Exemple #1
0
int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	struct cx18_av_state *state = &cx->av_state;
	int retval;
	u8 v;

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		v = cx18_av_read(cx, 0x803) & ~0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
		cx18_av_write(cx, 0x8d3, 0x1f);
	}
	v = cx18_av_read(cx, 0x810) | 0x1;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);

	retval = set_audclk_freq(cx, freq);

	v = cx18_av_read(cx, 0x810) & ~0x1;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		v = cx18_av_read(cx, 0x803) | 0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
	}
	return retval;
}
Exemple #2
0
static void set_mute(struct cx18 *cx, int mute)
{
	struct cx18_av_state *state = &cx->av_state;
	u8 v;

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		/* Must turn off microcontroller in order to mute sound.
		 * Not sure if this is the best method, but it does work.
		 * If the microcontroller is running, then it will undo any
		 * changes to the mute register. */
		v = cx18_av_read(cx, 0x803);
		if (mute) {
			/* disable microcontroller */
			v &= ~0x10;
			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
			cx18_av_write(cx, 0x8d3, 0x1f);
		} else {
			/* enable microcontroller */
			v |= 0x10;
			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
		}
	} else {
		/* SRC1_MUTE_EN */
		cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
	}
}
Exemple #3
0
static void set_volume(struct cx18 *cx, int volume)
{
	/* First convert the volume to msp3400 values (0-127) */
	int vol = volume >> 9;
	/* now scale it up to cx18_av values
	 * -114dB to -96dB maps to 0
	 * this should be 19, but in my testing that was 4dB too loud */
	if (vol <= 23)
		vol = 0;
	else
		vol -= 23;

	/* PATH1_VOLUME */
	cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
}
Exemple #4
0
void cx18_av_audio_set_path(struct cx18 *cx)
{
	struct cx18_av_state *state = &cx->av_state;
	u8 v;

	/* stop microcontroller */
	v = cx18_av_read(cx, 0x803) & ~0x10;
	cx18_av_write_expect(cx, 0x803, v, v, 0x1f);

	/* assert soft reset */
	v = cx18_av_read(cx, 0x810) | 0x01;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);

	/* Mute everything to prevent the PFFT! */
	cx18_av_write(cx, 0x8d3, 0x1f);

	if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
		/* Set Path1 to Serial Audio Input */
		cx18_av_write4(cx, 0x8d0, 0x01011012);

		/* The microcontroller should not be started for the
		 * non-tuner inputs: autodetection is specific for
		 * TV audio. */
	} else {
		/* Set Path1 to Analog Demod Main Channel */
		cx18_av_write4(cx, 0x8d0, 0x1f063870);
	}

	set_audclk_freq(cx, state->audclk_freq);

	/* deassert soft reset */
	v = cx18_av_read(cx, 0x810) & ~0x01;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		/* When the microcontroller detects the
		 * audio format, it will unmute the lines */
		v = cx18_av_read(cx, 0x803) | 0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
	}
}
Exemple #5
0
static int set_audclk_freq(struct cx18 *cx, u32 freq)
{
	struct cx18_av_state *state = &cx->av_state;

	if (freq != 32000 && freq != 44100 && freq != 48000)
		return -EINVAL;

	/*
	 * The PLL parameters are based on the external crystal frequency that
	 * would ideally be:
	 *
	 * NTSC Color subcarrier freq * 8 =
	 * 	4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
	 *
	 * The accidents of history and rationale that explain from where this
	 * combination of magic numbers originate can be found in:
	 *
	 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
	 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
	 *
	 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
	 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
	 *
	 * As Mike Bradley has rightly pointed out, it's not the exact crystal
	 * frequency that matters, only that all parts of the driver and
	 * firmware are using the same value (close to the ideal value).
	 *
	 * Since I have a strong suspicion that, if the firmware ever assumes a
	 * crystal value at all, it will assume 28.636360 MHz, the crystal
	 * freq used in calculations in this driver will be:
	 *
	 *	xtal_freq = 28.636360 MHz
	 *
	 * an error of less than 0.13 ppm which is way, way better than any off
	 * the shelf crystal will have for accuracy anyway.
	 *
	 * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
	 *
	 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
	 * investigation, experimentation, testing, and suggested solutions of
	 * of audio/video sync problems with SVideo and CVBS captures.
	 */

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		switch (freq) {
		case 32000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
			 */
			cx18_av_write4(cx, 0x108, 0x200d040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x176740c */
			/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0176740c);

			/* src3/4/6_ctl */
			/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
			cx18_av_write4(cx, 0x900, 0x0801f77f);
			cx18_av_write4(cx, 0x904, 0x0801f77f);
			cx18_av_write4(cx, 0x90c, 0x0801f77f);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
			cx18_av_write(cx, 0x127, 0x60);

			/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11202fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
			break;

		case 44100:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
			 */
			cx18_av_write4(cx, 0x108, 0x180e040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x062a1f2 */
			/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0062a1f2);

			/* src3/4/6_ctl */
			/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
			cx18_av_write4(cx, 0x900, 0x08016d59);
			cx18_av_write4(cx, 0x904, 0x08016d59);
			cx18_av_write4(cx, 0x90c, 0x08016d59);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
			cx18_av_write(cx, 0x127, 0x58);

			/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x112092ff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
			break;

		case 48000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
			 */
			cx18_av_write4(cx, 0x108, 0x160e040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x05227ad */
			/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x005227ad);

			/* src3/4/6_ctl */
			/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
			cx18_av_write4(cx, 0x900, 0x08014faa);
			cx18_av_write4(cx, 0x904, 0x08014faa);
			cx18_av_write4(cx, 0x90c, 0x08014faa);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
			cx18_av_write(cx, 0x127, 0x56);

			/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11205fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01193f8);
			break;
		}
	} else {
		switch (freq) {
		case 32000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
			 */
			cx18_av_write4(cx, 0x108, 0x300d040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x176740c */
			/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0176740c);

			/* src1_ctl */
			/* 0x1.0000 = 32000/32000 */
			cx18_av_write4(cx, 0x8f8, 0x08010000);

			/* src3/4/6_ctl */
			/* 0x2.0000 = 2 * (32000/32000) */
			cx18_av_write4(cx, 0x900, 0x08020000);
			cx18_av_write4(cx, 0x904, 0x08020000);
			cx18_av_write4(cx, 0x90c, 0x08020000);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
			cx18_av_write(cx, 0x127, 0x70);

			/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11201fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
			break;

		case 44100:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
			 */
			cx18_av_write4(cx, 0x108, 0x240e040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x062a1f2 */
			/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0062a1f2);

			/* src1_ctl */
			/* 0x1.60cd = 44100/32000 */
			cx18_av_write4(cx, 0x8f8, 0x080160cd);

			/* src3/4/6_ctl */
			/* 0x1.7385 = 2 * (32000/44100) */
			cx18_av_write4(cx, 0x900, 0x08017385);
			cx18_av_write4(cx, 0x904, 0x08017385);
			cx18_av_write4(cx, 0x90c, 0x08017385);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
			cx18_av_write(cx, 0x127, 0x64);

			/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x112061ff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
			break;

		case 48000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
			 */
			cx18_av_write4(cx, 0x108, 0x200d040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x176740c */
			/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0176740c);

			/* src1_ctl */
			/* 0x1.8000 = 48000/32000 */
			cx18_av_write4(cx, 0x8f8, 0x08018000);

			/* src3/4/6_ctl */
			/* 0x1.5555 = 2 * (32000/48000) */
			cx18_av_write4(cx, 0x900, 0x08015555);
			cx18_av_write4(cx, 0x904, 0x08015555);
			cx18_av_write4(cx, 0x90c, 0x08015555);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
			cx18_av_write(cx, 0x127, 0x60);

			/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11203fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01193f8);
			break;
		}
	}

	state->audclk_freq = freq;

	return 0;
}
int cx18_av_loadfw(struct cx18 *cx)
{
	const struct firmware *fw = NULL;
	u32 size;
	u32 v;
	u8 *ptr;
	int i;

	if (request_firmware(&fw, FWFILE, &cx->dev->dev) != 0) {
		CX18_ERR("unable to open firmware %s\n", FWFILE);
		return -EINVAL;
	}

	cx18_av_write4(cx, CXADEC_CHIP_CTRL, 0x00010000);
	cx18_av_write(cx, CXADEC_STD_DET_CTL, 0xf6); /* Byte 0 */

	/* Reset the Mako core (Register is undocumented.) */
	cx18_av_write4(cx, 0x8100, 0x00010000);

	/* Put the 8051 in reset and enable firmware upload */
	cx18_av_write4(cx, CXADEC_DL_CTL, 0x0F000000);

	ptr = fw->data;
	size = fw->size;

	for (i = 0; i < size; i++) {
		u32 dl_control = 0x0F000000 | ((u32)ptr[i] << 16);
		u32 value = 0;
		int retries;

		for (retries = 0; retries < 5; retries++) {
			cx18_av_write4(cx, CXADEC_DL_CTL, dl_control);
			value = cx18_av_read4(cx, CXADEC_DL_CTL);
			if ((value & 0x3F00) == (dl_control & 0x3F00))
				break;
		}
		if (retries >= 5) {
			CX18_ERR("unable to load firmware %s\n", FWFILE);
			release_firmware(fw);
			return -EIO;
		}
	}

	cx18_av_write4(cx, CXADEC_DL_CTL, 0x13000000 | fw->size);

	/* Output to the 416 */
	cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x78000);

	/* Audio input control 1 set to Sony mode */
	/* Audio output input 2 is 0 for slave operation input */
	/* 0xC4000914[5]: 0 = left sample on WS=0, 1 = left sample on WS=1 */
	/* 0xC4000914[7]: 0 = Philips mode, 1 = Sony mode (1st SCK rising edge
	   after WS transition for first bit of audio word. */
	cx18_av_write4(cx, CXADEC_I2S_IN_CTL, 0x000000A0);

	/* Audio output control 1 is set to Sony mode */
	/* Audio output control 2 is set to 1 for master mode */
	/* 0xC4000918[5]: 0 = left sample on WS=0, 1 = left sample on WS=1 */
	/* 0xC4000918[7]: 0 = Philips mode, 1 = Sony mode (1st SCK rising edge
	   after WS transition for first bit of audio word. */
	/* 0xC4000918[8]: 0 = slave operation, 1 = master (SCK_OUT and WS_OUT
	   are generated) */
	cx18_av_write4(cx, CXADEC_I2S_OUT_CTL, 0x000001A0);

	/* set alt I2s master clock to /16 and enable alt divider i2s
	   passthrough */
	cx18_av_write4(cx, CXADEC_PIN_CFG3, 0x5000B687);

	cx18_av_write4(cx, CXADEC_STD_DET_CTL, 0x000000F6);
	/* CxDevWrReg(CXADEC_STD_DET_CTL, 0x000000FF); */

	/* Set bit 0 in register 0x9CC to signify that this is MiniMe. */
	/* Register 0x09CC is defined by the Merlin firmware, and doesn't
	   have a name in the spec. */
	cx18_av_write4(cx, 0x09CC, 1);

#define CX18_AUDIO_ENABLE            	0xc72014
	v = read_reg(CX18_AUDIO_ENABLE);
	/* If bit 11 is 1 */
	if (v & 0x800)
		write_reg(v & 0xFFFFFBFF, CX18_AUDIO_ENABLE); /* Clear bit 10 */

	/* Enable WW auto audio standard detection */
	v = cx18_av_read4(cx, CXADEC_STD_DET_CTL);
	v |= 0xFF;   /* Auto by default */
	v |= 0x400;  /* Stereo by default */
	v |= 0x14000000;
	cx18_av_write4(cx, CXADEC_STD_DET_CTL, v);

	release_firmware(fw);

	CX18_INFO("loaded %s firmware (%d bytes)\n", FWFILE, size);
	return 0;
}
Exemple #7
0
int cx18_av_audio(struct cx18 *cx, unsigned int cmd, void *arg)
{
	struct cx18_av_state *state = &cx->av_state;
	struct v4l2_control *ctrl = arg;
	int retval;

	switch (cmd) {
	case VIDIOC_INT_AUDIO_CLOCK_FREQ:
		if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
			cx18_av_and_or(cx, 0x803, ~0x10, 0);
			cx18_av_write(cx, 0x8d3, 0x1f);
		}
		cx18_av_and_or(cx, 0x810, ~0x1, 1);
		retval = set_audclk_freq(cx, *(u32 *)arg);
		cx18_av_and_or(cx, 0x810, ~0x1, 0);
		if (state->aud_input > CX18_AV_AUDIO_SERIAL2)
			cx18_av_and_or(cx, 0x803, ~0x10, 0x10);
		return retval;

	case VIDIOC_G_CTRL:
		switch (ctrl->id) {
		case V4L2_CID_AUDIO_VOLUME:
			ctrl->value = get_volume(cx);
			break;
		case V4L2_CID_AUDIO_BASS:
			ctrl->value = get_bass(cx);
			break;
		case V4L2_CID_AUDIO_TREBLE:
			ctrl->value = get_treble(cx);
			break;
		case V4L2_CID_AUDIO_BALANCE:
			ctrl->value = get_balance(cx);
			break;
		case V4L2_CID_AUDIO_MUTE:
			ctrl->value = get_mute(cx);
			break;
		default:
			return -EINVAL;
		}
		break;

	case VIDIOC_S_CTRL:
		switch (ctrl->id) {
		case V4L2_CID_AUDIO_VOLUME:
			set_volume(cx, ctrl->value);
			break;
		case V4L2_CID_AUDIO_BASS:
			set_bass(cx, ctrl->value);
			break;
		case V4L2_CID_AUDIO_TREBLE:
			set_treble(cx, ctrl->value);
			break;
		case V4L2_CID_AUDIO_BALANCE:
			set_balance(cx, ctrl->value);
			break;
		case V4L2_CID_AUDIO_MUTE:
			set_mute(cx, ctrl->value);
			break;
		default:
			return -EINVAL;
		}
		break;

	default:
		return -EINVAL;
	}

	return 0;
}
Exemple #8
0
static int set_audclk_freq(struct cx18 *cx, u32 freq)
{
	struct cx18_av_state *state = &cx->av_state;

	if (freq != 32000 && freq != 44100 && freq != 48000)
		return -EINVAL;

	/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x10 */
	cx18_av_write(cx, 0x127, 0x50);

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		switch (freq) {
		case 32000:
			/* VID_PLL and AUX_PLL */
			cx18_av_write4(cx, 0x108, 0x1408040f);

			/* AUX_PLL_FRAC */
			/* 0x8.9504318a * 28,636,363.636 / 0x14 = 32000 * 384 */
			cx18_av_write4(cx, 0x110, 0x012a0863);

			/* src3/4/6_ctl */
			/* 0x1.f77f = (4 * 15734.26) / 32000 */
			cx18_av_write4(cx, 0x900, 0x0801f77f);
			cx18_av_write4(cx, 0x904, 0x0801f77f);
			cx18_av_write4(cx, 0x90c, 0x0801f77f);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */
			cx18_av_write(cx, 0x127, 0x54);

			/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11202fff);

			/*
			 * EN_AV_LOCK = 1
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa10d2ef8);
			break;

		case 44100:
			/* VID_PLL and AUX_PLL */
			cx18_av_write4(cx, 0x108, 0x1009040f);

			/* AUX_PLL_FRAC */
			/* 0x9.7635e7 * 28,636,363.63 / 0x10 = 44100 * 384 */
			cx18_av_write4(cx, 0x110, 0x00ec6bce);

			/* src3/4/6_ctl */
			/* 0x1.6d59 = (4 * 15734.26) / 44100 */
			cx18_av_write4(cx, 0x900, 0x08016d59);
			cx18_av_write4(cx, 0x904, 0x08016d59);
			cx18_av_write4(cx, 0x90c, 0x08016d59);

			/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x112092ff);

			/*
			 * EN_AV_LOCK = 1
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa11d4bf8);
			break;

		case 48000:
			/* VID_PLL and AUX_PLL */
			cx18_av_write4(cx, 0x108, 0x100a040f);

			/* AUX_PLL_FRAC */
			/* 0xa.4c6b6ea * 28,636,363.63 / 0x10 = 48000 * 384 */
			cx18_av_write4(cx, 0x110, 0x0098d6dd);

			/* src3/4/6_ctl */
			/* 0x1.4faa = (4 * 15734.26) / 48000 */
			cx18_av_write4(cx, 0x900, 0x08014faa);
			cx18_av_write4(cx, 0x904, 0x08014faa);
			cx18_av_write4(cx, 0x90c, 0x08014faa);

			/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11205fff);

			/*
			 * EN_AV_LOCK = 1
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa11193f8);
			break;
		}
	} else {
		switch (freq) {
		case 32000:
			/* VID_PLL and AUX_PLL */
			cx18_av_write4(cx, 0x108, 0x1e08040f);

			/* AUX_PLL_FRAC */
			/* 0x8.9504318 * 28,636,363.63 / 0x1e = 32000 * 256 */
			cx18_av_write4(cx, 0x110, 0x012a0863);

			/* src1_ctl */
			/* 0x1.0000 = 32000/32000 */
			cx18_av_write4(cx, 0x8f8, 0x08010000);

			/* src3/4/6_ctl */
			/* 0x2.0000 = 2 * (32000/32000) */
			cx18_av_write4(cx, 0x900, 0x08020000);
			cx18_av_write4(cx, 0x904, 0x08020000);
			cx18_av_write4(cx, 0x90c, 0x08020000);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */
			cx18_av_write(cx, 0x127, 0x54);

			/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11201fff);

			/*
			 * EN_AV_LOCK = 1
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa10d2ef8);
			break;

		case 44100:
			/* VID_PLL and AUX_PLL */
			cx18_av_write4(cx, 0x108, 0x1809040f);

			/* AUX_PLL_FRAC */
			/* 0x9.7635e74 * 28,636,363.63 / 0x18 = 44100 * 256 */
			cx18_av_write4(cx, 0x110, 0x00ec6bce);

			/* src1_ctl */
			/* 0x1.60cd = 44100/32000 */
			cx18_av_write4(cx, 0x8f8, 0x080160cd);

			/* src3/4/6_ctl */
			/* 0x1.7385 = 2 * (32000/44100) */
			cx18_av_write4(cx, 0x900, 0x08017385);
			cx18_av_write4(cx, 0x904, 0x08017385);
			cx18_av_write4(cx, 0x90c, 0x08017385);

			/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x112061ff);

			/*
			 * EN_AV_LOCK = 1
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa11d4bf8);
			break;

		case 48000:
			/* VID_PLL and AUX_PLL */
			cx18_av_write4(cx, 0x108, 0x180a040f);

			/* AUX_PLL_FRAC */
			/* 0xa.4c6b6ea * 28,636,363.63 / 0x18 = 48000 * 256 */
			cx18_av_write4(cx, 0x110, 0x0098d6dd);

			/* src1_ctl */
			/* 0x1.8000 = 48000/32000 */
			cx18_av_write4(cx, 0x8f8, 0x08018000);

			/* src3/4/6_ctl */
			/* 0x1.5555 = 2 * (32000/48000) */
			cx18_av_write4(cx, 0x900, 0x08015555);
			cx18_av_write4(cx, 0x904, 0x08015555);
			cx18_av_write4(cx, 0x90c, 0x08015555);

			/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11203fff);

			/*
			 * EN_AV_LOCK = 1
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa11193f8);
			break;
		}
	}

	state->audclk_freq = freq;

	return 0;
}