// Ray - Cylinder collider by David Walters (June 2006) int dCollideRayCylinder( dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip ) { dIASSERT( skip >= (int)sizeof( dContactGeom ) ); dIASSERT( o1->type == dRayClass ); dIASSERT( o2->type == dCylinderClass ); dIASSERT( (flags & NUMC_MASK) >= 1 ); dxRay* ray = (dxRay*)( o1 ); dxCylinder* cyl = (dxCylinder*)( o2 ); // Fill in contact information. contact->g1 = ray; contact->g2 = cyl; contact->side1 = -1; contact->side2 = -1; const dReal half_length = cyl->lz * REAL( 0.5 ); // // Compute some useful info // dVector3 q, r; dReal d, C, k; // Vector 'r', line segment from C to R (ray start) ( r = R - C ) r[ 0 ] = ray->final_posr->pos[0] - cyl->final_posr->pos[0]; r[ 1 ] = ray->final_posr->pos[1] - cyl->final_posr->pos[1]; r[ 2 ] = ray->final_posr->pos[2] - cyl->final_posr->pos[2]; // Distance that ray start is along cyl axis ( Z-axis direction ) d = dCalcVectorDot3_41( cyl->final_posr->R + 2, r ); // // Compute vector 'q' representing the shortest line from R to the cylinder z-axis (Cz). // // Point on axis ( in world space ): cp = ( d * Cz ) + C // // Line 'q' from R to cp: q = cp - R // q = ( d * Cz ) + C - R // q = ( d * Cz ) - ( R - C ) q[ 0 ] = ( d * cyl->final_posr->R[0*4+2] ) - r[ 0 ]; q[ 1 ] = ( d * cyl->final_posr->R[1*4+2] ) - r[ 1 ]; q[ 2 ] = ( d * cyl->final_posr->R[2*4+2] ) - r[ 2 ]; // Compute square length of 'q'. Subtract from radius squared to // get square distance 'C' between the line q and the radius. // if C < 0 then ray start position is within infinite extension of cylinder C = dCalcVectorDot3( q, q ) - ( cyl->radius * cyl->radius ); // Compute the projection of ray direction normal onto cylinder direction normal. dReal uv = dCalcVectorDot3_44( cyl->final_posr->R+2, ray->final_posr->R+2 ); // // Find ray collision with infinite cylinder // // Compute vector from end of ray direction normal to projection on cylinder direction normal. r[ 0 ] = ( uv * cyl->final_posr->R[0*4+2] ) - ray->final_posr->R[0*4+2]; r[ 1 ] = ( uv * cyl->final_posr->R[1*4+2] ) - ray->final_posr->R[1*4+2]; r[ 2 ] = ( uv * cyl->final_posr->R[2*4+2] ) - ray->final_posr->R[2*4+2]; // Quadratic Formula Magic // Compute discriminant 'k': // k < 0 : No intersection // k = 0 : Tangent // k > 0 : Intersection dReal A = dCalcVectorDot3( r, r ); dReal B = 2 * dCalcVectorDot3( q, r ); k = B*B - 4*A*C; // // Collision with Flat Caps ? // // No collision with cylinder edge. ( Use epsilon here or we miss some obvious cases ) if ( k < dEpsilon && C <= 0 ) { // The ray does not intersect the edge of the infinite cylinder, // but the ray start is inside and so must run parallel to the axis. // It may yet intersect an end cap. The following cases are valid: // -ve-cap , -half centre +half , +ve-cap // <<================|-------------------|------------->>>---|================>> // | | // | d-------------------> 1. // 2. d------------------> | // 3. <------------------d | // | <-------------------d 4. // | | // <<================|-------------------|------------->>>---|===============>> // Negative if the ray and cylinder axes point in opposite directions. const dReal uvsign = ( uv < 0 ) ? REAL( -1.0 ) : REAL( 1.0 ); // Negative if the ray start is inside the cylinder const dReal internal = ( d >= -half_length && d <= +half_length ) ? REAL( -1.0 ) : REAL( 1.0 ); // Ray and Cylinder axes run in the same direction ( cases 1, 2 ) // Ray and Cylinder axes run in opposite directions ( cases 3, 4 ) if ( ( ( uv > 0 ) && ( d + ( uvsign * ray->length ) < half_length * internal ) ) || ( ( uv < 0 ) && ( d + ( uvsign * ray->length ) > half_length * internal ) ) ) { return 0; // No intersection with caps or curved surface. } // Compute depth (distance from ray to cylinder) contact->depth = ( ( -uvsign * d ) - ( internal * half_length ) ); // Compute contact point. contact->pos[0] = ray->final_posr->pos[0] + ( contact->depth * ray->final_posr->R[0*4+2] ); contact->pos[1] = ray->final_posr->pos[1] + ( contact->depth * ray->final_posr->R[1*4+2] ); contact->pos[2] = ray->final_posr->pos[2] + ( contact->depth * ray->final_posr->R[2*4+2] ); // Compute reflected contact normal. contact->normal[0] = uvsign * ( cyl->final_posr->R[0*4+2] ); contact->normal[1] = uvsign * ( cyl->final_posr->R[1*4+2] ); contact->normal[2] = uvsign * ( cyl->final_posr->R[2*4+2] ); // Contact! return 1; } // // Collision with Curved Edge ? // if ( k > 0 ) { // Finish off quadratic formula to get intersection co-efficient k = dSqrt( k ); A = dRecip( 2 * A ); // Compute distance along line to contact point. dReal alpha = ( -B - k ) * A; if ( alpha < 0 ) { // Flip in the other direction. alpha = ( -B + k ) * A; } // Intersection point is within ray length? if ( alpha >= 0 && alpha <= ray->length ) { // The ray intersects the infinite cylinder! // Compute contact point. contact->pos[0] = ray->final_posr->pos[0] + ( alpha * ray->final_posr->R[0*4+2] ); contact->pos[1] = ray->final_posr->pos[1] + ( alpha * ray->final_posr->R[1*4+2] ); contact->pos[2] = ray->final_posr->pos[2] + ( alpha * ray->final_posr->R[2*4+2] ); // q is the vector from the cylinder centre to the contact point. q[0] = contact->pos[0] - cyl->final_posr->pos[0]; q[1] = contact->pos[1] - cyl->final_posr->pos[1]; q[2] = contact->pos[2] - cyl->final_posr->pos[2]; // Compute the distance along the cylinder axis of this contact point. d = dCalcVectorDot3_14( q, cyl->final_posr->R+2 ); // Check to see if the intersection point is between the flat end caps if ( d >= -half_length && d <= +half_length ) { // Flip the normal if the start point is inside the cylinder. const dReal nsign = ( C < 0 ) ? REAL( -1.0 ) : REAL( 1.0 ); // Compute contact normal. contact->normal[0] = nsign * (contact->pos[0] - (cyl->final_posr->pos[0] + d*cyl->final_posr->R[0*4+2])); contact->normal[1] = nsign * (contact->pos[1] - (cyl->final_posr->pos[1] + d*cyl->final_posr->R[1*4+2])); contact->normal[2] = nsign * (contact->pos[2] - (cyl->final_posr->pos[2] + d*cyl->final_posr->R[2*4+2])); dNormalize3( contact->normal ); // Store depth. contact->depth = alpha; // Contact! return 1; } } } // No contact with anything. return 0; }
int dBoxBox (const dVector3 p1, const dMatrix3 R1, const dVector3 side1, const dVector3 p2, const dMatrix3 R2, const dVector3 side2, dVector3 normal, dReal *depth, int *return_code, int flags, dContactGeom *contact, int skip) { const dReal fudge_factor = REAL(1.05); dVector3 p,pp,normalC={0,0,0}; const dReal *normalR = 0; dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,expr1_val; int i,j,invert_normal,code; // get vector from centers of box 1 to box 2, relative to box 1 p[0] = p2[0] - p1[0]; p[1] = p2[1] - p1[1]; p[2] = p2[2] - p1[2]; dMultiply1_331 (pp,R1,p); // get pp = p relative to body 1 // get side lengths / 2 A[0] = side1[0]*REAL(0.5); A[1] = side1[1]*REAL(0.5); A[2] = side1[2]*REAL(0.5); B[0] = side2[0]*REAL(0.5); B[1] = side2[1]*REAL(0.5); B[2] = side2[2]*REAL(0.5); // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 R11 = dCalcVectorDot3_44(R1+0,R2+0); R12 = dCalcVectorDot3_44(R1+0,R2+1); R13 = dCalcVectorDot3_44(R1+0,R2+2); R21 = dCalcVectorDot3_44(R1+1,R2+0); R22 = dCalcVectorDot3_44(R1+1,R2+1); R23 = dCalcVectorDot3_44(R1+1,R2+2); R31 = dCalcVectorDot3_44(R1+2,R2+0); R32 = dCalcVectorDot3_44(R1+2,R2+1); R33 = dCalcVectorDot3_44(R1+2,R2+2); Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13); Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23); Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33); // for all 15 possible separating axes: // * see if the axis separates the boxes. if so, return 0. // * find the depth of the penetration along the separating axis (s2) // * if this is the largest depth so far, record it. // the normal vector will be set to the separating axis with the smallest // depth. note: normalR is set to point to a column of R1 or R2 if that is // the smallest depth normal so far. otherwise normalR is 0 and normalC is // set to a vector relative to body 1. invert_normal is 1 if the sign of // the normal should be flipped. do { #define TST(expr1,expr2,norm,cc) \ expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \ s2 = dFabs(expr1_val) - (expr2); \ if (s2 > 0) return 0; \ if (s2 > s) { \ s = s2; \ normalR = norm; \ invert_normal = ((expr1_val) < 0); \ code = (cc); \ if (flags & CONTACTS_UNIMPORTANT) break; \ } s = -dInfinity; invert_normal = 0; code = 0; // separating axis = u1,u2,u3 TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); // separating axis = v1,v2,v3 TST (dCalcVectorDot3_41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); TST (dCalcVectorDot3_41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); TST (dCalcVectorDot3_41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); // note: cross product axes need to be scaled when s is computed. // normal (n1,n2,n3) is relative to box 1. #undef TST #define TST(expr1,expr2,n1,n2,n3,cc) \ expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \ s2 = dFabs(expr1_val) - (expr2); \ if (s2 > 0) return 0; \ l = dSqrt ((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ if (l > 0) { \ s2 /= l; \ if (s2*fudge_factor > s) { \ s = s2; \ normalR = 0; \ normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ invert_normal = ((expr1_val) < 0); \ code = (cc); \ if (flags & CONTACTS_UNIMPORTANT) break; \ } \ } // We only need to check 3 edges per box // since parallel edges are equivalent. // separating axis = u1 x (v1,v2,v3) TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); // separating axis = u2 x (v1,v2,v3) TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); // separating axis = u3 x (v1,v2,v3) TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); #undef TST } while (0); if (!code) return 0; // if we get to this point, the boxes interpenetrate. compute the normal // in global coordinates. if (normalR) { normal[0] = normalR[0]; normal[1] = normalR[4]; normal[2] = normalR[8]; } else { dMultiply0_331 (normal,R1,normalC); } if (invert_normal) { normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; } *depth = -s; // compute contact point(s) if (code > 6) { // An edge from box 1 touches an edge from box 2. // find a point pa on the intersecting edge of box 1 dVector3 pa; dReal sign; // Copy p1 into pa for (i=0; i<3; i++) pa[i] = p1[i]; // why no memcpy? // Get world position of p2 into pa for (j=0; j<3; j++) { sign = (dCalcVectorDot3_14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0); for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; } // find a point pb on the intersecting edge of box 2 dVector3 pb; // Copy p2 into pb for (i=0; i<3; i++) pb[i] = p2[i]; // why no memcpy? // Get world position of p2 into pb for (j=0; j<3; j++) { sign = (dCalcVectorDot3_14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0); for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; } dReal alpha,beta; dVector3 ua,ub; // Get direction of first edge for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; // Get direction of second edge for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; // Get closest points between edges (one at each) dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); for (i=0; i<3; i++) pa[i] += ua[i]*alpha; for (i=0; i<3; i++) pb[i] += ub[i]*beta; // Set the contact point as halfway between the 2 closest points for (i=0; i<3; i++) contact[0].pos[i] = REAL(0.5)*(pa[i]+pb[i]); contact[0].depth = *depth; *return_code = code; return 1; } // okay, we have a face-something intersection (because the separating // axis is perpendicular to a face). define face 'a' to be the reference // face (i.e. the normal vector is perpendicular to this) and face 'b' to be // the incident face (the closest face of the other box). // Note: Unmodified parameter values are being used here const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb; if (code <= 3) { // One of the faces of box 1 is the reference face Ra = R1; // Rotation of 'a' Rb = R2; // Rotation of 'b' pa = p1; // Center (location) of 'a' pb = p2; // Center (location) of 'b' Sa = A; // Side Lenght of 'a' Sb = B; // Side Lenght of 'b' } else { // One of the faces of box 2 is the reference face Ra = R2; // Rotation of 'a' Rb = R1; // Rotation of 'b' pa = p2; // Center (location) of 'a' pb = p1; // Center (location) of 'b' Sa = B; // Side Lenght of 'a' Sb = A; // Side Lenght of 'b' } // nr = normal vector of reference face dotted with axes of incident box. // anr = absolute values of nr. /* The normal is flipped if necessary so it always points outward from box 'a', box 'b' is thus always the incident box */ dVector3 normal2,nr,anr; if (code <= 3) { normal2[0] = normal[0]; normal2[1] = normal[1]; normal2[2] = normal[2]; } else { normal2[0] = -normal[0]; normal2[1] = -normal[1]; normal2[2] = -normal[2]; } // Rotate normal2 in incident box opposite direction dMultiply1_331 (nr,Rb,normal2); anr[0] = dFabs (nr[0]); anr[1] = dFabs (nr[1]); anr[2] = dFabs (nr[2]); // find the largest compontent of anr: this corresponds to the normal // for the incident face. the other axis numbers of the incident face // are stored in a1,a2. int lanr,a1,a2; if (anr[1] > anr[0]) { if (anr[1] > anr[2]) { a1 = 0; lanr = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } else { if (anr[0] > anr[2]) { lanr = 0; a1 = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } // compute center point of incident face, in reference-face coordinates dVector3 center; if (nr[lanr] < 0) { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; } else { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; } // find the normal and non-normal axis numbers of the reference box int codeN,code1,code2; if (code <= 3) codeN = code-1; else codeN = code-4; if (codeN==0) { code1 = 1; code2 = 2; } else if (codeN==1) { code1 = 0; code2 = 2; } else { code1 = 0; code2 = 1; } // find the four corners of the incident face, in reference-face coordinates dReal quad[8]; // 2D coordinate of incident face (x,y pairs) dReal c1,c2,m11,m12,m21,m22; c1 = dCalcVectorDot3_14 (center,Ra+code1); c2 = dCalcVectorDot3_14 (center,Ra+code2); // optimize this? - we have already computed this data above, but it is not // stored in an easy-to-index format. for now it's quicker just to recompute // the four dot products. m11 = dCalcVectorDot3_44 (Ra+code1,Rb+a1); m12 = dCalcVectorDot3_44 (Ra+code1,Rb+a2); m21 = dCalcVectorDot3_44 (Ra+code2,Rb+a1); m22 = dCalcVectorDot3_44 (Ra+code2,Rb+a2); { dReal k1 = m11*Sb[a1]; dReal k2 = m21*Sb[a1]; dReal k3 = m12*Sb[a2]; dReal k4 = m22*Sb[a2]; quad[0] = c1 - k1 - k3; quad[1] = c2 - k2 - k4; quad[2] = c1 - k1 + k3; quad[3] = c2 - k2 + k4; quad[4] = c1 + k1 + k3; quad[5] = c2 + k2 + k4; quad[6] = c1 + k1 - k3; quad[7] = c2 + k2 - k4; } // find the size of the reference face dReal rect[2]; rect[0] = Sa[code1]; rect[1] = Sa[code2]; // intersect the incident and reference faces dReal ret[16]; int n = intersectRectQuad (rect,quad,ret); if (n < 1) return 0; // this should never happen // convert the intersection points into reference-face coordinates, // and compute the contact position and depth for each point. only keep // those points that have a positive (penetrating) depth. delete points in // the 'ret' array as necessary so that 'point' and 'ret' correspond. dReal point[3*8]; // penetrating contact points dReal dep[8]; // depths for those points dReal det1 = dRecip(m11*m22 - m12*m21); m11 *= det1; m12 *= det1; m21 *= det1; m22 *= det1; int cnum = 0; // number of penetrating contact points found for (j=0; j < n; j++) { dReal k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); dReal k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); for (i=0; i<3; i++) point[cnum*3+i] = center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; dep[cnum] = Sa[codeN] - dCalcVectorDot3(normal2,point+cnum*3); if (dep[cnum] >= 0) { ret[cnum*2] = ret[j*2]; ret[cnum*2+1] = ret[j*2+1]; cnum++; if ((cnum | CONTACTS_UNIMPORTANT) == (flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) { break; } } } if (cnum < 1) { return 0; // this should not happen, yet does at times (demo_plane2d single precision). } // we can't generate more contacts than we actually have int maxc = flags & NUMC_MASK; if (maxc > cnum) maxc = cnum; if (maxc < 1) maxc = 1; // Even though max count must not be zero this check is kept for backward compatibility as this is a public function if (cnum <= maxc) { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i]; con->depth = dep[j]; } } else { dIASSERT(!(flags & CONTACTS_UNIMPORTANT)); // cnum should be generated not greater than maxc so that "then" clause is executed // we have more contacts than are wanted, some of them must be culled. // find the deepest point, it is always the first contact. int i1 = 0; dReal maxdepth = dep[0]; for (i=1; i<cnum; i++) { if (dep[i] > maxdepth) { maxdepth = dep[i]; i1 = i; } } int iret[8]; cullPoints (cnum,ret,maxc,i1,iret); for (j=0; j < maxc; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; con->depth = dep[iret[j]]; } cnum = maxc; } *return_code = code; return cnum; }
int dCollideRayCapsule (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dRayClass); dIASSERT (o2->type == dCapsuleClass); dIASSERT ((flags & NUMC_MASK) >= 1); dxRay *ray = (dxRay*) o1; dxCapsule *ccyl = (dxCapsule*) o2; contact->g1 = ray; contact->g2 = ccyl; contact->side1 = -1; contact->side2 = -1; dReal lz2 = ccyl->lz * REAL(0.5); // compute some useful info dVector3 cs,q,r; dReal C,k; cs[0] = ray->final_posr->pos[0] - ccyl->final_posr->pos[0]; cs[1] = ray->final_posr->pos[1] - ccyl->final_posr->pos[1]; cs[2] = ray->final_posr->pos[2] - ccyl->final_posr->pos[2]; k = dCalcVectorDot3_41(ccyl->final_posr->R+2,cs); // position of ray start along ccyl axis q[0] = k*ccyl->final_posr->R[0*4+2] - cs[0]; q[1] = k*ccyl->final_posr->R[1*4+2] - cs[1]; q[2] = k*ccyl->final_posr->R[2*4+2] - cs[2]; C = dCalcVectorDot3(q,q) - ccyl->radius*ccyl->radius; // if C < 0 then ray start position within infinite extension of cylinder // see if ray start position is inside the capped cylinder int inside_ccyl = 0; if (C < 0) { if (k < -lz2) k = -lz2; else if (k > lz2) k = lz2; r[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2]; r[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2]; r[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2]; if ((ray->final_posr->pos[0]-r[0])*(ray->final_posr->pos[0]-r[0]) + (ray->final_posr->pos[1]-r[1])*(ray->final_posr->pos[1]-r[1]) + (ray->final_posr->pos[2]-r[2])*(ray->final_posr->pos[2]-r[2]) < ccyl->radius*ccyl->radius) { inside_ccyl = 1; } } // compute ray collision with infinite cylinder, except for the case where // the ray is outside the capped cylinder but within the infinite cylinder // (it that case the ray can only hit endcaps) if (!inside_ccyl && C < 0) { // set k to cap position to check if (k < 0) k = -lz2; else k = lz2; } else { dReal uv = dCalcVectorDot3_44(ccyl->final_posr->R+2,ray->final_posr->R+2); r[0] = uv*ccyl->final_posr->R[0*4+2] - ray->final_posr->R[0*4+2]; r[1] = uv*ccyl->final_posr->R[1*4+2] - ray->final_posr->R[1*4+2]; r[2] = uv*ccyl->final_posr->R[2*4+2] - ray->final_posr->R[2*4+2]; dReal A = dCalcVectorDot3(r,r); dReal B = 2*dCalcVectorDot3(q,r); k = B*B-4*A*C; if (k < 0) { // the ray does not intersect the infinite cylinder, but if the ray is // inside and parallel to the cylinder axis it may intersect the end // caps. set k to cap position to check. if (!inside_ccyl) return 0; if (uv < 0) k = -lz2; else k = lz2; } else { k = dSqrt(k); A = dRecip (2*A); dReal alpha = (-B-k)*A; if (alpha < 0) { alpha = (-B+k)*A; if (alpha < 0) return 0; } if (alpha > ray->length) return 0; // the ray intersects the infinite cylinder. check to see if the // intersection point is between the caps contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; q[0] = contact->pos[0] - ccyl->final_posr->pos[0]; q[1] = contact->pos[1] - ccyl->final_posr->pos[1]; q[2] = contact->pos[2] - ccyl->final_posr->pos[2]; k = dCalcVectorDot3_14(q,ccyl->final_posr->R+2); dReal nsign = inside_ccyl ? REAL(-1.0) : REAL(1.0); if (k >= -lz2 && k <= lz2) { contact->normal[0] = nsign * (contact->pos[0] - (ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2])); contact->normal[1] = nsign * (contact->pos[1] - (ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2])); contact->normal[2] = nsign * (contact->pos[2] - (ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2])); dNormalize3 (contact->normal); contact->depth = alpha; return 1; } // the infinite cylinder intersection point is not between the caps. // set k to cap position to check. if (k < 0) k = -lz2; else k = lz2; } } // check for ray intersection with the caps. k must indicate the cap // position to check q[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2]; q[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2]; q[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2]; return ray_sphere_helper (ray,q,ccyl->radius,contact, inside_ccyl); }