
    indtau = 1;
    indrwk = inde + *n;
    indwrk = indtau + *n;
    llwrk = *lwork - indwrk + 1;
    llrwk = *lrwork - indrwk + 1;
    chptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);
    /* For eigenvalues only, call SSTERF. For eigenvectors, first call */
    /* CUPGTR to generate the orthogonal matrix, then call CSTEDC. */
    if (! wantz)
    {
        ssterf_(n, &w[1], &rwork[inde], info);
    }
    else
    {
        cstedc_("I", n, &w[1], &rwork[inde], &z__[z_offset], ldz, &work[ indwrk], &llwrk, &rwork[indrwk], &llrwk, &iwork[1], liwork, info);
        cupmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[indwrk], &iinfo);
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1)
    {
        if (*info == 0)
        {
            imax = *n;
        }
        else
        {
            imax = *info - 1;
        }
        r__1 = 1.f / sigma;
        sscal_(&imax, &r__1, &w[1], &c__1);
    }
    work[1].r = (real) lwmin;
    work[1].i = 0.f; // , expr subst
    rwork[1] = (real) lrwmin;
    iwork[1] = liwmin;
    return 0;
    /* End of CHPEVD */
}
Exemple #4
0
/* Subroutine */ int chpevd_(char *jobz, char *uplo, integer *n, complex *ap, 
	real *w, complex *z__, integer *ldz, complex *work, integer *lwork, 
	real *rwork, integer *lrwork, integer *iwork, integer *liwork, 
	integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    integer lwmin, llrwk, llwrk;
    logical wantz;
    integer iscale;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *);
    extern /* Subroutine */ int cstedc_(char *, integer *, real *, real *, 
	    complex *, integer *, complex *, integer *, real *, integer *, 
	    integer *, integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *);
    real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real bignum;
    integer indtau;
    extern /* Subroutine */ int chptrd_(char *, integer *, complex *, real *, 
	    real *, complex *, integer *);
    integer indrwk, indwrk, liwmin;
    extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
    integer lrwmin;
    extern /* Subroutine */ int cupmtr_(char *, char *, char *, integer *, 
	    integer *, complex *, complex *, complex *, integer *, complex *, 
	    integer *);
    real smlnum;
    logical lquery;


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHPEVD computes all the eigenvalues and, optionally, eigenvectors of */
/*  a complex Hermitian matrix A in packed storage.  If eigenvectors are */
/*  desired, it uses a divide and conquer algorithm. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, AP is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
/*          and first superdiagonal of the tridiagonal matrix T overwrite */
/*          the corresponding elements of A, and if UPLO = 'L', the */
/*          diagonal and first subdiagonal of T overwrite the */
/*          corresponding elements of A. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the required LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of array WORK. */
/*          If N <= 1,               LWORK must be at least 1. */
/*          If JOBZ = 'N' and N > 1, LWORK must be at least N. */
/*          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the required sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
/*          On exit, if INFO = 0, RWORK(1) returns the required LRWORK. */

/*  LRWORK  (input) INTEGER */
/*          The dimension of array RWORK. */
/*          If N <= 1,               LRWORK must be at least 1. */
/*          If JOBZ = 'N' and N > 1, LRWORK must be at least N. */
/*          If JOBZ = 'V' and N > 1, LRWORK must be at least */
/*                    1 + 5*N + 2*N**2. */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the required sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of array IWORK. */
/*          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1. */
/*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the required sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -7;
    }

    if (*info == 0) {
	if (*n <= 1) {
	    lwmin = 1;
	    liwmin = 1;
	    lrwmin = 1;
	} else {
	    if (wantz) {
		lwmin = *n << 1;
/* Computing 2nd power */
		i__1 = *n;
		lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
		liwmin = *n * 5 + 3;
	    } else {
		lwmin = *n;
		lrwmin = *n;
		liwmin = 1;
	    }
	}
	work[1].r = (real) lwmin, work[1].i = 0.f;
	rwork[1] = (real) lrwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -9;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -11;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -13;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHPEVD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = ap[1].r;
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = clanhp_("M", uplo, n, &ap[1], &rwork[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	csscal_(&i__1, &sigma, &ap[1], &c__1);
    }

/*     Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    inde = 1;
    indtau = 1;
    indrwk = inde + *n;
    indwrk = indtau + *n;
    llwrk = *lwork - indwrk + 1;
    llrwk = *lrwork - indrwk + 1;
    chptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, first call */
/*     CUPGTR to generate the orthogonal matrix, then call CSTEDC. */

    if (! wantz) {
	ssterf_(n, &w[1], &rwork[inde], info);
    } else {
	cstedc_("I", n, &w[1], &rwork[inde], &z__[z_offset], ldz, &work[
		indwrk], &llwrk, &rwork[indrwk], &llrwk, &iwork[1], liwork, 
		info);
	cupmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], 
		ldz, &work[indwrk], &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    work[1].r = (real) lwmin, work[1].i = 0.f;
    rwork[1] = (real) lrwmin;
    iwork[1] = liwmin;
    return 0;

/*     End of CHPEVD */

} /* chpevd_ */
Exemple #5
0
/* Subroutine */ int cheevd_(char *jobz, char *uplo, integer *n, complex *a, 
	integer *lda, real *w, complex *work, integer *lwork, real *rwork, 
	integer *lrwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    integer lopt;
    real sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    integer lwmin, liopt;
    logical lower;
    integer llrwk, lropt;
    logical wantz;
    integer indwk2, llwrk2;
    extern doublereal clanhe_(char *, char *, integer *, complex *, integer *, 
	     real *);
    integer iscale;
    extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, complex *, integer *, integer *), cstedc_(char *, integer *, real *, real *, complex *, 
	    integer *, complex *, integer *, real *, integer *, integer *, 
	    integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer 
	    *, real *, real *, complex *, complex *, integer *, integer *), clacpy_(char *, integer *, integer *, complex *, integer 
	    *, complex *, integer *);
    real safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real bignum;
    integer indtau, indrwk, indwrk, liwmin;
    extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
    integer lrwmin;
    extern /* Subroutine */ int cunmtr_(char *, char *, char *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    integer llwork;
    real smlnum;
    logical lquery;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHEEVD computes all eigenvalues and, optionally, eigenvectors of a */
/*  complex Hermitian matrix A.  If eigenvectors are desired, it uses a */
/*  divide and conquer algorithm. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA, N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/*          orthonormal eigenvectors of the matrix A. */
/*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
/*          or the upper triangle (if UPLO='U') of A, including the */
/*          diagonal, is destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK. */
/*          If N <= 1,                LWORK must be at least 1. */
/*          If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1. */
/*          If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) REAL array, */
/*                                         dimension (LRWORK) */
/*          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */

/*  LRWORK  (input) INTEGER */
/*          The dimension of the array RWORK. */
/*          If N <= 1,                LRWORK must be at least 1. */
/*          If JOBZ  = 'N' and N > 1, LRWORK must be at least N. */
/*          If JOBZ  = 'V' and N > 1, LRWORK must be at least */
/*                         1 + 5*N + 2*N**2. */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If N <= 1,                LIWORK must be at least 1. */
/*          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1. */
/*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed */
/*                to converge; i off-diagonal elements of an intermediate */
/*                tridiagonal form did not converge to zero; */
/*                if INFO = i and JOBZ = 'V', then the algorithm failed */
/*                to compute an eigenvalue while working on the submatrix */
/*                lying in rows and columns INFO/(N+1) through */
/*                mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  Modified description of INFO. Sven, 16 Feb 05. */
/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }

    if (*info == 0) {
	if (*n <= 1) {
	    lwmin = 1;
	    lrwmin = 1;
	    liwmin = 1;
	    lopt = lwmin;
	    lropt = lrwmin;
	    liopt = liwmin;
	} else {
	    if (wantz) {
		lwmin = (*n << 1) + *n * *n;
/* Computing 2nd power */
		i__1 = *n;
		lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
		liwmin = *n * 5 + 3;
	    } else {
		lwmin = *n + 1;
		lrwmin = *n;
		liwmin = 1;
	    }
/* Computing MAX */
	    i__1 = lwmin, i__2 = *n + ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, 
		     &c_n1, &c_n1);
	    lopt = max(i__1,i__2);
	    lropt = lrwmin;
	    liopt = liwmin;
	}
	work[1].r = (real) lopt, work[1].i = 0.f;
	rwork[1] = (real) lropt;
	iwork[1] = liopt;

	if (*lwork < lwmin && ! lquery) {
	    *info = -8;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -10;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHEEVD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	i__1 = a_dim1 + 1;
	w[1] = a[i__1].r;
	if (wantz) {
	    i__1 = a_dim1 + 1;
	    a[i__1].r = 1.f, a[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	clascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, 
		info);
    }

/*     Call CHETRD to reduce Hermitian matrix to tridiagonal form. */

    inde = 1;
    indtau = 1;
    indwrk = indtau + *n;
    indrwk = inde + *n;
    indwk2 = indwrk + *n * *n;
    llwork = *lwork - indwrk + 1;
    llwrk2 = *lwork - indwk2 + 1;
    llrwk = *lrwork - indrwk + 1;
    chetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], &
	    work[indwrk], &llwork, &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, first call */
/*     CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
/*     tridiagonal matrix, then call CUNMTR to multiply it to the */
/*     Householder transformations represented as Householder vectors in */
/*     A. */

    if (! wantz) {
	ssterf_(n, &w[1], &rwork[inde], info);
    } else {
	cstedc_("I", n, &w[1], &rwork[inde], &work[indwrk], n, &work[indwk2], 
		&llwrk2, &rwork[indrwk], &llrwk, &iwork[1], liwork, info);
	cunmtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[
		indwrk], n, &work[indwk2], &llwrk2, &iinfo);
	clacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    work[1].r = (real) lopt, work[1].i = 0.f;
    rwork[1] = (real) lropt;
    iwork[1] = liopt;

    return 0;

/*     End of CHEEVD */

} /* cheevd_ */
Exemple #6
0
 int chbevd_(char *jobz, char *uplo, int *n, int *kd, 
	complex *ab, int *ldab, float *w, complex *z__, int *ldz, 
	complex *work, int *lwork, float *rwork, int *lrwork, int *
	iwork, int *liwork, int *info)
{
    /* System generated locals */
    int ab_dim1, ab_offset, z_dim1, z_offset, i__1;
    float r__1;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    float eps;
    int inde;
    float anrm;
    int imax;
    float rmin, rmax;
    int llwk2;
    extern  int cgemm_(char *, char *, int *, int *, 
	    int *, complex *, complex *, int *, complex *, int *, 
	    complex *, complex *, int *);
    float sigma;
    extern int lsame_(char *, char *);
    int iinfo;
    extern  int sscal_(int *, float *, float *, int *);
    int lwmin;
    int lower;
    int llrwk;
    int wantz;
    int indwk2;
    extern double clanhb_(char *, char *, int *, int *, complex *, 
	     int *, float *);
    int iscale;
    extern  int clascl_(char *, int *, int *, float *, 
	    float *, int *, int *, complex *, int *, int *), cstedc_(char *, int *, float *, float *, complex *, 
	    int *, complex *, int *, float *, int *, int *, 
	    int *, int *), chbtrd_(char *, char *, int *, 
	    int *, complex *, int *, float *, float *, complex *, 
	    int *, complex *, int *);
    extern double slamch_(char *);
    extern  int clacpy_(char *, int *, int *, complex 
	    *, int *, complex *, int *);
    float safmin;
    extern  int xerbla_(char *, int *);
    float bignum;
    int indwrk, liwmin;
    extern  int ssterf_(int *, float *, float *, int *);
    int lrwmin;
    float smlnum;
    int lquery;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHBEVD computes all the eigenvalues and, optionally, eigenvectors of */
/*  a complex Hermitian band matrix A.  If eigenvectors are desired, it */
/*  uses a divide and conquer algorithm. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) COMPLEX array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for MAX(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=MIN(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the first */
/*          superdiagonal and the diagonal of the tridiagonal matrix T */
/*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/*          the diagonal and first subdiagonal of T are returned in the */
/*          first two rows of AB. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= MAX(1,N). */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If N <= 1,               LWORK must be at least 1. */
/*          If JOBZ = 'N' and N > 1, LWORK must be at least N. */
/*          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) REAL array, */
/*                                         dimension (LRWORK) */
/*          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */

/*  LRWORK  (input) INTEGER */
/*          The dimension of array RWORK. */
/*          If N <= 1,               LRWORK must be at least 1. */
/*          If JOBZ = 'N' and N > 1, LRWORK must be at least N. */
/*          If JOBZ = 'V' and N > 1, LRWORK must be at least */
/*                        1 + 5*N + 2*N**2. */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of array IWORK. */
/*          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */
/*          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N . */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");
    lquery = *lwork == -1 || *liwork == -1 || *lrwork == -1;

    *info = 0;
    if (*n <= 1) {
	lwmin = 1;
	lrwmin = 1;
	liwmin = 1;
    } else {
	if (wantz) {
/* Computing 2nd power */
	    i__1 = *n;
	    lwmin = i__1 * i__1 << 1;
/* Computing 2nd power */
	    i__1 = *n;
	    lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
	    liwmin = *n * 5 + 3;
	} else {
	    lwmin = *n;
	    lrwmin = *n;
	    liwmin = 1;
	}
    }
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*ldab < *kd + 1) {
	*info = -6;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }

    if (*info == 0) {
	work[1].r = (float) lwmin, work[1].i = 0.f;
	rwork[1] = (float) lrwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -11;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -13;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -15;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHBEVD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	i__1 = ab_dim1 + 1;
	w[1] = ab[i__1].r;
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1.f, z__[i__1].i = 0.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = clanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    clascl_("B", kd, kd, &c_b13, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    clascl_("Q", kd, kd, &c_b13, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
    }

/*     Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. */

    inde = 1;
    indwrk = inde + *n;
    indwk2 = *n * *n + 1;
    llwk2 = *lwork - indwk2 + 1;
    llrwk = *lrwork - indwrk + 1;
    chbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
	    z__[z_offset], ldz, &work[1], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call CSTEDC. */

    if (! wantz) {
	ssterf_(n, &w[1], &rwork[inde], info);
    } else {
	cstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], &
		llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info);
	cgemm_("N", "N", n, n, n, &c_b2, &z__[z_offset], ldz, &work[1], n, &
		c_b1, &work[indwk2], n);
	clacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    work[1].r = (float) lwmin, work[1].i = 0.f;
    rwork[1] = (float) lrwmin;
    iwork[1] = liwmin;
    return 0;

/*     End of CHBEVD */

} /* chbevd_ */