Exemple #1
0
static void inspectJoints(void)
{
  const dReal forcelimit = 2000.0;
  int i;
  for (i=0; i<SEGMCNT-1; i++)
  {
    if (dJointGetBody(hinges[i], 0))
    {
      // This joint has not snapped already... inspect it.
      dReal l0 = dCalcVectorLength3(jfeedbacks[i].f1);
      dReal l1 = dCalcVectorLength3(jfeedbacks[i].f2);
      colours[i+0] = 0.95*colours[i+0] + 0.05 * l0/forcelimit;
      colours[i+1] = 0.95*colours[i+1] + 0.05 * l1/forcelimit;
      if (l0 > forcelimit || l1 > forcelimit)
        stress[i]++;
      else
        stress[i]=0;
      if (stress[i]>4)
      {
        // Low-pass filter the noisy feedback data.
        // Only after 4 consecutive timesteps with excessive load, snap.
        fprintf(stderr,"SNAP! (that was the sound of joint %d breaking)\n", i);
        dJointAttach (hinges[i], 0, 0);
      }
    }
  }
}
int dCollideSTL(dxGeom* g1, dxGeom* SphereGeom, int Flags, dContactGeom* Contacts, int Stride){
    dIASSERT (Stride >= (int)sizeof(dContactGeom));
    dIASSERT (g1->type == dTriMeshClass);
    dIASSERT (SphereGeom->type == dSphereClass);
    dIASSERT ((Flags & NUMC_MASK) >= 1);

    dxTriMesh* TriMesh = (dxTriMesh*)g1;

    // Init
    const dVector3& TLPosition = *(const dVector3*)dGeomGetPosition(TriMesh);
    const dMatrix3& TLRotation = *(const dMatrix3*)dGeomGetRotation(TriMesh);

    const unsigned uiTLSKind = TriMesh->getParentSpaceTLSKind();
    dIASSERT(uiTLSKind == SphereGeom->getParentSpaceTLSKind()); // The colliding spaces must use matching cleanup method
    TrimeshCollidersCache *pccColliderCache = GetTrimeshCollidersCache(uiTLSKind);
    SphereCollider& Collider = pccColliderCache->_SphereCollider;

    const dVector3& Position = *(const dVector3*)dGeomGetPosition(SphereGeom);
    dReal Radius = dGeomSphereGetRadius(SphereGeom);

    // Sphere
    Sphere Sphere;
    dCopyVector3(Sphere.mCenter, Position);
    Sphere.mRadius = Radius;

    Matrix4x4 amatrix;

    // TC results
    if (TriMesh->doSphereTC) {
        dxTriMesh::SphereTC* sphereTC = 0;
        for (int i = 0; i < TriMesh->SphereTCCache.size(); i++){
            if (TriMesh->SphereTCCache[i].Geom == SphereGeom){
                sphereTC = &TriMesh->SphereTCCache[i];
                break;
            }
        }

        if (!sphereTC){
            TriMesh->SphereTCCache.push(dxTriMesh::SphereTC());

            sphereTC = &TriMesh->SphereTCCache[TriMesh->SphereTCCache.size() - 1];
            sphereTC->Geom = SphereGeom;
        }

        // Intersect
        Collider.SetTemporalCoherence(true);
        Collider.Collide(*sphereTC, Sphere, TriMesh->Data->BVTree, null, 
            &MakeMatrix(TLPosition, TLRotation, amatrix));
    }
    else {
        Collider.SetTemporalCoherence(false);
        Collider.Collide(pccColliderCache->defaultSphereCache, Sphere, TriMesh->Data->BVTree, null, 
            &MakeMatrix(TLPosition, TLRotation, amatrix));
    }

    if (! Collider.GetContactStatus()) {
        // no collision occurred
        return 0;
    }

    // get results
    int TriCount = Collider.GetNbTouchedPrimitives();
    const int* Triangles = (const int*)Collider.GetTouchedPrimitives();

    if (TriCount != 0){
        if (TriMesh->ArrayCallback != null){
            TriMesh->ArrayCallback(TriMesh, SphereGeom, Triangles, TriCount);
        }

        int OutTriCount = 0;
        for (int i = 0; i < TriCount; i++){
            if (OutTriCount == (Flags & NUMC_MASK)){
                break;
            }

            const int TriIndex = Triangles[i];

            dVector3 dv[3];
            if (!Callback(TriMesh, SphereGeom, TriIndex))
                continue;

            FetchTriangle(TriMesh, TriIndex, TLPosition, TLRotation, dv);

            dVector3& v0 = dv[0];
            dVector3& v1 = dv[1];
            dVector3& v2 = dv[2];

            dVector3 vu;
            dSubtractVectors3r4(vu, v1, v0);
            vu[3] = REAL(0.0);

            dVector3 vv;
            dSubtractVectors3r4(vv, v2, v0);
            vv[3] = REAL(0.0);

            // Get plane coefficients
            dVector4 Plane;
            dCalcVectorCross3(Plane, vu, vv);

            // Even though all triangles might be initially valid, 
            // a triangle may degenerate into a segment after applying 
            // space transformation.
            if (!dSafeNormalize3(Plane)) {
                continue;
            }

            /* If the center of the sphere is within the positive halfspace of the
            * triangle's plane, allow a contact to be generated.
            * If the center of the sphere made it into the positive halfspace of a
            * back-facing triangle, then the physics update and/or velocity needs
            * to be adjusted (penetration has occured anyway).
            */

            dReal side = dCalcVectorDot3(Plane, Position) - dCalcVectorDot3(Plane, v0);

            if(side < REAL(0.0))
            {
                continue;
            }

            dReal Depth;
            dReal u, v;
            if (!GetContactData(Position, Radius, v0, vu, vv, Depth, u, v)){
                continue;	// Sphere doesn't hit triangle
            }

            if (Depth < REAL(0.0)){
                continue; // Negative depth does not produce a contact
            }

            dVector3 ContactPos;

            dReal w = REAL(1.0) - u - v;
            dAddScaledVectors3r4(ContactPos, v1, v2, u, v);
            dAddScaledVector3r4(ContactPos, v0, w);

            // Depth returned from GetContactData is depth along 
            // contact point - sphere center direction
            // we'll project it to contact normal
            dVector3 dir;
            dSubtractVectors3r4(dir, Position, ContactPos);
            dReal dirProj = dCalcVectorDot3(dir, Plane) / dCalcVectorLength3(dir);

            // Since Depth already had a requirement to be non-negative,
            // negative direction projections should not be allowed as well,
            // as otherwise the multiplication will result in negative contact depth.
            if (dirProj < REAL(0.0))
                continue; // Zero contact depth could be ignored

            dContactGeom* Contact = SAFECONTACT(Flags, Contacts, OutTriCount, Stride);

            dCopyVector3r4(Contact->pos, ContactPos);

            // Using normal as plane (reversed)
            dCopyNegatedVector3r4(Contact->normal, Plane);
            Contact->depth = Depth * dirProj;
            //Contact->depth = Radius - side; // (mg) penetration depth is distance along normal not shortest distance

            // We need to set these unconditionally, as the merging may fail! - Bram
            Contact->g1 = TriMesh;
            Contact->g2 = SphereGeom;
            Contact->side2 = -1;

            Contact->side1 = TriIndex;

            OutTriCount++;
        }
        if (OutTriCount > 0)
        {
            if (TriMesh->SphereContactsMergeOption == MERGE_CONTACTS_FULLY)
            {
                dContactGeom* Contact = SAFECONTACT(Flags, Contacts, 0, Stride);
                Contact->g1 = TriMesh;
                Contact->g2 = SphereGeom;
                Contact->side2 = -1;

                if (OutTriCount > 1 && !(Flags & CONTACTS_UNIMPORTANT))
                {
                    dVector3 pos;
                    dCopyVector3r4(pos, Contact->pos);

                    dVector3 normal;
                    dCopyScaledVector3r4(normal, Contact->normal, Contact->depth);

                    int TriIndex = Contact->side1; 

                    for (int i = 1; i < OutTriCount; i++)
                    {
                        dContactGeom* TempContact = SAFECONTACT(Flags, Contacts, i, Stride);

                        dAddVector3r4(pos, TempContact->pos);
                        dAddScaledVector3r4(normal, TempContact->normal, TempContact->depth);
                        TriIndex = (TriMesh->TriMergeCallback) ? TriMesh->TriMergeCallback(TriMesh, TriIndex, TempContact->side1) : -1;
                    }

                    Contact->side1 = TriIndex;
                    dReal invOutTriCount = dRecip(OutTriCount);
                    dCopyScaledVector3r4(Contact->pos, pos, invOutTriCount);

                    if ( !dSafeNormalize3(normal) )
                        return OutTriCount;	// Cannot merge in this pathological case

                    // Using a merged normal, means that for each intersection, this new normal will be less effective in solving the intersection.
                    // That is why we need to correct this by increasing the depth for each intersection.
                    // The maximum of the adjusted depths is our newly merged depth value - Bram.

                    dReal mergedDepth = REAL(0.0);
                    dReal minEffectiveness = REAL(0.5);
                    for ( int i = 0; i < OutTriCount; ++i )
                    {
                        dContactGeom* TempContact = SAFECONTACT(Flags, Contacts, i, Stride);
                        dReal effectiveness = dCalcVectorDot3(normal, TempContact->normal);
                        if ( effectiveness < dEpsilon )
                            return OutTriCount; // Cannot merge this pathological case
                        // Cap our adjustment for the new normal to a factor 2, meaning a 60 deg change in normal.
                        effectiveness = ( effectiveness < minEffectiveness ) ? minEffectiveness : effectiveness;
                        dReal adjusted = TempContact->depth / effectiveness;
                        mergedDepth = ( mergedDepth < adjusted ) ? adjusted : mergedDepth;
                    }
                    Contact->depth = mergedDepth;
                    dCopyVector3r4(Contact->normal, normal);
                }

                return 1;
            }
            else if (TriMesh->SphereContactsMergeOption == MERGE_CONTACT_NORMALS)
            {
                if (OutTriCount != 1 && !(Flags & CONTACTS_UNIMPORTANT))
                {
                    dVector3 Normal;

                    dContactGeom* FirstContact = SAFECONTACT(Flags, Contacts, 0, Stride);
                    dCopyScaledVector3r4(Normal, FirstContact->normal, FirstContact->depth);

                    for (int i = 1; i < OutTriCount; i++)
                    {
                        dContactGeom* Contact = SAFECONTACT(Flags, Contacts, i, Stride);
                        dAddScaledVector3r4(Normal, Contact->normal, Contact->depth);
                    }

                    dNormalize3(Normal);

                    for (int i = 0; i < OutTriCount; i++)
                    {
                        dContactGeom* Contact = SAFECONTACT(Flags, Contacts, i, Stride);

                        dCopyVector3r4(Contact->normal, Normal);
                    }
                }

                return OutTriCount;
            }
            else
            {
                dIASSERT(TriMesh->SphereContactsMergeOption == DONT_MERGE_CONTACTS);
                return OutTriCount;
            }
        }
        else return 0;
    }
    else return 0;
}
Exemple #3
0
void
dxJointTransmission::getInfo2( dReal worldFPS, 
                               dReal /*worldERP*/,
                               const Info2Descr* info )
 {
    dVector3 a[2], n[2], l[2], r[2], c[2], s, t, O, d, z, u, v;
    dReal theta, delta, nn, na_0, na_1, cosphi, sinphi, m;
    const dReal *p[2], *omega[2];
    int i;

    // Transform all needed quantities to the global frame.

    for (i = 0 ; i < 2 ; i += 1) {
        dBodyGetRelPointPos(node[i].body,
                            anchors[i][0], anchors[i][1], anchors[i][2],
                            a[i]);

        dBodyVectorToWorld(node[i].body, axes[i][0], axes[i][1], axes[i][2],
                           n[i]);

        p[i] = dBodyGetPosition(node[i].body);
        omega[i] = dBodyGetAngularVel(node[i].body);
    }

    if (update) {
        // Make sure both gear reference frames end up with the same
        // handedness.
    
        if (dCalcVectorDot3(n[0], n[1]) < 0) {
            dNegateVector3(axes[0]);
            dNegateVector3(n[0]);
        }
    }

    // Calculate the mesh geometry based on the current mode.
    
    switch (mode) {
    case dTransmissionParallelAxes:
        // Simply calculate the contact point as the point on the
        // baseline that will yield the correct ratio.

        dIASSERT (ratio > 0);
        
        dSubtractVectors3(d, a[1], a[0]);
        dAddScaledVectors3(c[0], a[0], d, 1, ratio / (1 + ratio));
        dCopyVector3(c[1], c[0]);
        
        dNormalize3(d);
        
        for (i = 0 ; i < 2 ; i += 1) {
            dCalcVectorCross3(l[i], d, n[i]);
        }

        break;
    case dTransmissionIntersectingAxes:
        // Calculate the line of intersection between the planes of the
        // gears.

        dCalcVectorCross3(l[0], n[0], n[1]);
        dCopyVector3(l[1], l[0]);

        nn = dCalcVectorDot3(n[0], n[1]);
        dIASSERT(fabs(nn) != 1);
        
        na_0 = dCalcVectorDot3(n[0], a[0]);
        na_1 = dCalcVectorDot3(n[1], a[1]);

        dAddScaledVectors3(O, n[0], n[1],
                           (na_0 - na_1 * nn) / (1 - nn * nn),
                           (na_1 - na_0 * nn) / (1 - nn * nn));

        // Find the contact point as:
        //
        // c = ((r_a - O) . l) l + O
        //
        // where r_a the anchor point of either gear and l, O the tangent
        // line direction and origin.

        for (i = 0 ; i < 2 ; i += 1) {
            dSubtractVectors3(d, a[i], O);
            m = dCalcVectorDot3(d, l[i]);        
            dAddScaledVectors3(c[i], O, l[i], 1, m);
        }

        break;
    case dTransmissionChainDrive:
        dSubtractVectors3(d, a[0], a[1]);
        m = dCalcVectorLength3(d);

        dIASSERT(m > 0);
        
        // Caclulate the angle of the contact point relative to the
        // baseline.

        cosphi = clamp((radii[1] - radii[0]) / m, REAL(-1.0), REAL(1.0)); // Force into range to fix possible computation errors
        sinphi = dSqrt (REAL(1.0) - cosphi * cosphi);

        dNormalize3(d);

        for (i = 0 ; i < 2 ; i += 1) {
            // Calculate the contact radius in the local reference
            // frame of the chain.  This has axis x pointing along the
            // baseline, axis y pointing along the sprocket axis and
            // the remaining axis normal to both.

            u[0] = radii[i] * cosphi;
            u[1] = 0;
            u[2] = radii[i] * sinphi;

            // Transform the contact radius into the global frame.

            dCalcVectorCross3(z, d, n[i]);
            
            v[0] = dCalcVectorDot3(d, u);
            v[1] = dCalcVectorDot3(n[i], u);
            v[2] = dCalcVectorDot3(z, u);

            // Finally calculate contact points and l.
            
            dAddVectors3(c[i], a[i], v);
            dCalcVectorCross3(l[i], v, n[i]);
            dNormalize3(l[i]);

            // printf ("%d: %f, %f, %f\n",
            //      i, l[i][0], l[i][1], l[i][2]);
        }

        break;
    }

    if (update) {
        // We need to calculate an initial reference frame for each
        // wheel which we can measure the current phase against.  This
        // frame will have the initial contact radius as the x axis,
        // the wheel axis as the z axis and their cross product as the
        // y axis.

        for (i = 0 ; i < 2 ; i += 1) {
            dSubtractVectors3 (r[i], c[i], a[i]);
            radii[i] = dCalcVectorLength3(r[i]);
            dIASSERT(radii[i] > 0);
            
            dBodyVectorFromWorld(node[i].body, r[i][0], r[i][1], r[i][2],
                                 reference[i]);
            dNormalize3(reference[i]);
            dCopyVector3(reference[i] + 8, axes[i]);
            dCalcVectorCross3(reference[i] + 4, reference[i] + 8, reference[i]);

            // printf ("%f\n", dDOT(r[i], n[i]));
            // printf ("(%f, %f, %f,\n %f, %f, %f,\n %f, %f, %f)\n",
            //      reference[i][0],reference[i][1],reference[i][2],
            //      reference[i][4],reference[i][5],reference[i][6],
            //      reference[i][8],reference[i][9],reference[i][10]);

            radii[i] = radii[i];
            phase[i] = 0;
        }

        ratio = radii[0] / radii[1];
        update = 0;
    }
    
    for (i = 0 ; i < 2 ; i += 1) {
        dReal phase_hat;

        dSubtractVectors3 (r[i], c[i], a[i]);
        
        // Transform the (global) contact radius into the gear's
        // reference frame.

        dBodyVectorFromWorld (node[i].body, r[i][0], r[i][1], r[i][2], s);
        dMultiply0_331(t, reference[i], s);

        // Now simply calculate its angle on the plane relative to the
        // x-axis which is the initial contact radius.  This will be
        // an angle between -pi and pi that is coterminal with the
        // actual phase of the wheel.  To find the real phase we
        // estimate it by adding omega * dt to the old phase and then
        // find the closest angle to that, that is coterminal to
        // theta.

        theta = atan2(t[1], t[0]);
        phase_hat = phase[i] + dCalcVectorDot3(omega[i], n[i]) / worldFPS;

        if (phase_hat > M_PI_2) {
            if (theta < 0) {
                theta += (dReal)(2 * M_PI);
            }

            theta += (dReal)(floor(phase_hat / (2 * M_PI)) * (2 * M_PI));
        } else if (phase_hat < -M_PI_2) {
            if (theta > 0) {
                theta -= (dReal)(2 * M_PI);
            }

            theta += (dReal)(ceil(phase_hat / (2 * M_PI)) * (2 * M_PI));
        }
                
        if (phase_hat - theta > M_PI) {
            phase[i] = theta + (dReal)(2 * M_PI);
        } else if (phase_hat - theta < -M_PI) {
            phase[i] = theta - (dReal)(2 * M_PI);
        } else {
            phase[i] = theta;
        }

        dIASSERT(fabs(phase_hat - phase[i]) < M_PI);
    }

    // Calculate the phase error.  Depending on the mode the condition
    // is that the distances traveled by each contact point must be
    // either equal (chain and sprockets) or opposite (gears).

    if (mode == dTransmissionChainDrive) {
        delta = (dCalcVectorLength3(r[0]) * phase[0] -
                 dCalcVectorLength3(r[1]) * phase[1]);
    } else {
        delta = (dCalcVectorLength3(r[0]) * phase[0] +
                 dCalcVectorLength3(r[1]) * phase[1]);
    }

    // When in chain mode a torque reversal, signified by the change
    // in sign of the wheel phase difference, has the added effect of
    // switching the active chain branch.  We must therefore reflect
    // the contact points and tangents across the baseline.
    
    if (mode == dTransmissionChainDrive && delta < 0) {
        dVector3 d;

        dSubtractVectors3(d, a[0], a[1]);
        
        for (i = 0 ; i < 2 ; i += 1) {
            dVector3 nn;
            dReal a;
            
            dCalcVectorCross3(nn, n[i], d);
            a = dCalcVectorDot3(nn, nn);
            dIASSERT(a > 0);
            
            dAddScaledVectors3(c[i], c[i], nn,
                               1, -2 * dCalcVectorDot3(c[i], nn) / a);
            dAddScaledVectors3(l[i], l[i], nn,
                               -1, 2 * dCalcVectorDot3(l[i], nn) / a);
        }
    }

    // Do not add the constraint if there's backlash and we're in the
    // backlash gap.

    if (backlash == 0 || fabs(delta) > backlash) {
        // The constraint is satisfied iff the absolute velocity of the
        // contact point projected onto the tangent of the wheels is equal
        // for both gears.  This velocity can be calculated as:
        // 
        // u = v + omega x r_c
        // 
        // The constraint therefore becomes:
        // (v_1 + omega_1 x r_c1) . l = (v_2 + omega_2 x r_c2) . l <=>
        // (v_1 . l + (r_c1 x l) . omega_1 = v_2 . l + (r_c2 x l) . omega_2

        for (i = 0 ; i < 2 ; i += 1) {
            dSubtractVectors3 (r[i], c[i], p[i]);
        }

        dCalcVectorCross3(info->J1a, r[0], l[0]);
        dCalcVectorCross3(info->J2a, l[1], r[1]);

        dCopyVector3(info->J1l, l[0]);
        dCopyNegatedVector3(info->J2l, l[1]);

        if (delta > 0) {
            if (backlash > 0) {
                info->lo[0] = -dInfinity;
                info->hi[0] = 0;
            }

            info->c[0] = -worldFPS * erp * (delta - backlash);
        } else {
            if (backlash > 0) {
                info->lo[0] = 0;
                info->hi[0] = dInfinity;
            }

            info->c[0] = -worldFPS * erp * (delta + backlash);
        }
    }

    info->cfm[0] = cfm;

    // printf ("%f, %f, %f, %f, %f\n", delta, phase[0], phase[1], -phase[1] / phase[0], ratio);

    // Cache the contact point (in world coordinates) to avoid
    // recalculation if requested by the user.

    dCopyVector3(contacts[0], c[0]);
    dCopyVector3(contacts[1], c[1]);
}
Exemple #4
0
void
dxJointDBall::getInfo2( dxJoint::Info2 *info )
{
    info->erp = erp;
    info->cfm[0] = cfm;

    dVector3 globalA1, globalA2;
    dBodyGetRelPointPos(node[0].body, anchor1[0], anchor1[1], anchor1[2], globalA1);
    if (node[1].body)
        dBodyGetRelPointPos(node[1].body, anchor2[0], anchor2[1], anchor2[2], globalA2);
    else
        dCopyVector3(globalA2, anchor2);

    dVector3 q;
    dSubtractVectors3(q, globalA1, globalA2);

#ifdef dSINGLE
    const dReal MIN_LENGTH = REAL(1e-7);
#else
    const dReal MIN_LENGTH = REAL(1e-12);
#endif

    if (dCalcVectorLength3(q) < MIN_LENGTH) {
        // too small, let's choose an arbitrary direction
        // heuristic: difference in velocities at anchors
        dVector3 v1, v2;
        dBodyGetPointVel(node[0].body, globalA1[0], globalA1[1], globalA1[2], v1);
        if (node[1].body)
            dBodyGetPointVel(node[1].body, globalA2[0], globalA2[1], globalA2[2], v2);
        else
            dSetZero(v2, 3);
        dSubtractVectors3(q, v1, v2);

        if (dCalcVectorLength3(q) < MIN_LENGTH) {
            // this direction is as good as any
            q[0] = 1;
            q[1] = 0;
            q[2] = 0;
        }
    }
    dNormalize3(q);

    info->J1l[0] = q[0];
    info->J1l[1] = q[1];
    info->J1l[2] = q[2];

    dVector3 relA1;
    dBodyVectorToWorld(node[0].body,
                       anchor1[0], anchor1[1], anchor1[2],
                       relA1);

    dMatrix3 a1m;
    dSetZero(a1m, 12);
    dSetCrossMatrixMinus(a1m, relA1, 4);

    dMultiply1_331(info->J1a, a1m, q);

    if (node[1].body) {
        info->J2l[0] = -q[0];
        info->J2l[1] = -q[1];
        info->J2l[2] = -q[2];

        dVector3 relA2;
        dBodyVectorToWorld(node[1].body,
                           anchor2[0], anchor2[1], anchor2[2],
                           relA2);
        dMatrix3 a2m;
        dSetZero(a2m, 12);
        dSetCrossMatrixPlus(a2m, relA2, 4);
        dMultiply1_331(info->J2a, a2m, q);
    }
    
    const dReal k = info->fps * info->erp;
    info->c[0] = k * (targetDistance - dCalcPointsDistance3(globalA1, globalA2));

}
int dCollideCylinderSphere(dxGeom* Cylinder, dxGeom* Sphere, 
                           int flags, dContactGeom *contact, int skip)
{
    dIASSERT (skip >= (int)sizeof(dContactGeom));
    dIASSERT (Cylinder->type == dCylinderClass);
    dIASSERT (Sphere->type == dSphereClass);
    dIASSERT ((flags & NUMC_MASK) >= 1);

    //unsigned char* pContactData = (unsigned char*)contact;
    int GeomCount = 0; // count of used contacts

#ifdef dSINGLE
    const dReal toleranz = REAL(0.0001);
#endif
#ifdef dDOUBLE
    const dReal toleranz = REAL(0.0000001);
#endif

    // get the data from the geoms
    dReal radius, length;
    dGeomCylinderGetParams(Cylinder, &radius, &length);
    dVector3 &cylpos = Cylinder->final_posr->pos;
    //const dReal* pfRot1 = dGeomGetRotation(Cylinder);

    dReal radius2;
    radius2 = dGeomSphereGetRadius(Sphere);
    const dReal* SpherePos = dGeomGetPosition(Sphere);

    // G1Pos1 is the middle of the first disc
    // G1Pos2 is the middle of the second disc
    // vDir1 is the unit direction of the cylinderaxis
    dVector3 G1Pos1, G1Pos2, vDir1;
    vDir1[0] = Cylinder->final_posr->R[2];
    vDir1[1] = Cylinder->final_posr->R[6];
    vDir1[2] = Cylinder->final_posr->R[10];

    dReal s;
    s = length * REAL(0.5); // just a precomputed factor
    G1Pos2[0] = vDir1[0] * s + cylpos[0];
    G1Pos2[1] = vDir1[1] * s + cylpos[1];
    G1Pos2[2] = vDir1[2] * s + cylpos[2];

    G1Pos1[0] = vDir1[0] * -s + cylpos[0];
    G1Pos1[1] = vDir1[1] * -s + cylpos[1];
    G1Pos1[2] = vDir1[2] * -s + cylpos[2];

    dVector3 C;
    dReal t;
    // Step 1: compute the two distances 's' and 't'
    // 's' is the distance from the first disc (in vDir1-/Zylinderaxis-direction), the disc with G1Pos1 in the middle
    s = (SpherePos[0] - G1Pos1[0]) * vDir1[0] - (G1Pos1[1] - SpherePos[1]) * vDir1[1] - (G1Pos1[2] - SpherePos[2]) * vDir1[2];
    if(s < (-radius2) || s > (length + radius2) )
    {
        // Sphere is too far away from the discs
        // no collision
        return 0;
    }

    // C is the direction from Sphere-middle to the cylinder-axis (vDir1); C is orthogonal to the cylinder-axis
    C[0] = s * vDir1[0] + G1Pos1[0] - SpherePos[0];
    C[1] = s * vDir1[1] + G1Pos1[1] - SpherePos[1];
    C[2] = s * vDir1[2] + G1Pos1[2] - SpherePos[2];
    // t is the distance from the Sphere-middle to the cylinder-axis!
    t = dCalcVectorLength3(C);
    if(t > (radius + radius2) )
    {
        // Sphere is too far away from the cylinder axis!
        // no collision
        return 0;
    }

    // decide which kind of collision we have:
    if(t > radius && (s < 0 || s > length) )
    {
        // 3. collision
        if(s <= 0)
        {
            contact->depth = radius2 - dSqrt( (s) * (s) + (t - radius) * (t - radius) );
            if(contact->depth < 0)
            {
                // no collision!
                return 0;
            }
            contact->pos[0] = C[0] / t * -radius + G1Pos1[0];
            contact->pos[1] = C[1] / t * -radius + G1Pos1[1];
            contact->pos[2] = C[2] / t * -radius + G1Pos1[2];
            contact->normal[0] = (contact->pos[0] - SpherePos[0]) / (radius2 - contact->depth);
            contact->normal[1] = (contact->pos[1] - SpherePos[1]) / (radius2 - contact->depth);
            contact->normal[2] = (contact->pos[2] - SpherePos[2]) / (radius2 - contact->depth);
            contact->g1 = Cylinder;
            contact->g2 = Sphere;
            contact->side1 = -1;
            contact->side2 = -1;
            GeomCount++;
            return GeomCount;
        }
        else
        {
            // now s is bigger than length here!
            contact->depth = radius2 - dSqrt( (s - length) * (s - length) + (t - radius) * (t - radius) );
            if(contact->depth < 0)
            {
                // no collision!
                return 0;
            }
            contact->pos[0] = C[0] / t * -radius + G1Pos2[0];
            contact->pos[1] = C[1] / t * -radius + G1Pos2[1];
            contact->pos[2] = C[2] / t * -radius + G1Pos2[2];
            contact->normal[0] = (contact->pos[0] - SpherePos[0]) / (radius2 - contact->depth);
            contact->normal[1] = (contact->pos[1] - SpherePos[1]) / (radius2 - contact->depth);
            contact->normal[2] = (contact->pos[2] - SpherePos[2]) / (radius2 - contact->depth);
            contact->g1 = Cylinder;
            contact->g2 = Sphere;
            contact->side1 = -1;
            contact->side2 = -1;
            GeomCount++;
            return GeomCount;
        }
    }
    else if( (radius - t) <= s && (radius - t) <= (length - s) )
    {
        // 1. collsision
        if(t > (radius2 + toleranz))
        {
            // cylinder-axis is outside the sphere
            contact->depth = (radius2 + radius) - t;
            if(contact->depth < 0)
            {
                // should never happen, but just for safeness
                return 0;
            }
            else
            {
                C[0] /= t;
                C[1] /= t;
                C[2] /= t;
                contact->pos[0] = C[0] * radius2 + SpherePos[0];
                contact->pos[1] = C[1] * radius2 + SpherePos[1];
                contact->pos[2] = C[2] * radius2 + SpherePos[2];
                contact->normal[0] = C[0];
                contact->normal[1] = C[1];
                contact->normal[2] = C[2];
                contact->g1 = Cylinder;
                contact->g2 = Sphere;
                contact->side1 = -1;
                contact->side2 = -1;
                GeomCount++;
                return GeomCount;
            }
        }
        else
        {
            // cylinder-axis is outside of the sphere
            contact->depth = (radius2 + radius) - t;
            if(contact->depth < 0)
            {
                // should never happen, but just for safeness
                return 0;
            }
            else
            {
                contact->pos[0] = C[0] + SpherePos[0];
                contact->pos[1] = C[1] + SpherePos[1];
                contact->pos[2] = C[2] + SpherePos[2];
                contact->normal[0] = C[0] / t;
                contact->normal[1] = C[1] / t;
                contact->normal[2] = C[2] / t;
                contact->g1 = Cylinder;
                contact->g2 = Sphere;
                contact->side1 = -1;
                contact->side2 = -1;
                GeomCount++;
                return GeomCount;
            }
        }
    }
    else
    {
        // 2. collision
        if(s <= (length * REAL(0.5)) )
        {
            // collsision with the first disc
            contact->depth = s + radius2;
            if(contact->depth < 0)
            {
                // should never happen, but just for safeness
                return 0;
            }
            contact->pos[0] = radius2 * vDir1[0] + SpherePos[0];
            contact->pos[1] = radius2 * vDir1[1] + SpherePos[1];
            contact->pos[2] = radius2 * vDir1[2] + SpherePos[2];
            contact->normal[0] = vDir1[0];
            contact->normal[1] = vDir1[1];
            contact->normal[2] = vDir1[2];
            contact->g1 = Cylinder;
            contact->g2 = Sphere;
            contact->side1 = -1;
            contact->side2 = -1;
            GeomCount++;
            return GeomCount;
        }
        else
        {
            // collsision with the second disc
            contact->depth = (radius2 + length - s);
            if(contact->depth < 0)
            {
                // should never happen, but just for safeness
                return 0;
            }
            contact->pos[0] = radius2 * -vDir1[0] + SpherePos[0];
            contact->pos[1] = radius2 * -vDir1[1] + SpherePos[1];
            contact->pos[2] = radius2 * -vDir1[2] + SpherePos[2];
            contact->normal[0] = -vDir1[0];
            contact->normal[1] = -vDir1[1];
            contact->normal[2] = -vDir1[2];
            contact->g1 = Cylinder;
            contact->g2 = Sphere;
            contact->side1 = -1;
            contact->side2 = -1;
            GeomCount++;
            return GeomCount;
        }
    }
    return GeomCount;
}