Exemple #1
0
Caffe::Caffe()
    : cublas_handle_(NULL),cusparse_handle_(NULL),cusparse_descr_(NULL),curand_generator_(NULL),random_generator_(),mode_(Caffe::CPU), solver_count_(1), root_solver_(true){
  // Try to create a cublas handler, and report an error if failed (but we will
  // keep the program running as one might just want to run CPU code).
    LOG(INFO)<<"caffe init.";
    if (cublasCreate(&cublas_handle_) != CUBLAS_STATUS_SUCCESS) {
    LOG(ERROR) << "Cannot create Cublas handle. Cublas won't be available.";
  }
//add cusparse handler
  if (cusparseCreate(&cusparse_handle_)!=CUSPARSE_STATUS_SUCCESS){
    LOG(ERROR) << "cannot create Cusparse handle,Cusparse won't be available.";
  }
 if(cusparseCreateMatDescr(&cusparse_descr_)!=CUSPARSE_STATUS_SUCCESS){
   LOG(ERROR) << "cannot create Cusparse descr,descr won't be available.";
 }else{
  cusparseSetMatType(cusparse_descr_,CUSPARSE_MATRIX_TYPE_GENERAL);
  cusparseSetMatIndexBase(cusparse_descr_,CUSPARSE_INDEX_BASE_ZERO);
  LOG(INFO)<<"init descr";
 }
  // Try to create a curand handler.
  if (curandCreateGenerator(&curand_generator_, CURAND_RNG_PSEUDO_DEFAULT)
      != CURAND_STATUS_SUCCESS ||
      curandSetPseudoRandomGeneratorSeed(curand_generator_, cluster_seedgen())
      != CURAND_STATUS_SUCCESS) {
    LOG(ERROR) << "Cannot create Curand generator. Curand won't be available.";
  }
  LOG(INFO)<<"caffe finish";
}
 CudaSparseSingleton()
 {
   cusparseCreate( & handle );
   cusparseCreateMatDescr( & descra );
   cusparseSetMatType(       descra , CUSPARSE_MATRIX_TYPE_GENERAL );
   cusparseSetMatIndexBase(  descra , CUSPARSE_INDEX_BASE_ZERO );
 }
Exemple #3
0
// initialize CUDA
ssp_cuda *ssp_init_cuda() {
    ssp_cuda *cudaHandle = (ssp_cuda*)malloc(sizeof(ssp_cuda));
    if (!cudaHandle) {
        fprintf(stderr,"ssp_init_cuda: cudaHandle memory allocation failed.\n");
        return NULL;
    }
    cudaHandle->cusparse_handle = 0;
    cudaHandle->cusparse_matDescr = 0;

    cusparseStatus_t status = cusparseCreate(&cudaHandle->cusparse_handle);

    if (status != CUSPARSE_STATUS_SUCCESS) {
        ssp_finalize_cuda(cudaHandle);

        fprintf(stderr,"ssp_init_cuda: cusparse initialization failed.\n");
        return NULL;
    }

    status = cusparseCreateMatDescr(&cudaHandle->cusparse_matDescr); 
    if (status != CUSPARSE_STATUS_SUCCESS) {
        ssp_finalize_cuda(cudaHandle);

        fprintf(stderr,"ssp_init_cuda: cusparse matrix setup failed.\n");
        return NULL;
    }       
    cusparseSetMatType(cudaHandle->cusparse_matDescr,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(cudaHandle->cusparse_matDescr,CUSPARSE_INDEX_BASE_ZERO);


    return cudaHandle;
}
    xDense2Csr(StatisticalTimer& timer) : cusparseFunc(timer)
    {
        cusparseStatus_t err = cusparseCreateMatDescr(&descrA);
        CUDA_V_THROW(err, "cusparseCreateMatDescr failed");

        err = cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
        CUDA_V_THROW(err, "cusparseSetMatType failed");

        err = cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO);
        CUDA_V_THROW(err, "cusparseSetMatIndexBase failed");

        n_rows = 0;
        n_cols = 0;
        n_vals = 0;

        device_col_indices = nullptr;
        device_row_offsets = nullptr;

        device_values = nullptr;
        device_A      = nullptr;
        nnzPerRow     = nullptr;

        devRowOffsets = nullptr;
        devColIndices = nullptr;
        devValues     = nullptr;
    }// end
Exemple #5
0
void Caffe::SetDevice(const int device_id) {
  int current_device;
  CUDA_CHECK(cudaGetDevice(&current_device));
  if (current_device == device_id) {
    return;
  }
  // The call to cudaSetDevice must come before any calls to Get, which
  // may perform initialization using the GPU.
  CUDA_CHECK(cudaSetDevice(device_id));
  if (Get().cublas_handle_) CUBLAS_CHECK(cublasDestroy(Get().cublas_handle_));
  if (Get().cusparse_descr_)CUSPARSE_CHECK(cusparseDestroyMatDescr(Get().cusparse_descr_));
  if (Get().cusparse_handle_)CUSPARSE_CHECK(cusparseDestroy(Get().cusparse_handle_));
  if (Get().curand_generator_) {
    CURAND_CHECK(curandDestroyGenerator(Get().curand_generator_));
  }
  CUSPARSE_CHECK(cusparseCreate(&Get().cusparse_handle_));
  CUSPARSE_CHECK(cusparseCreateMatDescr(&Get().cusparse_descr_));
//  cusparseSetMatType(cusparse_descr_,CUSPARSE_MATRIX_TYPE_GENERAL);
//  cusparseSetMatIndexBase(cusparse_descr_,CUSPARSE_INDEX_BASE_ZERO);
  LOG(INFO)<<"set descr";
  CUBLAS_CHECK(cublasCreate(&Get().cublas_handle_));
  CURAND_CHECK(curandCreateGenerator(&Get().curand_generator_,
      CURAND_RNG_PSEUDO_DEFAULT));
  CURAND_CHECK(curandSetPseudoRandomGeneratorSeed(Get().curand_generator_,
      cluster_seedgen()));
}
    cuSparseHandleType(bool transposeA, bool transposeB){
      cusparseStatus_t status;
      status= cusparseCreate(&handle);
      if (status != CUSPARSE_STATUS_SUCCESS) {
        std::cerr << ("cusparseCreate ERROR") << std::endl;
        return;
      }
      cusparseSetPointerMode(handle, CUSPARSE_POINTER_MODE_HOST);

      if (transposeA){
        transA = CUSPARSE_OPERATION_TRANSPOSE;
      }
      else {
        transA  = CUSPARSE_OPERATION_NON_TRANSPOSE;
      }
      if (transposeB){
        transB = CUSPARSE_OPERATION_TRANSPOSE;
      }
      else {
        transB  = CUSPARSE_OPERATION_NON_TRANSPOSE;
      }


      status = cusparseCreateMatDescr(&a_descr);
      if (status != CUSPARSE_STATUS_SUCCESS) {
        std::cerr << "cusparseCreateMatDescr a_descr ERROR" << std::endl;
        return;
      }
      cusparseSetMatType(a_descr,CUSPARSE_MATRIX_TYPE_GENERAL);
      cusparseSetMatIndexBase(a_descr,CUSPARSE_INDEX_BASE_ZERO);

      status = cusparseCreateMatDescr(&b_descr);
      if (status != CUSPARSE_STATUS_SUCCESS) {
        std::cerr << ("cusparseCreateMatDescr b_descr ERROR") << std::endl;
        return;
      }
      cusparseSetMatType(b_descr,CUSPARSE_MATRIX_TYPE_GENERAL);
      cusparseSetMatIndexBase(b_descr,CUSPARSE_INDEX_BASE_ZERO);

      status = cusparseCreateMatDescr(&c_descr);
      if (status != CUSPARSE_STATUS_SUCCESS) {
        std::cerr << ("cusparseCreateMatDescr  c_descr ERROR") << std::endl;
        return;
      }
      cusparseSetMatType(c_descr,CUSPARSE_MATRIX_TYPE_GENERAL);
      cusparseSetMatIndexBase(c_descr,CUSPARSE_INDEX_BASE_ZERO);
    }
Exemple #7
0
magma_int_t
magma_dapplycuicc_l( magma_d_vector b, magma_d_vector *x, 
                    magma_d_preconditioner *precond ){

            double one = MAGMA_D_MAKE( 1.0, 0.0);

            // CUSPARSE context //
            cusparseHandle_t cusparseHandle;
            cusparseStatus_t cusparseStatus;
            cusparseStatus = cusparseCreate(&cusparseHandle);
             if(cusparseStatus != 0)    printf("error in Handle.\n");


            cusparseMatDescr_t descrL;
            cusparseStatus = cusparseCreateMatDescr(&descrL);
             if(cusparseStatus != 0)    printf("error in MatrDescr.\n");

            cusparseStatus =
            cusparseSetMatType(descrL,CUSPARSE_MATRIX_TYPE_TRIANGULAR);
             if(cusparseStatus != 0)    printf("error in MatrType.\n");

            cusparseStatus =
            cusparseSetMatDiagType (descrL, CUSPARSE_DIAG_TYPE_NON_UNIT);
             if(cusparseStatus != 0)    printf("error in DiagType.\n");


            cusparseStatus =
            cusparseSetMatFillMode(descrL,CUSPARSE_FILL_MODE_LOWER);
             if(cusparseStatus != 0)    printf("error in fillmode.\n");

            cusparseStatus =
            cusparseSetMatIndexBase(descrL,CUSPARSE_INDEX_BASE_ZERO);
             if(cusparseStatus != 0)    printf("error in IndexBase.\n");


            // end CUSPARSE context //

            cusparseStatus =
            cusparseDcsrsv_solve(   cusparseHandle, 
                                    CUSPARSE_OPERATION_NON_TRANSPOSE, 
                                    precond->M.num_rows, &one, 
                                    descrL,
                                    precond->M.val,
                                    precond->M.row,
                                    precond->M.col,
                                    precond->cuinfoL,
                                    b.val,
                                    x->val );
             if(cusparseStatus != 0)   printf("error in L triangular solve:%p.\n", precond->cuinfoL );

    cusparseDestroyMatDescr( descrL );
    cusparseDestroy( cusparseHandle );
    magma_device_sync();
    return MAGMA_SUCCESS;



}
		void sparse_fully_connected_1x1_layer_tester_cuda::enqueue_forward_propagation(
			cudaStream_t stream_id,
			cuda_linear_buffer_device::ptr output_buffer,
			const std::vector<cuda_linear_buffer_device::const_ptr>& schema_data,
			const std::vector<cuda_linear_buffer_device::const_ptr>& data,
			const std::vector<cuda_linear_buffer_device::const_ptr>& data_custom,
			const std::vector<cuda_linear_buffer_device::const_ptr>& input_buffers,
			const std::vector<cuda_linear_buffer_device::const_ptr>& persistent_working_data,
			cuda_linear_buffer_device::ptr temporary_working_fixed_buffer,
			cuda_linear_buffer_device::ptr temporary_working_per_entry_buffer,
			unsigned int entry_count)
		{
			{
				cusparse_safe_call(cusparseSetStream(cuda_config->get_cusparse_handle(), stream_id));
				float alpha = 1.0F;
				float beta = 0.0F;
				cusparseMatDescr_t mat_descr;
				cusparse_safe_call(cusparseCreateMatDescr(&mat_descr));
				cusparse_safe_call(cusparseScsrmm(
					cuda_config->get_cusparse_handle(),
					CUSPARSE_OPERATION_NON_TRANSPOSE,
					output_elem_count_per_entry,
					entry_count,
					input_elem_count_per_entry_list[0],
					feature_map_connection_count,
					&alpha,
					mat_descr,
					*data[0],
					*data_custom[1],
					*data_custom[0],
					*input_buffers[0],
					input_elem_count_per_entry_list[0],
					&beta,
					*output_buffer,
					output_elem_count_per_entry));
			}

			// Add bias
			{
				cudnn_safe_call(cudnnSetStream(cuda_config->get_cudnn_handle(), stream_id));
				cudnn_util::set_tensor_descriptor(
					output_data_desc,
					output_configuration_specific,
					entry_count);
				float alpha = 1.0F;
				float beta = 1.0F;
				cudnn_safe_call(cudnnAddTensor(
					cuda_config->get_cudnn_handle(),
					&alpha,
					bias_desc,
					*data[1],
					&beta,
					output_data_desc,
					*output_buffer));
			}
		}
Exemple #9
0
Teuchos::RCP<cusparseMatDescr_t> Kokkos::CUSPARSEdetails::createMatDescr() 
{
  cusparseMatDescr_t *desc = new cusparseMatDescr_t;
  cusparseStatus_t status = cusparseCreateMatDescr(desc);
  TEUCHOS_TEST_FOR_EXCEPTION(status == CUSPARSE_STATUS_ALLOC_FAILED, std::runtime_error, 
      "Kokkos::CUSPARSEdetails::createMatDescr(): the resources could not be allocated.")
  TEUCHOS_TEST_FOR_EXCEPTION(status != CUSPARSE_STATUS_SUCCESS, std::runtime_error, 
      "Kokkos::CUSPARSEdetails::createMatDescr(): unspecified error.")
  return Teuchos::rcpWithDealloc(desc,CUSPARSEMatDescDestroyer(),true);
}
    xCsr2Dense( StatisticalTimer& timer, bool read_explicit_zeroes = true ): cusparseFunc( timer )
    {
        cusparseStatus_t err = cusparseCreateMatDescr( &descrA );
        CUDA_V_THROW( err, "cusparseCreateMatDescr failed" );

        err = cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_GENERAL );
        CUDA_V_THROW( err, "cusparseSetMatType failed" );

        err = cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO );
        CUDA_V_THROW( err, "cusparseSetMatIndexBase failed" );

        n_rows = 0;
        n_cols = 0;
        n_vals = 0;
        explicit_zeroes = read_explicit_zeroes;
    }
  CudaSparseSingleton()
  {
    status = cusparseCreate(&handle);
    if(status != CUSPARSE_STATUS_SUCCESS)
    {
      throw std::runtime_error( std::string("ERROR - CUSPARSE Library Initialization failed" ) );
    }

    status = cusparseCreateMatDescr(&descra);
    if(status != CUSPARSE_STATUS_SUCCESS)
    {
      throw std::runtime_error( std::string("ERROR - CUSPARSE Library Matrix descriptor failed" ) );
    }

    cusparseSetMatType(descra , CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descra , CUSPARSE_INDEX_BASE_ZERO);
  }
Exemple #12
0
extern "C" magma_int_t
magma_dapplycumilu_r_transpose(
    magma_d_matrix b,
    magma_d_matrix *x,
    magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrU=NULL;
    
    double one = MAGMA_D_MAKE( 1.0, 0.0);

    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseDcsrsm_solve( cusparseHandle,
                            CUSPARSE_OPERATION_NON_TRANSPOSE,
                            precond->UT.num_rows,
                            b.num_rows*b.num_cols/precond->UT.num_rows,
                            &one,
                            descrU,
                            precond->UT.dval,
                            precond->UT.drow,
                            precond->UT.dcol,
                            precond->cuinfoUT,
                            b.dval,
                            precond->UT.num_rows,
                            x->dval,
                            precond->UT.num_rows ));
    
    

cleanup:
    cusparseDestroyMatDescr( descrU );
    cusparseDestroy( cusparseHandle );
    return info; 
}
Exemple #13
0
extern "C" magma_int_t
magma_capplycumicc_l(
    magma_c_matrix b,
    magma_c_matrix *x,
    magma_c_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrL=NULL;
    
    magmaFloatComplex one = MAGMA_C_MAKE( 1.0, 0.0);

    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseCcsrsm_solve( cusparseHandle,
                            CUSPARSE_OPERATION_NON_TRANSPOSE,
                            precond->M.num_rows,
                            b.num_rows*b.num_cols/precond->M.num_rows,
                            &one,
                            descrL,
                            precond->M.dval,
                            precond->M.drow,
                            precond->M.dcol,
                            precond->cuinfoL,
                            b.dval,
                            precond->M.num_rows,
                            x->dval,
                            precond->M.num_rows ));
    
    magma_device_sync();

cleanup:
    cusparseDestroyMatDescr( descrL );
    cusparseDestroy( cusparseHandle );
    return info; 
}
	sparse_matrix::sparse_matrix(sparse_matrix::descriptor_t descriptor,
	                             int rows, int cols, int nonzeros,
	                             const double* values, const int* col_ptr, const int* row_ind)
		: descrA(), m(), n(), nnz(), csrValA(), csrRowPtrA(), csrColIndA()
	{
		// Create descriptor
		assert(cusparseCreateMatDescr(&descrA) == cudaSuccess);
        assert(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO) == cudaSuccess);

		// Set descriptor fields
		switch (descriptor) {
		case non_symmetric:
			assert(cusparseSetMatDiagType(descrA, CUSPARSE_DIAG_TYPE_NON_UNIT)    == cudaSuccess);
			assert(cusparseSetMatType    (descrA, CUSPARSE_MATRIX_TYPE_GENERAL)   == cudaSuccess);
			assert(cusparseSetMatFillMode(descrA, CUSPARSE_FILL_MODE_LOWER)       == cudaSuccess); // doesn't matter which, presumably
			break;
		case symmetric_lower:
			assert(cusparseSetMatDiagType(descrA, CUSPARSE_DIAG_TYPE_NON_UNIT)    == cudaSuccess);
			assert(cusparseSetMatType    (descrA, CUSPARSE_MATRIX_TYPE_SYMMETRIC) == cudaSuccess);
			assert(cusparseSetMatFillMode(descrA, CUSPARSE_FILL_MODE_UPPER)       == cudaSuccess); // upper since we're coming with CSC and storing as CSR
			break;
		case symmetric_upper:
			assert(cusparseSetMatDiagType(descrA, CUSPARSE_DIAG_TYPE_NON_UNIT)    == cudaSuccess);
			assert(cusparseSetMatType    (descrA, CUSPARSE_MATRIX_TYPE_SYMMETRIC) == cudaSuccess);
			assert(cusparseSetMatFillMode(descrA, CUSPARSE_FILL_MODE_LOWER)       == cudaSuccess); // lower since we're coming with CSC and storing as CSR
			break;
		}

		// Switch rows and cols becuase we're coming with CSC and storing as CSR
		n = rows;
		m = cols;
		nnz = nonzeros;

		// Allocate memory
		assert(cudaMalloc(reinterpret_cast<void**>(&csrValA),      nnz * sizeof(double)) == cudaSuccess);
		assert(cudaMalloc(reinterpret_cast<void**>(&csrRowPtrA), (m+1) * sizeof(int))    == cudaSuccess);
		assert(cudaMalloc(reinterpret_cast<void**>(&csrColIndA),   nnz * sizeof(int))    == cudaSuccess);

		// Copy values
		assert(cudaMemcpy(csrValA,    values,  nnz * sizeof(double), cudaMemcpyHostToDevice) == cudaSuccess);
		assert(cudaMemcpy(csrRowPtrA, col_ptr, (m+1) * sizeof(int),  cudaMemcpyHostToDevice) == cudaSuccess);
		assert(cudaMemcpy(csrColIndA, row_ind, nnz * sizeof(int),    cudaMemcpyHostToDevice) == cudaSuccess);
	}
Exemple #15
0
extern "C" magma_int_t
magma_dcumilugeneratesolverinfo(
    magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
    
    magma_d_matrix hA={Magma_CSR}, hL={Magma_CSR}, hU={Magma_CSR};
    
    if (precond->L.memory_location != Magma_DEV ){
        CHECK( magma_dmtransfer( precond->M, &hA,
        precond->M.memory_location, Magma_CPU, queue ));

        hL.diagorder_type = Magma_UNITY;
        CHECK( magma_dmconvert( hA, &hL , Magma_CSR, Magma_CSRL, queue ));
        hU.diagorder_type = Magma_VALUE;
        CHECK( magma_dmconvert( hA, &hU , Magma_CSR, Magma_CSRU, queue ));
        CHECK( magma_dmtransfer( hL, &(precond->L), Magma_CPU, Magma_DEV, queue ));
        CHECK( magma_dmtransfer( hU, &(precond->U), Magma_CPU, Magma_DEV, queue ));
        
        magma_dmfree(&hA, queue );
        magma_dmfree(&hL, queue );
        magma_dmfree(&hU, queue );
    }
    
    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));


    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->L.num_rows,
        precond->L.nnz, descrL,
        precond->L.dval, precond->L.drow, precond->L.dcol, precond->cuinfoL ));


    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_UPPER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->U.num_rows,
        precond->U.nnz, descrU,
        precond->U.dval, precond->U.drow, precond->U.dcol, precond->cuinfoU ));

    
    if( precond->maxiter < 50 ){
        //prepare for iterative solves

        // extract the diagonal of L into precond->d
        CHECK( magma_djacobisetup_diagscal( precond->L, &precond->d, queue ));
        CHECK( magma_dvinit( &precond->work1, Magma_DEV, precond->U.num_rows, 1, MAGMA_D_ZERO, queue ));
        
        // extract the diagonal of U into precond->d2
        CHECK( magma_djacobisetup_diagscal( precond->U, &precond->d2, queue ));
        CHECK( magma_dvinit( &precond->work2, Magma_DEV, precond->U.num_rows, 1, MAGMA_D_ZERO, queue ));
    }
    
cleanup:
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseDestroy( cusparseHandle );
     
    return info;
}
Exemple #16
0
extern "C" magma_int_t
magma_dcumilusetup_transpose(
    magma_d_matrix A,
    magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    magma_d_matrix Ah1={Magma_CSR}, Ah2={Magma_CSR};
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrLT=NULL;
    cusparseMatDescr_t descrUT=NULL;
    
    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));

    // transpose the matrix
    magma_dmtransfer( precond->L, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_dmconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransposeconjugate( Ah2, &Ah1, queue );
    magma_dmfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_dmconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransfer( Ah2, &(precond->LT), Magma_CPU, Magma_DEV, queue );
    magma_dmfree(&Ah2, queue );
    
    magma_dmtransfer( precond->U, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_dmconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransposeconjugate( Ah2, &Ah1, queue );
    magma_dmfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_dmconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_dmfree(&Ah1, queue );
    magma_dmtransfer( Ah2, &(precond->UT), Magma_CPU, Magma_DEV, queue );
    magma_dmfree(&Ah2, queue );
   
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrLT ));
    CHECK_CUSPARSE( cusparseSetMatType( descrLT, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrLT, CUSPARSE_DIAG_TYPE_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrLT, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrLT, CUSPARSE_FILL_MODE_UPPER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoLT ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->LT.num_rows,
        precond->LT.nnz, descrLT,
        precond->LT.dval, precond->LT.drow, precond->LT.dcol, precond->cuinfoLT ));
    
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrUT ));
    CHECK_CUSPARSE( cusparseSetMatType( descrUT, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrUT, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrUT, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrUT, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoUT ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->UT.num_rows,
        precond->UT.nnz, descrUT,
        precond->UT.dval, precond->UT.drow, precond->UT.dcol, precond->cuinfoUT ));
cleanup:
    cusparseDestroyMatDescr( descrLT );
    cusparseDestroyMatDescr( descrUT );
    cusparseDestroy( cusparseHandle );
    magma_dmfree(&Ah1, queue );
    magma_dmfree(&Ah2, queue );

    return info;
}
int TxMatrixOptimizationDataCU::ingestLocalMatrix(SparseMatrix& A) {
  std::vector<local_int_t> i(A.localNumberOfRows + 1, 0);
  // Slight overallocation for these arrays
  std::vector<local_int_t> j;
  j.reserve(A.localNumberOfNonzeros);
  std::vector<double> a;
  a.reserve(A.localNumberOfNonzeros);
  scatterFromHalo.setNumRows(A.localNumberOfRows);
  scatterFromHalo.setNumCols(A.localNumberOfColumns);
  scatterFromHalo.clear();
  // We're splitting the matrix into diagonal and off-diagonal block to
  // enable overlapping of computation and communication.
  i[0] = 0;
  for (local_int_t m = 0; m < A.localNumberOfRows; ++m) {
    local_int_t nonzerosInRow = 0;
    for (local_int_t n = 0; n < A.nonzerosInRow[m]; ++n) {
      local_int_t col = A.mtxIndL[m][n];
      if (col < A.localNumberOfRows) {
        j.push_back(col);
        a.push_back(A.matrixValues[m][n]);
        ++nonzerosInRow;
      } else {
        scatterFromHalo.addEntry(m, col, A.matrixValues[m][n]);
      }
    }
    i[m + 1] = i[m] + nonzerosInRow;
  }

  // Setup SpMV data on Device
  cudaError_t err = cudaSuccess;
  int* i_d;
  err = cudaMalloc((void**)&i_d, i.size() * sizeof(i[0]));
  CHKCUDAERR(err);
  err = cudaMemcpy(i_d, &i[0], i.size() * sizeof(i[0]), cudaMemcpyHostToDevice);
  CHKCUDAERR(err);
  int* j_d;
  err = cudaMalloc((void**)&j_d, j.size() * sizeof(j[0]));
  CHKCUDAERR(err);
  err = cudaMemcpy(j_d, &j[0], j.size() * sizeof(j[0]), cudaMemcpyHostToDevice);
  CHKCUDAERR(err);
  double* a_d;
  err = cudaMalloc((void**)&a_d, a.size() * sizeof(a[0]));
  CHKCUDAERR(err);
  err = cudaMemcpy(a_d, &a[0], a.size() * sizeof(a[0]), cudaMemcpyHostToDevice);
  CHKCUDAERR(err);
  cusparseStatus_t cerr = CUSPARSE_STATUS_SUCCESS;
  cerr = cusparseCreateMatDescr(&matDescr);
  CHKCUSPARSEERR(cerr);
  cerr = cusparseSetMatIndexBase(matDescr, CUSPARSE_INDEX_BASE_ZERO);
  CHKCUSPARSEERR(cerr);
  cerr = cusparseSetMatType(matDescr, CUSPARSE_MATRIX_TYPE_GENERAL);
  CHKCUSPARSEERR(cerr);
  cerr = cusparseCreateHybMat(&localMatrix);
  CHKCUSPARSEERR(cerr);
  cerr = cusparseDcsr2hyb(handle, A.localNumberOfRows, A.localNumberOfColumns,
                          matDescr, a_d, i_d, j_d, localMatrix, 27,
                          CUSPARSE_HYB_PARTITION_USER);
  CHKCUSPARSEERR(cerr);

#ifndef HPCG_NOMPI
  err = cudaMalloc((void**)&elementsToSend,
                   A.totalToBeSent * sizeof(*elementsToSend));
  CHKCUDAERR(err);
  err = cudaMemcpy(elementsToSend, A.elementsToSend,
                   A.totalToBeSent * sizeof(*elementsToSend),
                   cudaMemcpyHostToDevice);
  CHKCUDAERR(err);
  err = cudaMalloc((void**)&sendBuffer_d, A.totalToBeSent * sizeof(double));
  CHKCUDAERR(err);
#endif

  // Set up the GS data.
  gelusStatus_t gerr = GELUS_STATUS_SUCCESS;
  gelusSolveDescription_t solveDescr;
  gerr = gelusCreateSolveDescr(&solveDescr);
  CHKGELUSERR(gerr);
  gerr = gelusSetSolveOperation(solveDescr, GELUS_OPERATION_NON_TRANSPOSE);
  CHKGELUSERR(gerr);
  gerr = gelusSetSolveFillMode(solveDescr, GELUS_FILL_MODE_FULL);
  CHKGELUSERR(gerr);
  gerr = gelusSetSolveStorageFormat(solveDescr, GELUS_STORAGE_FORMAT_HYB);
  CHKGELUSERR(gerr);
  gerr = gelusSetOptimizationLevel(solveDescr, GELUS_OPTIMIZATION_LEVEL_THREE);
  CHKGELUSERR(gerr);

  gerr = cugelusCreateSorIterationData(&gsContext);
  CHKGELUSERR(gerr);

#ifdef HPCG_DEBUG
  std::cout << A.localNumberOfRows << std::endl;
  std::cout << A.localNumberOfColumns << std::endl;
  std::cout << A.localNumberOfNonzeros << std::endl;
  int myrank;
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
  if (myrank == 0) {
    dumpMatrix(std::cout, i, j, a);
  }
#endif

  gerr = cugelusDcsrsor_iteration_analysis(
      A.localNumberOfRows, solveDescr, GELUS_SOR_SYMMETRIC, 1.0,
      &i[0], &j[0], &a[0], gsContext);
  gerr = gelusDestroySolveDescr(solveDescr);
  CHKGELUSERR(gerr);

  if (A.mgData) {
    err =
      cudaMalloc((void**)&f2c, A.mgData->rc->localLength * sizeof(local_int_t));
    CHKCUDAERR(err);
    err = cudaMemcpy(f2c, A.mgData->f2cOperator,
        A.mgData->rc->localLength * sizeof(local_int_t),
        cudaMemcpyHostToDevice);
    CHKCUDAERR(err);
  }

  err = cudaMalloc((void**)&workvector, A.localNumberOfRows * sizeof(double));
  CHKCUDAERR(err);

  return (int)cerr | (int)gerr | (int)err;
}
/* Solve Ax=b using the conjugate gradient method a) without any preconditioning, b) using an Incomplete Cholesky preconditioner and c) using an ILU0 preconditioner. */
int main(int argc, char **argv)
{
    const int max_iter = 1000;
    int k, M = 0, N = 0, nz = 0, *I = NULL, *J = NULL;
    int *d_col, *d_row;
    int qatest = 0;
    const float tol = 1e-12f;
    float *x, *rhs;
    float r0, r1, alpha, beta;
    float *d_val, *d_x;
    float *d_zm1, *d_zm2, *d_rm2;
    float *d_r, *d_p, *d_omega, *d_y;
    float *val = NULL;
    float *d_valsILU0;
    float *valsILU0;
    float rsum, diff, err = 0.0;
    float qaerr1, qaerr2 = 0.0;
    float dot, numerator, denominator, nalpha;
    const float floatone = 1.0;
    const float floatzero = 0.0;

    int nErrors = 0;

    printf("conjugateGradientPrecond starting...\n");

    /* QA testing mode */
    if (checkCmdLineFlag(argc, (const char **)argv, "qatest"))
    {
        qatest = 1;
    }

    /* This will pick the best possible CUDA capable device */
    cudaDeviceProp deviceProp;
    int devID = findCudaDevice(argc, (const char **)argv);
    printf("GPU selected Device ID = %d \n", devID);

    if (devID < 0)
    {
        printf("Invalid GPU device %d selected,  exiting...\n", devID);
        exit(EXIT_SUCCESS);
    }

    checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));

    /* Statistics about the GPU device */
    printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
           deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);

    int version = (deviceProp.major * 0x10 + deviceProp.minor);

    if (version < 0x11)
    {
        printf("%s: requires a minimum CUDA compute 1.1 capability\n", sSDKname);

        // cudaDeviceReset causes the driver to clean up all state. While
        // not mandatory in normal operation, it is good practice.  It is also
        // needed to ensure correct operation when the application is being
        // profiled. Calling cudaDeviceReset causes all profile data to be
        // flushed before the application exits
        cudaDeviceReset();
        exit(EXIT_SUCCESS);
    }

    /* Generate a random tridiagonal symmetric matrix in CSR (Compressed Sparse Row) format */
    M = N = 16384;
    nz = 5*N-4*(int)sqrt((double)N);
    I = (int *)malloc(sizeof(int)*(N+1));                              // csr row pointers for matrix A
    J = (int *)malloc(sizeof(int)*nz);                                 // csr column indices for matrix A
    val = (float *)malloc(sizeof(float)*nz);                           // csr values for matrix A
    x = (float *)malloc(sizeof(float)*N);
    rhs = (float *)malloc(sizeof(float)*N);

    for (int i = 0; i < N; i++)
    {
        rhs[i] = 0.0;                                                  // Initialize RHS
        x[i] = 0.0;                                                    // Initial approximation of solution
    }

    genLaplace(I, J, val, M, N, nz, rhs);

    /* Create CUBLAS context */
    cublasHandle_t cublasHandle = 0;
    cublasStatus_t cublasStatus;
    cublasStatus = cublasCreate(&cublasHandle);

    checkCudaErrors(cublasStatus);

    /* Create CUSPARSE context */
    cusparseHandle_t cusparseHandle = 0;
    cusparseStatus_t cusparseStatus;
    cusparseStatus = cusparseCreate(&cusparseHandle);

    checkCudaErrors(cusparseStatus);

    /* Description of the A matrix*/
    cusparseMatDescr_t descr = 0;
    cusparseStatus = cusparseCreateMatDescr(&descr);

    checkCudaErrors(cusparseStatus);

    /* Define the properties of the matrix */
    cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO);

    /* Allocate required memory */
    checkCudaErrors(cudaMalloc((void **)&d_col, nz*sizeof(int)));
    checkCudaErrors(cudaMalloc((void **)&d_row, (N+1)*sizeof(int)));
    checkCudaErrors(cudaMalloc((void **)&d_val, nz*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_x, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_y, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_r, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_p, N*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_omega, N*sizeof(float)));

    cudaMemcpy(d_col, J, nz*sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(d_row, I, (N+1)*sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(d_val, val, nz*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_r, rhs, N*sizeof(float), cudaMemcpyHostToDevice);

    /* Conjugate gradient without preconditioning.
       ------------------------------------------
       Follows the description by Golub & Van Loan, "Matrix Computations 3rd ed.", Section 10.2.6  */

    printf("Convergence of conjugate gradient without preconditioning: \n");
    k = 0;
    r0 = 0;
    cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);

    while (r1 > tol*tol && k <= max_iter)
    {
        k++;

        if (k == 1)
        {
            cublasScopy(cublasHandle, N, d_r, 1, d_p, 1);
        }
        else
        {
            beta = r1/r0;
            cublasSscal(cublasHandle, N, &beta, d_p, 1);
            cublasSaxpy(cublasHandle, N, &floatone, d_r, 1, d_p, 1) ;
        }

        cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &floatone, descr, d_val, d_row, d_col, d_p, &floatzero, d_omega);
        cublasSdot(cublasHandle, N, d_p, 1, d_omega, 1, &dot);
        alpha = r1/dot;
        cublasSaxpy(cublasHandle, N, &alpha, d_p, 1, d_x, 1);
        nalpha = -alpha;
        cublasSaxpy(cublasHandle, N, &nalpha, d_omega, 1, d_r, 1);
        r0 = r1;
        cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
    }

    printf("  iteration = %3d, residual = %e \n", k, sqrt(r1));

    cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost);

    /* check result */
    err = 0.0;

    for (int i = 0; i < N; i++)
    {
        rsum = 0.0;

        for (int j = I[i]; j < I[i+1]; j++)
        {
            rsum += val[j]*x[J[j]];
        }

        diff = fabs(rsum - rhs[i]);

        if (diff > err)
        {
            err = diff;
        }
    }

    printf("  Convergence Test: %s \n", (k <= max_iter) ? "OK" : "FAIL");
    nErrors += (k > max_iter) ? 1 : 0;
    qaerr1 = err;

    if (0)
    {
        // output result in matlab-style array
        int n=(int)sqrt((double)N);
        printf("a = [  ");

        for (int iy=0; iy<n; iy++)
        {
            for (int ix=0; ix<n; ix++)
            {
                printf(" %f ", x[iy*n+ix]);
            }

            if (iy == n-1)
            {
                printf(" ]");
            }

            printf("\n");
        }
    }


    /* Preconditioned Conjugate Gradient using ILU.
       --------------------------------------------
       Follows the description by Golub & Van Loan, "Matrix Computations 3rd ed.", Algorithm 10.3.1  */

    printf("\nConvergence of conjugate gradient using incomplete LU preconditioning: \n");

    int nzILU0 = 2*N-1;
    valsILU0 = (float *) malloc(nz*sizeof(float));

    checkCudaErrors(cudaMalloc((void **)&d_valsILU0, nz*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_zm1, (N)*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_zm2, (N)*sizeof(float)));
    checkCudaErrors(cudaMalloc((void **)&d_rm2, (N)*sizeof(float)));

    /* create the analysis info object for the A matrix */
    cusparseSolveAnalysisInfo_t infoA = 0;
    cusparseStatus = cusparseCreateSolveAnalysisInfo(&infoA);

    checkCudaErrors(cusparseStatus);

    /* Perform the analysis for the Non-Transpose case */
    cusparseStatus = cusparseScsrsv_analysis(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                                             N, nz, descr, d_val, d_row, d_col, infoA);

    checkCudaErrors(cusparseStatus);

    /* Copy A data to ILU0 vals as input*/
    cudaMemcpy(d_valsILU0, d_val, nz*sizeof(float), cudaMemcpyDeviceToDevice);

    /* generate the Incomplete LU factor H for the matrix A using cudsparseScsrilu0 */
    cusparseStatus = cusparseScsrilu0(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, descr, d_valsILU0, d_row, d_col, infoA);

    checkCudaErrors(cusparseStatus);

    /* Create info objects for the ILU0 preconditioner */
    cusparseSolveAnalysisInfo_t info_u;
    cusparseCreateSolveAnalysisInfo(&info_u);

    cusparseMatDescr_t descrL = 0;
    cusparseStatus = cusparseCreateMatDescr(&descrL);
    cusparseSetMatType(descrL,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descrL,CUSPARSE_INDEX_BASE_ZERO);
    cusparseSetMatFillMode(descrL, CUSPARSE_FILL_MODE_LOWER);
    cusparseSetMatDiagType(descrL, CUSPARSE_DIAG_TYPE_UNIT);

    cusparseMatDescr_t descrU = 0;
    cusparseStatus = cusparseCreateMatDescr(&descrU);
    cusparseSetMatType(descrU,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descrU,CUSPARSE_INDEX_BASE_ZERO);
    cusparseSetMatFillMode(descrU, CUSPARSE_FILL_MODE_UPPER);
    cusparseSetMatDiagType(descrU, CUSPARSE_DIAG_TYPE_NON_UNIT);
    cusparseStatus = cusparseScsrsv_analysis(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, nz, descrU, d_val, d_row, d_col, info_u);

    /* reset the initial guess of the solution to zero */
    for (int i = 0; i < N; i++)
    {
        x[i] = 0.0;
    }

    checkCudaErrors(cudaMemcpy(d_r, rhs, N*sizeof(float), cudaMemcpyHostToDevice));
    checkCudaErrors(cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice));

    k = 0;
    cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);

    while (r1 > tol*tol && k <= max_iter)
    {
        // Forward Solve, we can re-use infoA since the sparsity pattern of A matches that of L
        cusparseStatus = cusparseScsrsv_solve(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, &floatone, descrL,
                                              d_valsILU0, d_row, d_col, infoA, d_r, d_y);
        checkCudaErrors(cusparseStatus);

        // Back Substitution
        cusparseStatus = cusparseScsrsv_solve(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, &floatone, descrU,
                                              d_valsILU0, d_row, d_col, info_u, d_y, d_zm1);
        checkCudaErrors(cusparseStatus);

        k++;

        if (k == 1)
        {
            cublasScopy(cublasHandle, N, d_zm1, 1, d_p, 1);
        }
        else
        {
            cublasSdot(cublasHandle, N, d_r, 1, d_zm1, 1, &numerator);
            cublasSdot(cublasHandle, N, d_rm2, 1, d_zm2, 1, &denominator);
            beta = numerator/denominator;
            cublasSscal(cublasHandle, N, &beta, d_p, 1);
            cublasSaxpy(cublasHandle, N, &floatone, d_zm1, 1, d_p, 1) ;
        }

        cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nzILU0, &floatone, descrU, d_val, d_row, d_col, d_p, &floatzero, d_omega);
        cublasSdot(cublasHandle, N, d_r, 1, d_zm1, 1, &numerator);
        cublasSdot(cublasHandle, N, d_p, 1, d_omega, 1, &denominator);
        alpha = numerator / denominator;
        cublasSaxpy(cublasHandle, N, &alpha, d_p, 1, d_x, 1);
        cublasScopy(cublasHandle, N, d_r, 1, d_rm2, 1);
        cublasScopy(cublasHandle, N, d_zm1, 1, d_zm2, 1);
        nalpha = -alpha;
        cublasSaxpy(cublasHandle, N, &nalpha, d_omega, 1, d_r, 1);
        cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1);
    }

    printf("  iteration = %3d, residual = %e \n", k, sqrt(r1));

    cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost);

    /* check result */
    err = 0.0;

    for (int i = 0; i < N; i++)
    {
        rsum = 0.0;

        for (int j = I[i]; j < I[i+1]; j++)
        {
            rsum += val[j]*x[J[j]];
        }

        diff = fabs(rsum - rhs[i]);

        if (diff > err)
        {
            err = diff;
        }
    }

    printf("  Convergence Test: %s \n", (k <= max_iter) ? "OK" : "FAIL");
    nErrors += (k > max_iter) ? 1 : 0;
    qaerr2 = err;

    /* Destroy parameters */
    cusparseDestroySolveAnalysisInfo(infoA);
    cusparseDestroySolveAnalysisInfo(info_u);

    /* Destroy contexts */
    cusparseDestroy(cusparseHandle);
    cublasDestroy(cublasHandle);

    /* Free device memory */
    free(I);
    free(J);
    free(val);
    free(x);
    free(rhs);
    free(valsILU0);
    cudaFree(d_col);
    cudaFree(d_row);
    cudaFree(d_val);
    cudaFree(d_x);
    cudaFree(d_y);
    cudaFree(d_r);
    cudaFree(d_p);
    cudaFree(d_omega);
    cudaFree(d_valsILU0);
    cudaFree(d_zm1);
    cudaFree(d_zm2);
    cudaFree(d_rm2);

    // cudaDeviceReset causes the driver to clean up all state. While
    // not mandatory in normal operation, it is good practice.  It is also
    // needed to ensure correct operation when the application is being
    // profiled. Calling cudaDeviceReset causes all profile data to be
    // flushed before the application exits
    cudaDeviceReset();

    printf("  Test Summary:\n");
    printf("     Counted total of %d errors\n", nErrors);
    printf("     qaerr1 = %f qaerr2 = %f\n\n", fabs(qaerr1), fabs(qaerr2));
    exit((nErrors == 0 &&fabs(qaerr1)<1e-5 && fabs(qaerr2) < 1e-5 ? EXIT_SUCCESS : EXIT_FAILURE));
}
extern "C" magma_int_t
magma_d_spmv(
    double alpha,
    magma_d_matrix A,
    magma_d_matrix x,
    double beta,
    magma_d_matrix y,
    magma_queue_t queue )
{
    magma_int_t info = 0;

    magma_d_matrix x2={Magma_CSR};

    cusparseHandle_t cusparseHandle = 0;
    cusparseMatDescr_t descr = 0;
    // make sure RHS is a dense matrix
    if ( x.storage_type != Magma_DENSE ) {
         printf("error: only dense vectors are supported for SpMV.\n");
         info = MAGMA_ERR_NOT_SUPPORTED;
         goto cleanup;
    }

    if ( A.memory_location != x.memory_location ||
                            x.memory_location != y.memory_location ) {
        printf("error: linear algebra objects are not located in same memory!\n");
        printf("memory locations are: %d   %d   %d\n",
                        A.memory_location, x.memory_location, y.memory_location );
        info = MAGMA_ERR_INVALID_PTR;
        goto cleanup;
    }

    // DEV case
    if ( A.memory_location == Magma_DEV ) {
        if ( A.num_cols == x.num_rows && x.num_cols == 1 ) {
             if ( A.storage_type == Magma_CSR || A.storage_type == Magma_CUCSR
                            || A.storage_type == Magma_CSRL
                            || A.storage_type == Magma_CSRU ) {
              CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
              CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));
              CHECK_CUSPARSE( cusparseCreateMatDescr( &descr ));
            
              CHECK_CUSPARSE( cusparseSetMatType( descr, CUSPARSE_MATRIX_TYPE_GENERAL ));
              CHECK_CUSPARSE( cusparseSetMatIndexBase( descr, CUSPARSE_INDEX_BASE_ZERO ));
            
              cusparseDcsrmv( cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE,
                            A.num_rows, A.num_cols, A.nnz, &alpha, descr,
                            A.dval, A.drow, A.dcol, x.dval, &beta, y.dval );
             }
             else if ( A.storage_type == Magma_ELL ) {
                 //printf("using ELLPACKT kernel for SpMV: ");
                 CHECK( magma_dgeelltmv( MagmaNoTrans, A.num_rows, A.num_cols,
                    A.max_nnz_row, alpha, A.dval, A.dcol, x.dval, beta,
                    y.dval, queue ));
                 //printf("done.\n");
             }
             else if ( A.storage_type == Magma_ELLPACKT ) {
                 //printf("using ELL kernel for SpMV: ");
                 CHECK( magma_dgeellmv( MagmaNoTrans, A.num_rows, A.num_cols,
                    A.max_nnz_row, alpha, A.dval, A.dcol, x.dval, beta,
                    y.dval, queue ));
                 //printf("done.\n");
             }
             else if ( A.storage_type == Magma_ELLRT ) {
                 //printf("using ELLRT kernel for SpMV: ");
                 CHECK( magma_dgeellrtmv( MagmaNoTrans, A.num_rows, A.num_cols,
                            A.max_nnz_row, alpha, A.dval, A.dcol, A.drow, x.dval,
                         beta, y.dval, A.alignment, A.blocksize, queue ));
                 //printf("done.\n");
             }
             else if ( A.storage_type == Magma_SELLP ) {
                 //printf("using SELLP kernel for SpMV: ");
                 CHECK( magma_dgesellpmv( MagmaNoTrans, A.num_rows, A.num_cols,
                    A.blocksize, A.numblocks, A.alignment,
                    alpha, A.dval, A.dcol, A.drow, x.dval, beta, y.dval, queue ));

                 //printf("done.\n");
             }
             else if ( A.storage_type == Magma_DENSE ) {
                 //printf("using DENSE kernel for SpMV: ");
                 magmablas_dgemv( MagmaNoTrans, A.num_rows, A.num_cols, alpha,
                                A.dval, A.num_rows, x.dval, 1, beta,  y.dval,
                                1, queue );
                 //printf("done.\n");
             }
             else if ( A.storage_type == Magma_SPMVFUNCTION ) {
                 //printf("using DENSE kernel for SpMV: ");
                 CHECK( magma_dcustomspmv( alpha, x, beta, y, queue ));
                 //printf("done.\n");
             }
             else if ( A.storage_type == Magma_BCSR ) {
                 //printf("using CUSPARSE BCSR kernel for SpMV: ");
                // CUSPARSE context //
                cusparseDirection_t dirA = CUSPARSE_DIRECTION_ROW;
                int mb = magma_ceildiv( A.num_rows, A.blocksize );
                int nb = magma_ceildiv( A.num_cols, A.blocksize );
                CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
                CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));
                CHECK_CUSPARSE( cusparseCreateMatDescr( &descr ));
                cusparseDbsrmv( cusparseHandle, dirA,
                    CUSPARSE_OPERATION_NON_TRANSPOSE, mb, nb, A.numblocks,
                    &alpha, descr, A.dval, A.drow, A.dcol, A.blocksize, x.dval,
                    &beta, y.dval );
             }
             else {
                 printf("error: format not supported.\n");
                 info = MAGMA_ERR_NOT_SUPPORTED; 
             }
        }
        else if ( A.num_cols < x.num_rows || x.num_cols > 1 ) {
            magma_int_t num_vecs = x.num_rows / A.num_cols * x.num_cols;
            if ( A.storage_type == Magma_CSR ) {
                CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
                CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));
                CHECK_CUSPARSE( cusparseCreateMatDescr( &descr ));
                CHECK_CUSPARSE( cusparseSetMatType( descr, CUSPARSE_MATRIX_TYPE_GENERAL ));
                CHECK_CUSPARSE( cusparseSetMatIndexBase( descr, CUSPARSE_INDEX_BASE_ZERO ));

                if ( x.major == MagmaColMajor) {
                    cusparseDcsrmm(cusparseHandle,
                    CUSPARSE_OPERATION_NON_TRANSPOSE,
                    A.num_rows,   num_vecs, A.num_cols, A.nnz,
                    &alpha, descr, A.dval, A.drow, A.dcol,
                    x.dval, A.num_cols, &beta, y.dval, A.num_cols);
                } else if ( x.major == MagmaRowMajor) {
                    /*cusparseDcsrmm2(cusparseHandle,
                    CUSPARSE_OPERATION_NON_TRANSPOSE,
                    CUSPARSE_OPERATION_TRANSPOSE,
                    A.num_rows,   num_vecs, A.num_cols, A.nnz,
                    &alpha, descr, A.dval, A.drow, A.dcol,
                    x.dval, A.num_cols, &beta, y.dval, A.num_cols);
                    */
                }
             } else if ( A.storage_type == Magma_SELLP ) {
                if ( x.major == MagmaRowMajor) {
                 CHECK( magma_dmgesellpmv( MagmaNoTrans, A.num_rows, A.num_cols,
                    num_vecs, A.blocksize, A.numblocks, A.alignment,
                    alpha, A.dval, A.dcol, A.drow, x.dval, beta, y.dval, queue ));
                }
                else if ( x.major == MagmaColMajor) {
                    // transpose first to row major
                    CHECK( magma_dvtranspose( x, &x2, queue ));
                    CHECK( magma_dmgesellpmv( MagmaNoTrans, A.num_rows, A.num_cols,
                    num_vecs, A.blocksize, A.numblocks, A.alignment,
                    alpha, A.dval, A.dcol, A.drow, x2.dval, beta, y.dval, queue ));
                }
             }
             /*if ( A.storage_type == Magma_DENSE ) {
                 //printf("using DENSE kernel for SpMV: ");
                 magmablas_dmgemv( MagmaNoTrans, A.num_rows, A.num_cols,
                            num_vecs, alpha, A.dval, A.num_rows, x.dval, 1,
                            beta,  y.dval, 1 );
                 //printf("done.\n");
             }*/
             else {
                 printf("error: format not supported.\n");
                 info = MAGMA_ERR_NOT_SUPPORTED;
             }
        }
    }
    // CPU case missing!
    else {
        printf("error: CPU not yet supported.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
    }

cleanup:
    cusparseDestroyMatDescr( descr );
    cusparseDestroy( cusparseHandle );
    cusparseHandle = 0;
    descr = 0;
    magma_dmfree(&x2, queue );
    
    return info;
}
Exemple #20
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing sparse matrix vector product
*/
int main(  int argc, char** argv )
{
    TESTING_INIT();
    magma_queue_t queue;
    magma_queue_create( /*devices[ opts->device ],*/ &queue );

    magma_d_sparse_matrix hA, hA_SELLP, hA_ELL, dA, dA_SELLP, dA_ELL;
    hA_SELLP.blocksize = 8;
    hA_SELLP.alignment = 8;
    real_Double_t start, end, res;
    magma_int_t *pntre;

    double c_one  = MAGMA_D_MAKE(1.0, 0.0);
    double c_zero = MAGMA_D_MAKE(0.0, 0.0);
    
    magma_int_t i, j;
    for( i = 1; i < argc; ++i ) {
        if ( strcmp("--blocksize", argv[i]) == 0 ) {
            hA_SELLP.blocksize = atoi( argv[++i] );
        } else if ( strcmp("--alignment", argv[i]) == 0 ) {
            hA_SELLP.alignment = atoi( argv[++i] );
        } else
            break;
    }
    printf( "\n#    usage: ./run_dspmv"
        " [ --blocksize %d --alignment %d (for SELLP) ]"
        " matrices \n\n", (int) hA_SELLP.blocksize, (int) hA_SELLP.alignment );

    while(  i < argc ) {

        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            magma_dm_5stencil(  laplace_size, &hA, queue );
        } else {                        // file-matrix test
            magma_d_csr_mtx( &hA,  argv[i], queue );
        }

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            (int) hA.num_rows,(int) hA.num_cols,(int) hA.nnz );

        real_Double_t FLOPS = 2.0*hA.nnz/1e9;

        magma_d_vector hx, hy, dx, dy, hrefvec, hcheck;

        // init CPU vectors
        magma_d_vinit( &hx, Magma_CPU, hA.num_rows, c_zero, queue );
        magma_d_vinit( &hy, Magma_CPU, hA.num_rows, c_zero, queue );

        // init DEV vectors
        magma_d_vinit( &dx, Magma_DEV, hA.num_rows, c_one, queue );
        magma_d_vinit( &dy, Magma_DEV, hA.num_rows, c_zero, queue );

        #ifdef MAGMA_WITH_MKL
            // calling MKL with CSR
            pntre = (magma_int_t*)malloc( (hA.num_rows+1)*sizeof(magma_int_t) );
            pntre[0] = 0;
            for (j=0; j<hA.num_rows; j++ ) {
                pntre[j] = hA.row[j+1];
            }
             MKL_INT num_rows = hA.num_rows;
             MKL_INT num_cols = hA.num_cols;
             MKL_INT nnz = hA.nnz;

            MKL_INT *col;
            TESTING_MALLOC_CPU( col, MKL_INT, nnz );
            for( magma_int_t t=0; t < hA.nnz; ++t ) {
                col[ t ] = hA.col[ t ];
            }
            MKL_INT *row;
            TESTING_MALLOC_CPU( row, MKL_INT, num_rows );
            for( magma_int_t t=0; t < hA.num_rows; ++t ) {
                row[ t ] = hA.col[ t ];
            }
    
            start = magma_wtime();
            for (j=0; j<10; j++ ) {
                mkl_dcsrmv( "N", &num_rows, &num_cols, 
                            MKL_ADDR(&c_one), "GFNC", MKL_ADDR(hA.val), 
                            col, row, pntre, 
                                                    MKL_ADDR(hx.val), 
                            MKL_ADDR(&c_zero),        MKL_ADDR(hy.val) );
            }
            end = magma_wtime();
            printf( "\n > MKL  : %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                            (end-start)/10, FLOPS*10/(end-start) );

            TESTING_FREE_CPU( row );
            TESTING_FREE_CPU( col );
            free(pntre);
        #endif // MAGMA_WITH_MKL

        // copy matrix to GPU
        magma_d_mtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue );        
        // SpMV on GPU (CSR) -- this is the reference!
        start = magma_sync_wtime( queue );
        for (j=0; j<10; j++)
            magma_d_spmv( c_one, dA, dx, c_zero, dy, queue );
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (standard CSR).\n",
                                        (end-start)/10, FLOPS*10/(end-start) );
        magma_d_mfree(&dA, queue );
        magma_d_vtransfer( dy, &hrefvec , Magma_DEV, Magma_CPU, queue );

        // convert to ELL and copy to GPU
        magma_d_mconvert(  hA, &hA_ELL, Magma_CSR, Magma_ELL, queue );
        magma_d_mtransfer( hA_ELL, &dA_ELL, Magma_CPU, Magma_DEV, queue );
        magma_d_mfree(&hA_ELL, queue );
        magma_d_vfree( &dy, queue );
        magma_d_vinit( &dy, Magma_DEV, hA.num_rows, c_zero, queue );
        // SpMV on GPU (ELL)
        start = magma_sync_wtime( queue );
        for (j=0; j<10; j++)
            magma_d_spmv( c_one, dA_ELL, dx, c_zero, dy, queue );
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (standard ELL).\n",
                                        (end-start)/10, FLOPS*10/(end-start) );
        magma_d_mfree(&dA_ELL, queue );
        magma_d_vtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue );
        res = 0.0;
        for(magma_int_t k=0; k<hA.num_rows; k++ )
            res=res + MAGMA_D_REAL(hcheck.val[k]) - MAGMA_D_REAL(hrefvec.val[k]);
        if ( res < .000001 )
            printf("# tester spmv ELL:  ok\n");
        else
            printf("# tester spmv ELL:  failed\n");
        magma_d_vfree( &hcheck, queue );

        // convert to SELLP and copy to GPU
        magma_d_mconvert(  hA, &hA_SELLP, Magma_CSR, Magma_SELLP, queue );
        magma_d_mtransfer( hA_SELLP, &dA_SELLP, Magma_CPU, Magma_DEV, queue );
        magma_d_mfree(&hA_SELLP, queue );
        magma_d_vfree( &dy, queue );
        magma_d_vinit( &dy, Magma_DEV, hA.num_rows, c_zero, queue );
        // SpMV on GPU (SELLP)
        start = magma_sync_wtime( queue );
        for (j=0; j<10; j++)
            magma_d_spmv( c_one, dA_SELLP, dx, c_zero, dy, queue );
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (SELLP).\n",
                                        (end-start)/10, FLOPS*10/(end-start) );

        magma_d_vtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue );
        res = 0.0;
        for(magma_int_t k=0; k<hA.num_rows; k++ )
            res=res + MAGMA_D_REAL(hcheck.val[k]) - MAGMA_D_REAL(hrefvec.val[k]);
        printf("# |x-y|_F = %8.2e\n", res);
        if ( res < .000001 )
            printf("# tester spmv SELL-P:  ok\n");
        else
            printf("# tester spmv SELL-P:  failed\n");
        magma_d_vfree( &hcheck, queue );

        magma_d_mfree(&dA_SELLP, queue );


        // SpMV on GPU (CUSPARSE - CSR)
        // CUSPARSE context //

        cusparseHandle_t cusparseHandle = 0;
        cusparseStatus_t cusparseStatus;
        cusparseStatus = cusparseCreate(&cusparseHandle);
        cusparseSetStream( cusparseHandle, queue );

        cusparseMatDescr_t descr = 0;
        cusparseStatus = cusparseCreateMatDescr(&descr);

        cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL);
        cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO);
        double alpha = c_one;
        double beta = c_zero;
        magma_d_vfree( &dy, queue );
        magma_d_vinit( &dy, Magma_DEV, hA.num_rows, c_zero, queue );

        // copy matrix to GPU
        magma_d_mtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue );

        start = magma_sync_wtime( queue );
        for (j=0; j<10; j++)
            cusparseStatus =
            cusparseDcsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, 
                        hA.num_rows, hA.num_cols, hA.nnz, &alpha, descr, 
                        dA.dval, dA.drow, dA.dcol, dx.dval, &beta, dy.dval);
        end = magma_sync_wtime( queue );
        if (cusparseStatus != 0)    printf("error in cuSPARSE CSR\n");
        printf( " > CUSPARSE: %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                        (end-start)/10, FLOPS*10/(end-start) );
        cusparseMatDescr_t descrA;
        cusparseStatus = cusparseCreateMatDescr(&descrA);
         if (cusparseStatus != 0)    printf("error\n");
        cusparseHybMat_t hybA;
        cusparseStatus = cusparseCreateHybMat( &hybA );
         if (cusparseStatus != 0)    printf("error\n");

        magma_d_vtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue );
        res = 0.0;
        for(magma_int_t k=0; k<hA.num_rows; k++ )
            res=res + MAGMA_D_REAL(hcheck.val[k]) - MAGMA_D_REAL(hrefvec.val[k]);
        printf("# |x-y|_F = %8.2e\n", res);
        if ( res < .000001 )
            printf("# tester spmv cuSPARSE CSR:  ok\n");
        else
            printf("# tester spmv cuSPARSE CSR:  failed\n");
        magma_d_vfree( &hcheck, queue );
        magma_d_vfree( &dy, queue );
        magma_d_vinit( &dy, Magma_DEV, hA.num_rows, c_zero, queue );
       
        cusparseDcsr2hyb(cusparseHandle,  hA.num_rows, hA.num_cols,
                        descrA, dA.dval, dA.drow, dA.dcol,
                        hybA, 0, CUSPARSE_HYB_PARTITION_AUTO);

        start = magma_sync_wtime( queue );
        for (j=0; j<10; j++)
            cusparseStatus =
            cusparseDhybmv( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, 
               &alpha, descrA, hybA,
               dx.dval, &beta, dy.dval);
        end = magma_sync_wtime( queue );
        if (cusparseStatus != 0)    printf("error in cuSPARSE HYB\n");
        printf( " > CUSPARSE: %.2e seconds %.2e GFLOP/s    (HYB).\n",
                                        (end-start)/10, FLOPS*10/(end-start) );

        magma_d_vtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue );
        res = 0.0;
        for(magma_int_t k=0; k<hA.num_rows; k++ )
            res=res + MAGMA_D_REAL(hcheck.val[k]) - MAGMA_D_REAL(hrefvec.val[k]);
        printf("# |x-y|_F = %8.2e\n", res);
        if ( res < .000001 )
            printf("# tester spmv cuSPARSE HYB:  ok\n");
        else
            printf("# tester spmv cuSPARSE HYB:  failed\n");
        magma_d_vfree( &hcheck, queue );

        cusparseDestroyMatDescr( descrA );
        cusparseDestroyHybMat( hybA );
        cusparseDestroy( cusparseHandle );

        magma_d_mfree(&dA, queue );



        printf("\n\n");


        // free CPU memory
        magma_d_mfree(&hA, queue );
        magma_d_vfree(&hx, queue );
        magma_d_vfree(&hy, queue );
        magma_d_vfree(&hrefvec, queue );
        // free GPU memory
        magma_d_vfree(&dx, queue );
        magma_d_vfree(&dy, queue );

        i++;

    }
    
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return 0;
}
int main(int argc, char* argv[])
{
	const int bufsize = 512;
    	char buffer[bufsize];
	int m,n,S;
	double time_st,time_end,time_avg;
	//omp_set_num_threads(2);
//	printf("\n-----------------\nnumber of threads fired = %d\n-----------------\n",(int)omp_get_num_threads());
	if(argc!=2)
	{
		cout<<"Insufficient arguments"<<endl;
		return 1;
	}
	
	graph G;

	cerr<<"Start reading                    ";
//	time_st=dsecnd();
	G.create_graph(argv[1]);
//	time_end=dsecnd();
//	time_avg = (time_end-time_st);
//	cout<<"Success              "<<endl;
//	cerr<<"Reading time                     "<<time_avg<<endl;

	cerr<<"Constructing Matrices            ";
//	time_st=dsecnd();
	G.construct_MNA();
//	time_end=dsecnd();
//	time_avg = (time_end-time_st);
//	cerr<<"Done                 "<<time_avg<<endl;

//	G.construct_sparse_MNA();
	m=G.node_array.size()-1;
	n=G.voltage_edge_id.size();
	
	cout<<endl;
	cout<<"MATRIX STAT:"<<endl;
	cout<<"Nonzero elements:               "<<G.nonzero<<endl;
	cout<<"Number of Rows:                 "<<m+n<<endl;
	printf("\n Nonzero = %ld", G.nonzero);
	printf("\n Rows = %d", m+n);

	cout<<"MAT val:		       "<<endl;
	int i,j;

//	G.Mat_val[0] +=100;
/*	
	for(i=0;i<G.nonzero;i++)
		cout<<" "<<G.Mat_val[i];
	cout<<endl;
	for(i=0;i<G.nonzero;i++)
		cout<<" "<<G.columns[i];
	cout<<endl;	
	for(i=0;i<m+n+1;i++)
		cout<<" "<<G.rowIndex[i];
	cout<<endl;
	
	
	for(i=0;i<m+n;i++)
	{
		cout<<endl;
		int startindex=G.rowIndex[i];
		int endindex=G.rowIndex[i+1];
		for(j=startindex;j<endindex;j++)
			cout<<" "<<G.Mat_val[j];
		cout<<endl;
		
	}
*/
/*	for (i=0;i<m+n+1;i++)
	{
		//cout<<endl;
		if(G.rowIndex[i]==G.rowIndex[i+1])
			break;
		
		for(j=G.rowIndex[i];j<G.rowIndex[i+1];j++)
		{
			if(G.Mat_val[j]>10)
				cout<<G.Mat_val[j]<<"\t";
		}
		//cout<<endl;
		/*for(j=G.rowIndex[i];j<G.rowIndex[i+1];j++)
		{
			cout<<G.columns[j]<<"\t";
		}
		//cout<<endl;
	}
	cout<<endl;
*/

//printing the matrix
	printf("\n Fine till here");
	printf("\n");
//	int* rowmIndex=(int*)calloc(m+1,sizeof(int));
	printf("\n Fine till here");
	printf("\n");
	//int rowmIndex[5]={1,2,3,4,5};
/*	for(i=0;i<m+1;i++)
	{
		rowmIndex[i]=G.rowIndex[i];
		printf(" %d", rowmIndex[i]);
	}
*/
	cerr<<"Solving Equations    "<<endl;


    double r1, b, alpha, alpham1, beta, r0, a, na;
    
    
    const double tol = 0.1;
    const int max_iter = 1000000;
    int *d_col, *d_row;
    double *d_val, *d_x, dot;
    double *d_r, *d_p, *d_Ax;
    int k;
    
    cublasHandle_t cublasHandle = 0;
    cublasStatus_t cublasStatus;
    cublasStatus = cublasCreate(&cublasHandle);

    checkCudaErrors(cublasStatus);

    /* Get handle to the CUSPARSE context */
    cusparseHandle_t cusparseHandle = 0;
    cusparseStatus_t cusparseStatus;
    cusparseStatus = cusparseCreate(&cusparseHandle);

    checkCudaErrors(cusparseStatus);

    cusparseMatDescr_t descr = 0;
    cusparseStatus = cusparseCreateMatDescr(&descr);

    checkCudaErrors(cusparseStatus);

    cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO);

    checkCudaErrors(cudaMalloc((void **)&d_col, G.nonzero*sizeof(int)));
    checkCudaErrors(cudaMalloc((void **)&d_row, (m+n+1)*sizeof(int)));
    checkCudaErrors(cudaMalloc((void **)&d_val, G.nonzero*sizeof(double)));
    checkCudaErrors(cudaMalloc((void **)&d_x, (m+n)*sizeof(double)));
    checkCudaErrors(cudaMalloc((void **)&d_r, (m+n)*sizeof(double)));
    checkCudaErrors(cudaMalloc((void **)&d_p, (m+n)*sizeof(double)));
    checkCudaErrors(cudaMalloc((void **)&d_Ax, (m+n)*sizeof(double)));

    cudaMemcpy(d_col, G.columns, G.nonzero*sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(d_row, G.rowIndex, (m+n+1)*sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(d_val, G.Mat_val, G.nonzero*sizeof(double), cudaMemcpyHostToDevice);
    cudaMemcpy(d_x, G.x, (m+n)*sizeof(double), cudaMemcpyHostToDevice);
    cudaMemcpy(d_r, G.b, (m+n)*sizeof(double), cudaMemcpyHostToDevice);

    alpha = 1.0;
    alpham1 = -1.0;
    beta = 0.0;
    r0 = 0.;

    printf("\n Data transferred\n");

    	cudaEvent_t start,stop;
	cudaEventCreate(&start);
	cudaEventCreate(&stop);
	
	cudaEventRecord(start, 0);

    cusparseDcsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, (m+n), (m+n), G.nonzero, &alpha, descr, d_val, d_row, d_col, d_x, &beta, d_Ax);

    cublasDaxpy(cublasHandle, (m+n), &alpham1, d_Ax, 1, d_r, 1);
    cublasStatus = cublasDdot(cublasHandle, (m+n), d_r, 1, d_r, 1, &r1);

    k = 1;

    while (r1 > tol && k <= max_iter)
    {
        if (k > 1)
        {
            b = r1 / r0;
            cublasStatus = cublasDscal(cublasHandle, (m+n), &b, d_p, 1);
            cublasStatus = cublasDaxpy(cublasHandle, (m+n), &alpha, d_r, 1, d_p, 1);
        }
        else
        {
            cublasStatus = cublasDcopy(cublasHandle, (m+n), d_r, 1, d_p, 1);
        }

        cusparseDcsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, (m+n), (m+n), G.nonzero, &alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax);
        cublasStatus = cublasDdot(cublasHandle, (m+n), d_p, 1, d_Ax, 1, &dot);
        a = r1 / dot;

        cublasStatus = cublasDaxpy(cublasHandle, (m+n), &a, d_p, 1, d_x, 1);
        na = -a;
        cublasStatus = cublasDaxpy(cublasHandle, (m+n), &na, d_Ax, 1, d_r, 1);

        r0 = r1;
        cublasStatus = cublasDdot(cublasHandle, (m+n), d_r, 1, d_r, 1, &r1);
//        cudaThreadSynchronize();
//        printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
        k++;
    }
    
    	cudaEventRecord(stop, 0);
	
	cudaEventSynchronize(stop);
	float elapsedTime;
	cudaEventElapsedTime(&elapsedTime, start, stop);
	printf("Iterations = %3d\tTime : %.6f milli-seconds : \n", k, elapsedTime);

    cudaMemcpy(G.x, d_x, (m+n)*sizeof(double), cudaMemcpyDeviceToHost);

/*        printf("\n x = \n");
	for(i=0;i<(m+n);i++)
	{
		printf("\n x[%d] = %.8f", i, G.x[i]);
	}	
*/    float rsum, diff, err = 0.0;

    for (int i = 0; i < (m+n); i++)
    {
        rsum = 0.0;

        for (int j = G.rowIndex[i]; j < G.rowIndex[i+1]; j++)
        {
            rsum += G.Mat_val[j]*G.x[G.columns[j]];
        }

        diff = fabs(rsum - G.b[i]);

        if (diff > err)
        {
            err = diff;
        }
    }

    cusparseDestroy(cusparseHandle);
    cublasDestroy(cublasHandle);

/*    free(I);
    free(J);
    free(val);
    free(x);
    free(rhs);
*/    cudaFree(d_col);
    cudaFree(d_row);
    cudaFree(d_val);
    cudaFree(d_x);
    cudaFree(d_r);
    cudaFree(d_p);
    cudaFree(d_Ax);

    // cudaDeviceReset causes the driver to clean up all state. While
    // not mandatory in normal operation, it is good practice.  It is also
    // needed to ensure correct operation when the application is being
    // profiled. Calling cudaDeviceReset causes all profile data to be
    // flushed before the application exits
    cudaDeviceReset();
    
/*    printf("\n X is:\n");
    for(i=0;i<(m+n);i++)
    {
    	printf("\n X[%d] = %.4f", i, G.x[i]);
    }
*/    	
    printf("Test Summary:  Error amount = %f\n", err);
    exit((k <= max_iter) ? 0 : 1);




/*	
	culaSparseHandle handle;
    	if (culaSparseCreate(&handle) != culaSparseNoError)
    	{
        	// this should only fail under extreme conditions
        	std::cout << "fatal error: failed to create library handle!" << std::endl;
        	exit(EXIT_FAILURE);
    	}
	
	StatusChecker sc(handle);

	culaSparsePlan plan;
	sc = culaSparseCreatePlan(handle, &plan);
	
	culaSparseCsrOptions formatOpts;
	culaSparseCsrOptionsInit(handle, &formatOpts);
	//formatOpts.indexing=1;	
	sc = culaSparseSetDcsrData(handle, plan, &formatOpts, m+n, G.nonzero, &G.Mat_val[0], &G.rowIndex[0], &G.columns[0], &G.x[0], &G.b[0]);
	printf("\n Fine till here");
	printf("\n");	
	culaSparseConfig config;
    	sc = culaSparseConfigInit(handle, &config);
    	config.relativeTolerance = 1e-2;
    	config.maxIterations = 100000;
	config.divergenceTolerance = 20;
	culaSparseResult result;
    	
/*    	sc = culaSparseSetHostPlatform(handle, plan, 0);

    // set cg solver
    	sc = culaSparseSetCgSolver(handle, plan, 0);
	printf("\n Fine till here");
	printf("\n");    
    // perform solve (cg + no preconditioner on host)
	culaSparseResult result;
	sc = culaSparseExecutePlan(handle, plan, &config, &result);
	sc = culaSparseGetResultString(handle, &result, buffer, bufsize);
	std::cout << buffer << std::endl;
    	
    	if (culaSparsePreinitializeCuda(handle) == culaSparseNoError)
    {
        // change to cuda accelerated platform
        sc = culaSparseSetCudaPlatform(handle, plan, 0);

        // perform solve (cg + ilu0 on cuda)
        culaSparseGmresOptions solverOpts;
	culaSparseStatus status = culaSparseGmresOptionsInit(handle, &solverOpts);
	solverOpts.restart = 20;


	sc = culaSparseSetCgSolver(handle, plan, 0);

//        sc = culaSparseSetJacobiPreconditioner(handle, plan, 0);
//        sc = culaSparseSetIlu0Preconditioner(handle, plan, 0);
        sc = culaSparseExecutePlan(handle, plan, &config, &result);
        sc = culaSparseGetResultString(handle, &result, buffer, bufsize);
        std::cout << buffer << std::endl;

        // change preconditioner to fainv 
        // this avoids data transfer by using data cached by the plan
//        sc = culaSparseSetIlu0Preconditioner(handle, plan, 0);

        // perform solve (cg + fainv on cuda)
        // these timing results should indicate minimal overhead
/*        sc = culaSparseExecutePlan(handle, plan, &config, &result);
        sc = culaSparseGetResultString(handle, &result, buffer, bufsize);
        std::cout << buffer << std::endl;

        // change solver
        // this avoids preconditioner regeneration by using data cached by the plan
        sc = culaSparseSetBicgstabSolver(handle, plan, 0);

        // perform solve (bicgstab + fainv on cuda)
        // the timing results should indicate minimal overhead and preconditioner generation time
        sc = culaSparseExecutePlan(handle, plan, &config, &result);
        sc = culaSparseGetResultString(handle, &result, buffer, bufsize);
        std::cout << buffer << std::endl;
        
        sc = culaSparseSetGmresSolver(handle, plan, 0);

        // perform solve (bicgstab + fainv on cuda)
        // the timing results should indicate minimal overhead and preconditioner generation time
        sc = culaSparseExecutePlan(handle, plan, &config, &result);
        sc = culaSparseGetResultString(handle, &result, buffer, bufsize);
        std::cout << buffer << std::endl;
    }
    else
    {
        std::cout << "alert: no cuda capable gpu found" << std::endl;
    }

    // cleanup plan
    culaSparseDestroyPlan(plan);

    // cleanup handle
    culaSparseDestroy(handle);

    	FILE* myWriteFile;
  	myWriteFile=fopen("result.txt","w");
  	for (i = 0; i < n; i++)
    	{
		fprintf(myWriteFile,"%1f\n",G.x[i]);
    		//  printf ("\n x [%d] = % f", i, x[i]);
    	}
  	fprintf(myWriteFile,".end\n");
  	fclose(myWriteFile);
 
  	printf ("\n");
    	
    	
//	time_st=dsecnd();
//	solver(G.rowIndex,G.columns,G.Mat_val,G.b,G.x,m+n,G.nonzero);
//	time_end=dsecnd();
//	time_avg = (time_end-time_st);
//	printf("Successfully Solved in : %.6f secs\n",time_avg);
	cerr<<endl;

	cerr<<"Fillup Graph                    ";	
//	time_st=dsecnd();
	G.fillup_graph();
//	time_end=dsecnd();
//	time_avg = (time_end-time_st);
//	cerr<<"Done                 "<<time_avg<<endl;

	//G.output_graph_stdout();
	cerr<<"Matching KCL                    ";
//	time_st=dsecnd();
	G.check_kcl();
//	time_end=dsecnd();
//	time_avg = (time_end-time_st);
//	cerr<<"Done                 "<<time_avg<<endl;
	/*for (int i=0;i<m+n;i++)
	  {
	  cout<<"M"<<i<<endl;
	  for (int j=0;j<m+n;j++)
	  cout<<" "<<j<<"#"<<M[i][j]<<endl;
	  }*/
} 
Exemple #22
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing sparse matrix vector product
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_CHECK( magma_init() );
    magma_print_environment();
    magma_queue_t queue=NULL;
    magma_queue_create( 0, &queue );
    
    magma_s_matrix hA={Magma_CSR}, hA_SELLP={Magma_CSR}, 
    dA={Magma_CSR}, dA_SELLP={Magma_CSR};
    
    magma_s_matrix hx={Magma_CSR}, hy={Magma_CSR}, dx={Magma_CSR}, 
    dy={Magma_CSR}, hrefvec={Magma_CSR}, hcheck={Magma_CSR};
        
    hA_SELLP.blocksize = 8;
    hA_SELLP.alignment = 8;
    real_Double_t start, end, res;
    #ifdef MAGMA_WITH_MKL
        magma_int_t *pntre=NULL;
    #endif
    cusparseHandle_t cusparseHandle = NULL;
    cusparseMatDescr_t descr = NULL;

    float c_one  = MAGMA_S_MAKE(1.0, 0.0);
    float c_zero = MAGMA_S_MAKE(0.0, 0.0);
    
    float accuracy = 1e-10;
    
    #define PRECISION_s
    #if defined(PRECISION_c)
        accuracy = 1e-4;
    #endif
    #if defined(PRECISION_s)
        accuracy = 1e-4;
    #endif
    
    magma_int_t i, j;
    for( i = 1; i < argc; ++i ) {
        if ( strcmp("--blocksize", argv[i]) == 0 ) {
            hA_SELLP.blocksize = atoi( argv[++i] );
        } else if ( strcmp("--alignment", argv[i]) == 0 ) {
            hA_SELLP.alignment = atoi( argv[++i] );
        } else
            break;
    }
    printf("\n#    usage: ./run_sspmm"
           " [ --blocksize %lld --alignment %lld (for SELLP) ] matrices\n\n",
           (long long) hA_SELLP.blocksize, (long long) hA_SELLP.alignment );

    while( i < argc ) {
        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            TESTING_CHECK( magma_sm_5stencil(  laplace_size, &hA, queue ));
        } else {                        // file-matrix test
            TESTING_CHECK( magma_s_csr_mtx( &hA,  argv[i], queue ));
        }

        printf("%% matrix info: %lld-by-%lld with %lld nonzeros\n",
                (long long) hA.num_rows, (long long) hA.num_cols, (long long) hA.nnz );

        real_Double_t FLOPS = 2.0*hA.nnz/1e9;



        // m - number of rows for the sparse matrix
        // n - number of vectors to be multiplied in the SpMM product
        magma_int_t m, n;

        m = hA.num_rows;
        n = 48;

        // init CPU vectors
        TESTING_CHECK( magma_svinit( &hx, Magma_CPU, m, n, c_one, queue ));
        TESTING_CHECK( magma_svinit( &hy, Magma_CPU, m, n, c_zero, queue ));

        // init DEV vectors
        TESTING_CHECK( magma_svinit( &dx, Magma_DEV, m, n, c_one, queue ));
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, m, n, c_zero, queue ));


        // calling MKL with CSR
        #ifdef MAGMA_WITH_MKL
            TESTING_CHECK( magma_imalloc_cpu( &pntre, m + 1 ) );
            pntre[0] = 0;
            for (j=0; j < m; j++ ) {
                pntre[j] = hA.row[j+1];
            }

            MKL_INT num_rows = hA.num_rows;
            MKL_INT num_cols = hA.num_cols;
            MKL_INT nnz = hA.nnz;
            MKL_INT num_vecs = n;

            MKL_INT *col;
            TESTING_CHECK( magma_malloc_cpu( (void**) &col, nnz * sizeof(MKL_INT) ));
            for( magma_int_t t=0; t < hA.nnz; ++t ) {
                col[ t ] = hA.col[ t ];
            }
            MKL_INT *row;
            TESTING_CHECK( magma_malloc_cpu( (void**) &row, num_rows * sizeof(MKL_INT) ));
            for( magma_int_t t=0; t < hA.num_rows; ++t ) {
                row[ t ] = hA.col[ t ];
            }

            // === Call MKL with consecutive SpMVs, using mkl_scsrmv ===
            // warmp up
            mkl_scsrmv( "N", &num_rows, &num_cols,
                        MKL_ADDR(&c_one), "GFNC", MKL_ADDR(hA.val), col, row, pntre,
                                                  MKL_ADDR(hx.val),
                        MKL_ADDR(&c_zero),        MKL_ADDR(hy.val) );
    
            start = magma_wtime();
            for (j=0; j < 10; j++ ) {
                mkl_scsrmv( "N", &num_rows, &num_cols,
                            MKL_ADDR(&c_one), "GFNC", MKL_ADDR(hA.val), col, row, pntre,
                                                      MKL_ADDR(hx.val),
                            MKL_ADDR(&c_zero),        MKL_ADDR(hy.val) );
            }
            end = magma_wtime();
            printf( "\n > MKL SpMVs : %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                            (end-start)/10, FLOPS*10/(end-start) );
    
            // === Call MKL with blocked SpMVs, using mkl_scsrmm ===
            char transa = 'n';
            MKL_INT ldb = n, ldc=n;
            char matdescra[6] = {'g', 'l', 'n', 'c', 'x', 'x'};
    
            // warm up
            mkl_scsrmm( &transa, &num_rows, &num_vecs, &num_cols, MKL_ADDR(&c_one), matdescra,
                        MKL_ADDR(hA.val), col, row, pntre,
                        MKL_ADDR(hx.val), &ldb,
                        MKL_ADDR(&c_zero),
                        MKL_ADDR(hy.val), &ldc );
    
            start = magma_wtime();
            for (j=0; j < 10; j++ ) {
                mkl_scsrmm( &transa, &num_rows, &num_vecs, &num_cols, MKL_ADDR(&c_one), matdescra,
                            MKL_ADDR(hA.val), col, row, pntre,
                            MKL_ADDR(hx.val), &ldb,
                            MKL_ADDR(&c_zero),
                            MKL_ADDR(hy.val), &ldc );
            }
            end = magma_wtime();
            printf( "\n > MKL SpMM  : %.2e seconds %.2e GFLOP/s    (CSR).\n",
                    (end-start)/10, FLOPS*10.*n/(end-start) );

            magma_free_cpu( row );
            magma_free_cpu( col );
            row = NULL;
            col = NULL;

        #endif // MAGMA_WITH_MKL

        // copy matrix to GPU
        TESTING_CHECK( magma_smtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue ));
        // SpMV on GPU (CSR)
        start = magma_sync_wtime( queue );
        for (j=0; j < 10; j++) {
            TESTING_CHECK( magma_s_spmv( c_one, dA, dx, c_zero, dy, queue ));
        }
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (standard CSR).\n",
                                        (end-start)/10, FLOPS*10.*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hrefvec , Magma_DEV, Magma_CPU, queue ));
        magma_smfree(&dA, queue );


        // convert to SELLP and copy to GPU
        TESTING_CHECK( magma_smconvert(  hA, &hA_SELLP, Magma_CSR, Magma_SELLP, queue ));
        TESTING_CHECK( magma_smtransfer( hA_SELLP, &dA_SELLP, Magma_CPU, Magma_DEV, queue ));
        magma_smfree(&hA_SELLP, queue );
        magma_smfree( &dy, queue );
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, dx.num_rows, dx.num_cols, c_zero, queue ));
        // SpMV on GPU (SELLP)
        start = magma_sync_wtime( queue );
        for (j=0; j < 10; j++) {
            TESTING_CHECK( magma_s_spmv( c_one, dA_SELLP, dx, c_zero, dy, queue ));
        }
        end = magma_sync_wtime( queue );
        printf( " > MAGMA: %.2e seconds %.2e GFLOP/s    (SELLP).\n",
                                        (end-start)/10, FLOPS*10.*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue ));
        res = 0.0;
        for(magma_int_t k=0; k < hA.num_rows; k++ ) {
            res=res + MAGMA_S_REAL(hcheck.val[k]) - MAGMA_S_REAL(hrefvec.val[k]);
        }
        printf("%% |x-y|_F = %8.2e\n", res);
        if ( res < accuracy )
            printf("%% tester spmm SELL-P:  ok\n");
        else
            printf("%% tester spmm SELL-P:  failed\n");
        magma_smfree( &hcheck, queue );
        magma_smfree(&dA_SELLP, queue );



        // SpMV on GPU (CUSPARSE - CSR)
        // CUSPARSE context //
        magma_smfree( &dy, queue );
        TESTING_CHECK( magma_svinit( &dy, Magma_DEV, dx.num_rows, dx.num_cols, c_zero, queue ));
        //#ifdef PRECISION_d
        start = magma_sync_wtime( queue );
        TESTING_CHECK( cusparseCreate( &cusparseHandle ));
        TESTING_CHECK( cusparseSetStream( cusparseHandle, magma_queue_get_cuda_stream(queue) ));
        TESTING_CHECK( cusparseCreateMatDescr( &descr ));
        TESTING_CHECK( cusparseSetMatType( descr, CUSPARSE_MATRIX_TYPE_GENERAL ));
        TESTING_CHECK( cusparseSetMatIndexBase( descr, CUSPARSE_INDEX_BASE_ZERO ));
        float alpha = c_one;
        float beta = c_zero;

        // copy matrix to GPU
        TESTING_CHECK( magma_smtransfer( hA, &dA, Magma_CPU, Magma_DEV, queue) );

        for (j=0; j < 10; j++) {
            cusparseScsrmm(cusparseHandle,
                    CUSPARSE_OPERATION_NON_TRANSPOSE,
                    dA.num_rows,   n, dA.num_cols, dA.nnz,
                    &alpha, descr, dA.dval, dA.drow, dA.dcol,
                    dx.dval, dA.num_cols, &beta, dy.dval, dA.num_cols);
        }
        end = magma_sync_wtime( queue );
        printf( " > CUSPARSE: %.2e seconds %.2e GFLOP/s    (CSR).\n",
                                        (end-start)/10, FLOPS*10*n/(end-start) );

        TESTING_CHECK( magma_smtransfer( dy, &hcheck , Magma_DEV, Magma_CPU, queue ));
        res = 0.0;
        for(magma_int_t k=0; k < hA.num_rows; k++ ) {
            res = res + MAGMA_S_REAL(hcheck.val[k]) - MAGMA_S_REAL(hrefvec.val[k]);
        }
        printf("%% |x-y|_F = %8.2e\n", res);
        if ( res < accuracy )
            printf("%% tester spmm cuSPARSE:  ok\n");
        else
            printf("%% tester spmm cuSPARSE:  failed\n");
        magma_smfree( &hcheck, queue );

        cusparseDestroyMatDescr( descr ); 
        cusparseDestroy( cusparseHandle );
        descr = NULL;
        cusparseHandle = NULL;
        //#endif

        printf("\n\n");

        // free CPU memory
        magma_smfree( &hA, queue );
        magma_smfree( &hx, queue );
        magma_smfree( &hy, queue );
        magma_smfree( &hrefvec, queue );
        // free GPU memory
        magma_smfree( &dx, queue );
        magma_smfree( &dy, queue );
        magma_smfree( &dA, queue);

        #ifdef MAGMA_WITH_MKL
            magma_free_cpu( pntre );
        #endif
        
        i++;
    }

    magma_queue_destroy( queue );
    TESTING_CHECK( magma_finalize() );
    return info;
}
Exemple #23
0
extern "C" magma_int_t
magma_cmtransposeconjugate(
    magma_c_matrix A,
    magma_c_matrix *B,
    magma_queue_t queue )
{
    // for symmetric matrices: convert to csc using cusparse
    
    magma_int_t info = 0;
    cusparseHandle_t handle=NULL;
    cusparseMatDescr_t descrA=NULL;
    cusparseMatDescr_t descrB=NULL;
    
    magma_c_matrix ACSR={Magma_CSR}, BCSR={Magma_CSR};
    magma_c_matrix A_d={Magma_CSR}, B_d={Magma_CSR};

    if( A.storage_type == Magma_CSR && A.memory_location == Magma_DEV ) {
        // fill in information for B
        B->storage_type    = A.storage_type;
        B->diagorder_type  = A.diagorder_type;
        B->memory_location = Magma_DEV;
        B->num_rows        = A.num_cols;  // transposed
        B->num_cols        = A.num_rows;  // transposed
        B->nnz             = A.nnz;
        B->true_nnz = A.true_nnz;
        if ( A.fill_mode == MagmaFull ) {
            B->fill_mode = MagmaFull;
        }
        else if ( A.fill_mode == MagmaLower ) {
            B->fill_mode = MagmaUpper;
        }
        else if ( A.fill_mode == MagmaUpper ) {
            B->fill_mode = MagmaLower;
        }
        B->dval = NULL;
        B->drow = NULL;
        B->dcol = NULL;
        
        // memory allocation
        CHECK( magma_cmalloc( &B->dval, B->nnz ));
        CHECK( magma_index_malloc( &B->drow, B->num_rows + 1 ));
        CHECK( magma_index_malloc( &B->dcol, B->nnz ));
        // CUSPARSE context //
        CHECK_CUSPARSE( cusparseCreate( &handle ));
        CHECK_CUSPARSE( cusparseSetStream( handle, queue->cuda_stream() ));
        CHECK_CUSPARSE( cusparseCreateMatDescr( &descrA ));
        CHECK_CUSPARSE( cusparseCreateMatDescr( &descrB ));
        CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_GENERAL ));
        CHECK_CUSPARSE( cusparseSetMatType( descrB, CUSPARSE_MATRIX_TYPE_GENERAL ));
        CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
        CHECK_CUSPARSE( cusparseSetMatIndexBase( descrB, CUSPARSE_INDEX_BASE_ZERO ));
        CHECK_CUSPARSE(
        cusparseCcsr2csc( handle, A.num_rows, A.num_cols, A.nnz,
                          A.dval, A.drow, A.dcol, B->dval, B->dcol, B->drow,
                          CUSPARSE_ACTION_NUMERIC,
                          CUSPARSE_INDEX_BASE_ZERO) );
        CHECK( magma_cmconjugate( B, queue ));
    } else if ( A.memory_location == Magma_CPU ){
        CHECK( magma_cmtransfer( A, &A_d, A.memory_location, Magma_DEV, queue ));
        CHECK( magma_cmtransposeconjugate( A_d, &B_d, queue ));
        CHECK( magma_cmtransfer( B_d, B, Magma_DEV, A.memory_location, queue ));
    } else {
        CHECK( magma_cmconvert( A, &ACSR, A.storage_type, Magma_CSR, queue ));
        CHECK( magma_cmtransposeconjugate( ACSR, &BCSR, queue ));
        CHECK( magma_cmconvert( BCSR, B, Magma_CSR, A.storage_type, queue ));
    }
cleanup:
    cusparseDestroyMatDescr( descrA );
    cusparseDestroyMatDescr( descrB );
    cusparseDestroy( handle );
    magma_cmfree( &A_d, queue );
    magma_cmfree( &B_d, queue );
    magma_cmfree( &ACSR, queue );
    magma_cmfree( &BCSR, queue );
    if( info != 0 ){
        magma_cmfree( B, queue );
    }
    return info;
}
Exemple #24
0
magma_int_t
magma_ccustomicsetup(
    magma_c_matrix A,
    magma_c_matrix b,
    magma_c_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;

    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
    
    magma_c_matrix hA={Magma_CSR};
    char preconditionermatrix[255];
    
    snprintf( preconditionermatrix, sizeof(preconditionermatrix),
                "/Users/hanzt0114cl306/work/matrices/ani/ani7_crop_ichol.mtx" );
    
    CHECK( magma_c_csr_mtx( &hA, preconditionermatrix , queue) );
    
    
    // for CUSPARSE
    CHECK( magma_cmtransfer( hA, &precond->M, Magma_CPU, Magma_DEV , queue ));

        // copy the matrix to precond->L and (transposed) to precond->U
    CHECK( magma_cmtransfer(precond->M, &(precond->L), Magma_DEV, Magma_DEV, queue ));
    CHECK( magma_cmtranspose( precond->L, &(precond->U), queue ));

    // extract the diagonal of L into precond->d
    CHECK( magma_cjacobisetup_diagscal( precond->L, &precond->d, queue ));
    CHECK( magma_cvinit( &precond->work1, Magma_DEV, hA.num_rows, 1, MAGMA_C_ZERO, queue ));

    // extract the diagonal of U into precond->d2
    CHECK( magma_cjacobisetup_diagscal( precond->U, &precond->d2, queue ));
    CHECK( magma_cvinit( &precond->work2, Magma_DEV, hA.num_rows, 1, MAGMA_C_ZERO, queue ));


    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCcsrsv_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrL,
        precond->M.val, precond->M.row, precond->M.col, precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseCcsrsv_analysis( cusparseHandle,
        CUSPARSE_OPERATION_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrU,
        precond->M.val, precond->M.row, precond->M.col, precond->cuinfoU ));

    
    cleanup:
        
    cusparseDestroy( cusparseHandle );
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseHandle=NULL;
    descrL=NULL;
    descrU=NULL;    
    magma_cmfree( &hA, queue );
    
    return info;
}
Exemple #25
0
extern "C" magma_int_t
magma_dcumiccsetup(
    magma_d_matrix A,
    magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrA=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
#if CUDA_VERSION >= 7000
    csric02Info_t info_M=NULL;
    void *pBuffer = NULL;
#endif
    
    magma_d_matrix hA={Magma_CSR}, hACSR={Magma_CSR}, U={Magma_CSR};
    CHECK( magma_dmtransfer( A, &hA, A.memory_location, Magma_CPU, queue ));
    U.diagorder_type = Magma_VALUE;
    CHECK( magma_dmconvert( hA, &hACSR, hA.storage_type, Magma_CSR, queue ));

    // in case using fill-in
    if( precond->levels > 0 ){
            magma_d_matrix hAL={Magma_CSR}, hAUt={Magma_CSR};
            CHECK( magma_dsymbilu( &hACSR, precond->levels, &hAL, &hAUt,  queue ));
            magma_dmfree(&hAL, queue);
            magma_dmfree(&hAUt, queue);
    }

    CHECK( magma_dmconvert( hACSR, &U, Magma_CSR, Magma_CSRL, queue ));
    magma_dmfree( &hACSR, queue );
    CHECK( magma_dmtransfer(U, &(precond->M), Magma_CPU, Magma_DEV, queue ));

    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrA ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &(precond->cuinfo) ));
    // use kernel to manually check for zeros n the diagonal
    CHECK( magma_ddiagcheck( precond->M, queue ) );
        
#if CUDA_VERSION >= 7000
    // this version has the bug fixed where a zero on the diagonal causes a crash
    CHECK_CUSPARSE( cusparseCreateCsric02Info(&info_M) );
    CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_GENERAL ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
    int buffersize;
    int structural_zero;
    int numerical_zero;
    
    CHECK_CUSPARSE(
    cusparseDcsric02_bufferSize( cusparseHandle,
                         precond->M.num_rows, precond->M.nnz, descrA,
                         precond->M.dval, precond->M.drow, precond->M.dcol,
                         info_M,
                         &buffersize ) );
    
    CHECK( magma_malloc((void**)&pBuffer, buffersize) );

    CHECK_CUSPARSE( cusparseDcsric02_analysis( cusparseHandle,
            precond->M.num_rows, precond->M.nnz, descrA,
            precond->M.dval, precond->M.drow, precond->M.dcol,
            info_M, CUSPARSE_SOLVE_POLICY_NO_LEVEL, pBuffer ));
    CHECK_CUSPARSE( cusparseXcsric02_zeroPivot( cusparseHandle, info_M, &numerical_zero ) );
    CHECK_CUSPARSE( cusparseXcsric02_zeroPivot( cusparseHandle, info_M, &structural_zero ) );

    CHECK_CUSPARSE(
    cusparseDcsric02( cusparseHandle,
                         precond->M.num_rows, precond->M.nnz, descrA,
                         precond->M.dval, precond->M.drow, precond->M.dcol,
                         info_M, CUSPARSE_SOLVE_POLICY_NO_LEVEL, pBuffer) );    

#else
    // this version contains the bug but is needed for backward compability
    CHECK_CUSPARSE( cusparseSetMatType( descrA, CUSPARSE_MATRIX_TYPE_SYMMETRIC ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrA, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrA, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrA, CUSPARSE_FILL_MODE_LOWER ));
    
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
                CUSPARSE_OPERATION_NON_TRANSPOSE,
                precond->M.num_rows, precond->M.nnz, descrA,
                precond->M.dval, precond->M.drow, precond->M.dcol,
                precond->cuinfo ));
    CHECK_CUSPARSE( cusparseDcsric0( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                      precond->M.num_rows, descrA,
                      precond->M.dval,
                      precond->M.drow,
                      precond->M.dcol,
                      precond->cuinfo ));
#endif

    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrL,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrU,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoU ));

    if( precond->maxiter < 50 ){
        //prepare for iterative solves
        
        // copy the matrix to precond->L and (transposed) to precond->U
        CHECK( magma_dmtransfer(precond->M, &(precond->L), Magma_DEV, Magma_DEV, queue ));
        CHECK( magma_dmtranspose( precond->L, &(precond->U), queue ));
        
        // extract the diagonal of L into precond->d
        CHECK( magma_djacobisetup_diagscal( precond->L, &precond->d, queue ));
        CHECK( magma_dvinit( &precond->work1, Magma_DEV, hA.num_rows, 1, MAGMA_D_ZERO, queue ));
        
        // extract the diagonal of U into precond->d2
        CHECK( magma_djacobisetup_diagscal( precond->U, &precond->d2, queue ));
        CHECK( magma_dvinit( &precond->work2, Magma_DEV, hA.num_rows, 1, MAGMA_D_ZERO, queue ));
    }



/*
    // to enable also the block-asynchronous iteration for the triangular solves
    CHECK( magma_dmtransfer( precond->M, &hA, Magma_DEV, Magma_CPU, queue ));
    hA.storage_type = Magma_CSR;

    magma_d_matrix hD, hR, hAt

    CHECK( magma_dcsrsplit( 256, hA, &hD, &hR, queue ));

    CHECK( magma_dmtransfer( hD, &precond->LD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_dmtransfer( hR, &precond->L, Magma_CPU, Magma_DEV, queue ));

    magma_dmfree(&hD, queue );
    magma_dmfree(&hR, queue );

    CHECK( magma_d_cucsrtranspose(   hA, &hAt, queue ));

    CHECK( magma_dcsrsplit( 256, hAt, &hD, &hR, queue ));

    CHECK( magma_dmtransfer( hD, &precond->UD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_dmtransfer( hR, &precond->U, Magma_CPU, Magma_DEV, queue ));
    
    magma_dmfree(&hD, queue );
    magma_dmfree(&hR, queue );
    magma_dmfree(&hA, queue );
    magma_dmfree(&hAt, queue );
*/

cleanup:
#if CUDA_VERSION >= 7000
    magma_free( pBuffer );
    cusparseDestroyCsric02Info( info_M );
#endif
    cusparseDestroySolveAnalysisInfo( precond->cuinfo );
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseDestroyMatDescr( descrA );
    cusparseDestroy( cusparseHandle );
    magma_dmfree(&U, queue );
    magma_dmfree(&hA, queue );

    return info;
}
Exemple #26
0
int _tmain(int argc, _TCHAR* argv[])
{
	int M = 0, N = 0, nz = 0, *I = NULL, *J = NULL;
	cuDoubleComplex *val = NULL;
	cuDoubleComplex *x, *y;
	cuDoubleComplex *d_x, *d_y;
	double duration, duration_setup;


	std::clock_t setup_clock;
	setup_clock = std::clock();
	// This will pick the best possible CUDA capable device
	cudaDeviceProp deviceProp;
	int devID = findCudaDevice(argc, (const char **)argv);

	if (devID < 0)
	{
		printf("no devices found...\n");
		exit(EXIT_SUCCESS);
	}

	checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));

	// Statistics about the GPU device
	printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
		deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);

	int version = (deviceProp.major * 0x10 + deviceProp.minor);

	if (version < 0x11)
	{
		printf("Requires a minimum CUDA compute 1.1 capability\n");
		cudaDeviceReset();
		exit(EXIT_SUCCESS);
	}

	M = N = 8388608; //2 ^ 23
	//M = N = 4194304; //2 ^ 22
	//M = N = 2097152; //2 ^ 21
	//M = N = 1048576; //2 ^ 20
	//M = N = 524288; //2 ^ 19

	nz = N * 8;
	I = (int *)malloc(sizeof(int)*(N + 1));
	J = (int *)malloc(sizeof(int)*nz);
	val = (cuDoubleComplex *)malloc(sizeof(cuDoubleComplex)*nz);
	genTridiag(I, J, val, N, nz);

	x = (cuDoubleComplex*)malloc(sizeof(cuDoubleComplex)* N);
	y = (cuDoubleComplex*)malloc(sizeof(cuDoubleComplex)* N);

	//create an array for the answer array (Y) and set all of the answers to 0 for the test (could do random)
	for (int i = 0; i < N; i++)
	{
		y[i] = make_cuDoubleComplex(0.0, 0.0);
	}

	//Get handle to the CUBLAS context
	cublasHandle_t cublasHandle = 0;
	cublasStatus_t cublasStatus;
	cublasStatus = cublasCreate(&cublasHandle);

	checkCudaErrors(cublasStatus);

	//Get handle to the CUSPARSE context
	cusparseHandle_t cusparseHandle = 0;
	cusparseStatus_t cusparseStatus;
	cusparseStatus = cusparseCreate(&cusparseHandle);

	checkCudaErrors(cusparseStatus);

	//Get handle to a CUSPARSE matrix descriptor
	cusparseMatDescr_t descr = 0;
	cusparseStatus = cusparseCreateMatDescr(&descr);

	checkCudaErrors(cusparseStatus);

	//Get handle to a matrix_solve_info object
	cusparseSolveAnalysisInfo_t info = 0;
	cusparseStatus = cusparseCreateSolveAnalysisInfo(&info);

	checkCudaErrors(cusparseStatus);

	cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL);
	cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO);

	duration_setup = (std::clock() - setup_clock) / (double)CLOCKS_PER_SEC;
	printf("setup_time: %f\r\n", duration_setup);

	std::clock_t start;
	start = std::clock();
	checkCudaErrors(cudaMalloc((void **)&d_x, N*sizeof(float)));
	checkCudaErrors(cudaMalloc((void **)&d_y, N*sizeof(float)));

	cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
	cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

	//Analyze the matrix. The info variable is needed to perform additional operations on the matrix
	cusparseStatus = cusparseZcsrsv_analysis(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, nz, descr, val, J, I, info);
	//Uses infor gathered from the matrix to solve the matrix.
	cusparseStatus = cusparseZcsrsv_solve(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, 0, descr, val, J, I, info, d_x, d_y);

	//Get the result back from the device
	cudaMemcpy(x, d_x, N*sizeof(float), cudaMemcpyDeviceToHost);
	cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

	duration = (std::clock() - start) / (double)CLOCKS_PER_SEC;
	printf("time ellapsed: %f", duration);

	//free up memory
	cusparseDestroy(cusparseHandle);
	cublasDestroy(cublasHandle);
	free(I);
	free(J);
	free(val);
	free(x);
	cudaFree(d_x);
	cudaDeviceReset();

	//Wait for user input so they can see the results
	char* s = (char*)malloc(sizeof(char) * 8);
	scanf(s);

	exit(0);
}
Exemple #27
0
extern "C" magma_int_t
magma_dcumicgeneratesolverinfo(
    magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    cusparseHandle_t cusparseHandle=NULL;
    cusparseMatDescr_t descrL=NULL;
    cusparseMatDescr_t descrU=NULL;
    
    // CUSPARSE context //
    CHECK_CUSPARSE( cusparseCreate( &cusparseHandle ));
    CHECK_CUSPARSE( cusparseSetStream( cusparseHandle, queue->cuda_stream() ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrL ));
    CHECK_CUSPARSE( cusparseSetMatType( descrL, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrL, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrL, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrL, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_NON_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrL,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoL ));
    CHECK_CUSPARSE( cusparseCreateMatDescr( &descrU ));
    CHECK_CUSPARSE( cusparseSetMatType( descrU, CUSPARSE_MATRIX_TYPE_TRIANGULAR ));
    CHECK_CUSPARSE( cusparseSetMatDiagType( descrU, CUSPARSE_DIAG_TYPE_NON_UNIT ));
    CHECK_CUSPARSE( cusparseSetMatIndexBase( descrU, CUSPARSE_INDEX_BASE_ZERO ));
    CHECK_CUSPARSE( cusparseSetMatFillMode( descrU, CUSPARSE_FILL_MODE_LOWER ));
    CHECK_CUSPARSE( cusparseCreateSolveAnalysisInfo( &precond->cuinfoU ));
    CHECK_CUSPARSE( cusparseDcsrsm_analysis( cusparseHandle,
        CUSPARSE_OPERATION_TRANSPOSE, precond->M.num_rows,
        precond->M.nnz, descrU,
        precond->M.dval, precond->M.drow, precond->M.dcol, precond->cuinfoU ));


/*
    // to enable also the block-asynchronous iteration for the triangular solves
    CHECK( magma_dmtransfer( precond->M, &hA, Magma_DEV, Magma_CPU, queue ));
    hA.storage_type = Magma_CSR;

    CHECK( magma_dcsrsplit( 256, hA, &hD, &hR, queue ));

    CHECK( magma_dmtransfer( hD, &precond->LD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_dmtransfer( hR, &precond->L, Magma_CPU, Magma_DEV, queue ));

    magma_dmfree(&hD, queue );
    magma_dmfree(&hR, queue );

    CHECK( magma_d_cucsrtranspose(   hA, &hAt, queue ));

    CHECK( magma_dcsrsplit( 256, hAt, &hD, &hR, queue ));

    CHECK( magma_dmtransfer( hD, &precond->UD, Magma_CPU, Magma_DEV, queue ));
    CHECK( magma_dmtransfer( hR, &precond->U, Magma_CPU, Magma_DEV, queue ));
    
    magma_dmfree(&hD, queue );
    magma_dmfree(&hR, queue );
    magma_dmfree(&hA, queue );
    magma_dmfree(&hAt, queue );
*/

cleanup:
    cusparseDestroyMatDescr( descrL );
    cusparseDestroyMatDescr( descrU );
    cusparseDestroy( cusparseHandle );
    return info;
}
Exemple #28
0
int main(int argc, char **argv)
{
    int N = 0, nz = 0, *I = NULL, *J = NULL;
    float *val = NULL;
    const float tol = 1e-5f;
    const int max_iter = 10000;
    float *x;
    float *rhs;
    float a, b, na, r0, r1;
    float dot;
    float *r, *p, *Ax;
    int k;
    float alpha, beta, alpham1;

    printf("Starting [%s]...\n", sSDKname);

    // This will pick the best possible CUDA capable device
    cudaDeviceProp deviceProp;
    int devID = findCudaDevice(argc, (const char **)argv);
    checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));

#if defined(__APPLE__) || defined(MACOSX)
    fprintf(stderr, "Unified Memory not currently supported on OS X\n");
    cudaDeviceReset();
    exit(EXIT_WAIVED);
#endif

    if (sizeof(void *) != 8)
    {
        fprintf(stderr, "Unified Memory requires compiling for a 64-bit system.\n");
        cudaDeviceReset();
        exit(EXIT_WAIVED);
    }

    if (((deviceProp.major << 4) + deviceProp.minor) < 0x30)
    {
        fprintf(stderr, "%s requires Compute Capability of SM 3.0 or higher to run.\nexiting...\n", argv[0]);

        cudaDeviceReset();
        exit(EXIT_WAIVED);
    }

    // Statistics about the GPU device
    printf("> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
           deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);

    /* Generate a random tridiagonal symmetric matrix in CSR format */
    N = 1048576;
    nz = (N-2)*3 + 4;

    cudaMallocManaged((void **)&I, sizeof(int)*(N+1));
    cudaMallocManaged((void **)&J, sizeof(int)*nz);
    cudaMallocManaged((void **)&val, sizeof(float)*nz);

    genTridiag(I, J, val, N, nz);

    cudaMallocManaged((void **)&x, sizeof(float)*N);
    cudaMallocManaged((void **)&rhs, sizeof(float)*N);

    for (int i = 0; i < N; i++)
    {
        rhs[i] = 1.0;
        x[i] = 0.0;
    }

    /* Get handle to the CUBLAS context */
    cublasHandle_t cublasHandle = 0;
    cublasStatus_t cublasStatus;
    cublasStatus = cublasCreate(&cublasHandle);

    checkCudaErrors(cublasStatus);

    /* Get handle to the CUSPARSE context */
    cusparseHandle_t cusparseHandle = 0;
    cusparseStatus_t cusparseStatus;
    cusparseStatus = cusparseCreate(&cusparseHandle);

    checkCudaErrors(cusparseStatus);

    cusparseMatDescr_t descr = 0;
    cusparseStatus = cusparseCreateMatDescr(&descr);

    checkCudaErrors(cusparseStatus);

    cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO);

    // temp memory for CG
    checkCudaErrors(cudaMallocManaged((void **)&r, N*sizeof(float)));
    checkCudaErrors(cudaMallocManaged((void **)&p, N*sizeof(float)));
    checkCudaErrors(cudaMallocManaged((void **)&Ax, N*sizeof(float)));

    cudaDeviceSynchronize();

    for (int i=0; i < N; i++)
    {
        r[i] = rhs[i];
    }

    alpha = 1.0;
    alpham1 = -1.0;
    beta = 0.0;
    r0 = 0.;

    cusparseScsrmv(cusparseHandle,CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, val, I, J, x, &beta, Ax);

    cublasSaxpy(cublasHandle, N, &alpham1, Ax, 1, r, 1);
    cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1);

    k = 1;

    while (r1 > tol*tol && k <= max_iter)
    {
        if (k > 1)
        {
            b = r1 / r0;
            cublasStatus = cublasSscal(cublasHandle, N, &b, p, 1);
            cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, r, 1, p, 1);
        }
        else
        {
            cublasStatus = cublasScopy(cublasHandle, N, r, 1, p, 1);
        }

        cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, val, I, J, p, &beta, Ax);
        cublasStatus = cublasSdot(cublasHandle, N, p, 1, Ax, 1, &dot);
        a = r1 / dot;

        cublasStatus = cublasSaxpy(cublasHandle, N, &a, p, 1, x, 1);
        na = -a;
        cublasStatus = cublasSaxpy(cublasHandle, N, &na, Ax, 1, r, 1);

        r0 = r1;
        cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1);
        cudaThreadSynchronize();
        printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
        k++;
    }

    printf("Final residual: %e\n",sqrt(r1));

    fprintf(stdout,"&&&& uvm_cg test %s\n", (sqrt(r1) < tol) ? "PASSED" : "FAILED");

    float rsum, diff, err = 0.0;

    for (int i = 0; i < N; i++)
    {
        rsum = 0.0;

        for (int j = I[i]; j < I[i+1]; j++)
        {
            rsum += val[j]*x[J[j]];
        }

        diff = fabs(rsum - rhs[i]);

        if (diff > err)
        {
            err = diff;
        }
    }

    cusparseDestroy(cusparseHandle);
    cublasDestroy(cublasHandle);

    cudaFree(I);
    cudaFree(J);
    cudaFree(val);
    cudaFree(x);
    cudaFree(r);
    cudaFree(p);
    cudaFree(Ax);

    cudaDeviceReset();

    printf("Test Summary:  Error amount = %f, result = %s\n", err, (k <= max_iter) ? "SUCCESS" : "FAILURE");
    exit((k <= max_iter) ? EXIT_SUCCESS : EXIT_FAILURE);
}
Exemple #29
0
extern "C" magma_int_t
magma_zcuspaxpy(
    magmaDoubleComplex *alpha, magma_z_sparse_matrix A,
    magmaDoubleComplex *beta, magma_z_sparse_matrix B,
    magma_z_sparse_matrix *AB,
    magma_queue_t queue )
{
    if (    A.memory_location == Magma_DEV
            && B.memory_location == Magma_DEV
            && ( A.storage_type == Magma_CSR ||
                 A.storage_type == Magma_CSRCOO )
            && ( B.storage_type == Magma_CSR ||
                 B.storage_type == Magma_CSRCOO ) ) {

        magma_z_sparse_matrix C;
        C.num_rows = A.num_rows;
        C.num_cols = A.num_cols;
        C.storage_type = A.storage_type;
        C.memory_location = A.memory_location;
        magma_int_t stat_dev = 0;
        C.val = NULL;
        C.col = NULL;
        C.row = NULL;
        C.rowidx = NULL;
        C.blockinfo = NULL;
        C.diag = NULL;
        C.dval = NULL;
        C.dcol = NULL;
        C.drow = NULL;
        C.drowidx = NULL;
        C.ddiag = NULL;

        // CUSPARSE context //
        cusparseHandle_t handle;
        cusparseStatus_t cusparseStatus;
        cusparseStatus = cusparseCreate(&handle);
        cusparseSetStream( handle, queue );
        if (cusparseStatus != 0)    printf("error in Handle.\n");

        cusparseMatDescr_t descrA;
        cusparseMatDescr_t descrB;
        cusparseMatDescr_t descrC;
        cusparseStatus = cusparseCreateMatDescr(&descrA);
        cusparseStatus = cusparseCreateMatDescr(&descrB);
        cusparseStatus = cusparseCreateMatDescr(&descrC);
        if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

        cusparseStatus =
            cusparseSetMatType(descrA,CUSPARSE_MATRIX_TYPE_GENERAL);
        cusparseSetMatType(descrB,CUSPARSE_MATRIX_TYPE_GENERAL);
        cusparseSetMatType(descrC,CUSPARSE_MATRIX_TYPE_GENERAL);
        if (cusparseStatus != 0)    printf("error in MatrType.\n");

        cusparseStatus =
            cusparseSetMatIndexBase(descrA,CUSPARSE_INDEX_BASE_ZERO);
        cusparseSetMatIndexBase(descrB,CUSPARSE_INDEX_BASE_ZERO);
        cusparseSetMatIndexBase(descrC,CUSPARSE_INDEX_BASE_ZERO);
        if (cusparseStatus != 0)    printf("error in IndexBase.\n");

        // multiply A and B on the device
        magma_int_t baseC;
        // nnzTotalDevHostPtr points to host memory
        magma_index_t *nnzTotalDevHostPtr = (magma_index_t*) &C.nnz;
        cusparseSetPointerMode(handle, CUSPARSE_POINTER_MODE_HOST);
        stat_dev += magma_index_malloc( &C.drow, (A.num_rows + 1) );

        cusparseXcsrgeamNnz(handle,A.num_rows, A.num_cols,
                            descrA, A.nnz, A.drow, A.dcol,
                            descrB, B.nnz, B.drow, B.dcol,
                            descrC, C.row, nnzTotalDevHostPtr);

        if (NULL != nnzTotalDevHostPtr) {
            C.nnz = *nnzTotalDevHostPtr;
        } else {
            // workaround as nnz and base C are magma_int_t
            magma_index_t base_t, nnz_t;
            magma_index_getvector( 1, C.drow+C.num_rows, 1, &nnz_t, 1 );
            magma_index_getvector( 1, C.drow,   1, &base_t,    1 );
            C.nnz = (magma_int_t) nnz_t;
            baseC = (magma_int_t) base_t;
            C.nnz -= baseC;
        }
        stat_dev += magma_index_malloc( &C.dcol, C.nnz );
        stat_dev += magma_zmalloc( &C.dval, C.nnz );
        if( stat_dev != 0 ) {
            magma_z_mfree( &C, queue );
            return MAGMA_ERR_DEVICE_ALLOC;
        }

        cusparseZcsrgeam(handle, A.num_rows, A.num_cols,
                         alpha,
                         descrA, A.nnz,
                         A.dval, A.drow, A.dcol,
                         beta,
                         descrB, B.nnz,
                         B.dval, B.drow, B.dcol,
                         descrC,
                         C.dval, C.drow, C.dcol);


        cusparseDestroyMatDescr( descrA );
        cusparseDestroyMatDescr( descrB );
        cusparseDestroyMatDescr( descrC );
        cusparseDestroy( handle );
        // end CUSPARSE context //

        magma_z_mtransfer( C, AB, Magma_DEV, Magma_DEV, queue );
        magma_z_mfree( &C, queue );

        return MAGMA_SUCCESS;
    }
    else {

        printf("error: CSRSPAXPY only supported on device and CSR format.\n");

        return MAGMA_SUCCESS;
    }
}
Exemple #30
0
extern "C" magma_int_t
magma_dapplycumicc_r(
    magma_d_vector b, magma_d_vector *x, 
    magma_d_preconditioner *precond,
    magma_queue_t queue )
{
    double one = MAGMA_D_MAKE( 1.0, 0.0);

            // CUSPARSE context //
            cusparseHandle_t cusparseHandle;
            cusparseStatus_t cusparseStatus;
            cusparseStatus = cusparseCreate(&cusparseHandle);
            cusparseSetStream( cusparseHandle, queue );
             if (cusparseStatus != 0)    printf("error in Handle.\n");


            cusparseMatDescr_t descrU;
            cusparseStatus = cusparseCreateMatDescr(&descrU);
             if (cusparseStatus != 0)    printf("error in MatrDescr.\n");

            cusparseStatus =
            cusparseSetMatType(descrU,CUSPARSE_MATRIX_TYPE_TRIANGULAR);
             if (cusparseStatus != 0)    printf("error in MatrType.\n");

            cusparseStatus =
            cusparseSetMatDiagType (descrU, CUSPARSE_DIAG_TYPE_NON_UNIT);
             if (cusparseStatus != 0)    printf("error in DiagType.\n");

            cusparseStatus =
            cusparseSetMatIndexBase(descrU,CUSPARSE_INDEX_BASE_ZERO);
             if (cusparseStatus != 0)    printf("error in IndexBase.\n");


            cusparseStatus =
            cusparseSetMatFillMode(descrU,CUSPARSE_FILL_MODE_LOWER);
             if (cusparseStatus != 0)    printf("error in fillmode.\n");

            // end CUSPARSE context //
            magma_int_t dofs = precond->M.num_rows;


            cusparseStatus =
            cusparseDcsrsm_solve(   cusparseHandle, 
                                    CUSPARSE_OPERATION_TRANSPOSE, 
                                    precond->M.num_rows, 
                                    b.num_rows*b.num_cols/precond->M.num_rows, 
                                    &one, 
                                    descrU,
                                    precond->M.dval,
                                    precond->M.drow,
                                    precond->M.dcol,
                                    precond->cuinfoU,
                                    b.dval,
                                    precond->M.num_rows,
                                    x->dval, 
                                    precond->M.num_rows);
             if (cusparseStatus != 0)   
                 printf("error in U triangular solve:%d.\n", precond->cuinfoU );  


    cusparseDestroyMatDescr( descrU );
    cusparseDestroy( cusparseHandle );
    
    magma_device_sync();

    return MAGMA_SUCCESS;
}