void config_dacc(void){ sysclk_enable_peripheral_clock(ID_DACC); /* Reset DACC registers */ dacc_reset(DACC); /* Half-Word transfer mode */ dacc_set_transfer_mode(DACC, 0); /* Timing: * startup - 0x10 (17 clocks) * internal trigger clock - 0x60 (96 clocks) */ dacc_set_timing(DACC, 0x10, 0x60); /*External trigger mode disabled. DACC in free running mode.*/ dacc_disable_trigger(DACC); /* Enable DAC */ dacc_enable(DACC); while((dacc_get_interrupt_status(DACC) & DACC_ISR_TXRDY) != DACC_ISR_TXRDY); dacc_write_conversion_data(DACC, 0); }
/** * \brief Start DAC ouput. * Initialize DAC, set clock and timing, and set DAC to given mode. */ static void start_dac(void) { sysclk_enable_peripheral_clock(DACC); /* Reset DACC registers */ dacc_reset(DACC); /* Half word transfer mode */ dacc_set_transfer_mode(DACC, 0); /* Timing: * startup - 0x10 (17 clocks) * internal trigger clock - 0x60 (96 clocks) */ dacc_set_timing(DACC, 0x10, 0x60); /* Enable DAC */ dacc_enable(DACC); /* The DAC is 10-bit resolution, so output voltage should be * (3300 * 255) / ((1 << 10) - 1) = 823mv */ dacc_write_conversion_data(DACC, 0xFF); }
/** * Initialize the DAC as event user. */ static void init_dacc(void) { /* Enable clock for DACC */ sysclk_enable_peripheral_clock(DACC); /* Reset DACC registers */ dacc_reset(DACC); /* Half word transfer mode */ dacc_set_transfer_mode(DACC, 0); /* * Timing: * startup - 0x10 (17 clocks) * internal trigger clock - 0x60 (96 clocks) */ dacc_set_timing(DACC, 0x10, 0x60); /* Enable event trigger (0: external trigger, 1: peripheral event) */ dacc_set_trigger(DACC, 1); /* Enable DAC */ dacc_enable(DACC); }
/** * \brief Start ADC sample. * Initialize ADC, set clock and timing, and set ADC to given mode. */ static void start_adc(void) { struct adc_config adc_cfg = { /* System clock division factor is 16 */ .prescal = ADC_PRESCAL_DIV16, /* The APB clock is used */ .clksel = ADC_CLKSEL_APBCLK, /* Max speed is 150K */ .speed = ADC_SPEED_150K, /* ADC Reference voltage is 0.625*VCC */ .refsel = ADC_REFSEL_1, /* Enables the Startup time */ .start_up = CONFIG_ADC_STARTUP }; struct adc_seq_config adc_seq_cfg = { /* Select Vref for shift cycle */ .zoomrange = ADC_ZOOMRANGE_0, /* Pad Ground */ .muxneg = ADC_MUXNEG_1, /* DAC internal */ .muxpos = ADC_MUXPOS_3, /* Enables the internal voltage sources */ .internal = ADC_INTERNAL_3, /* Disables the ADC gain error reduction */ .gcomp = ADC_GCOMP_DIS, /* Disables the HWLA mode */ .hwla = ADC_HWLA_DIS, /* 12-bits resolution */ .res = ADC_RES_12_BIT, /* Enables the single-ended mode */ .bipolar = ADC_BIPOLAR_SINGLEENDED }; struct adc_ch_config adc_ch_cfg = { .seq_cfg = &adc_seq_cfg, /* Internal Timer Max Counter */ .internal_timer_max_count = 60, /* Window monitor mode is off */ .window_mode = 0, .low_threshold = 0, .high_threshold = 0, }; if(adc_init(&g_adc_inst, ADCIFE, &adc_cfg) != STATUS_OK) { puts("-F- ADC Init Fail!\n\r"); while(1); } if(adc_enable(&g_adc_inst) != STATUS_OK) { puts("-F- ADC Enable Fail!\n\r"); while(1); } if (g_adc_test_mode.uc_pdc_en) { adc_disable_interrupt(&g_adc_inst, ADC_SEQ_SEOC); adc_pdca_set_config(&g_adc_pdca_cfg); pdca_channel_set_callback(CONFIG_ADC_PDCA_RX_CHANNEL, pdca_transfer_done, PDCA_0_IRQn, 1, PDCA_IER_TRC); } else { pdca_channel_disable_interrupt(CONFIG_ADC_PDCA_RX_CHANNEL, PDCA_IDR_TRC); pdca_channel_disable_interrupt(CONFIG_ADC_PDCA_TX_CHANNEL, PDCA_IDR_TRC); adc_ch_set_config(&g_adc_inst, &adc_ch_cfg); adc_set_callback(&g_adc_inst, ADC_SEQ_SEOC, adcife_read_conv_result, ADCIFE_IRQn, 1); } /* Configure trigger mode and start convention. */ switch (g_adc_test_mode.uc_trigger_mode) { case TRIGGER_MODE_SOFTWARE: adc_configure_trigger(&g_adc_inst, ADC_TRIG_SW); break; case TRIGGER_MODE_CON: adc_configure_trigger(&g_adc_inst, ADC_TRIG_CON); break; case TRIGGER_MODE_ITIMER: adc_configure_trigger(&g_adc_inst, ADC_TRIG_INTL_TIMER); adc_configure_itimer_period(&g_adc_inst, adc_ch_cfg.internal_timer_max_count); adc_start_itimer(&g_adc_inst); break; default: break; } if (g_adc_test_mode.uc_gain_en) { adc_configure_gain(&g_adc_inst, ADC_GAIN_2X); } else { adc_configure_gain(&g_adc_inst, ADC_GAIN_1X); } } /** * \brief Start DAC ouput. * Initialize DAC, set clock and timing, and set DAC to given mode. */ static void start_dac(void) { sysclk_enable_peripheral_clock(DACC); /* Reset DACC registers */ dacc_reset(DACC); /* Half word transfer mode */ dacc_set_transfer_mode(DACC, 0); /* Timing: * startup - 0x10 (17 clocks) * internal trigger clock - 0x60 (96 clocks) */ dacc_set_timing(DACC, 0x10, 0x60); /* Enable DAC */ dacc_enable(DACC); /* The DAC is 10-bit resolution, so output voltage should be * (3300 * 255) / ((1 << 10) - 1) = 823mv */ dacc_write_conversion_data(DACC, 0xFF); }
/** * \brief DAC Sinewave application entry point. * * \return Unused (ANSI-C compatibility). */ int main(void) { uint8_t uc_key; uint32_t ul_freq, ul_amp; /* Initialize the system */ sysclk_init(); board_init(); /* Initialize debug console */ configure_console(); /* Output example information */ puts(STRING_HEADER); /* Enable clock for DACC */ #if SAM4L sysclk_enable_peripheral_clock(DACC_BASE); #else sysclk_enable_peripheral_clock(DACC_ID); #endif /* Reset DACC registers */ dacc_reset(DACC_BASE); /* Half word transfer mode */ dacc_set_transfer_mode(DACC_BASE, 0); /* Initialize timing, amplitude and frequency */ #if (SAM3N) || (SAM4L) /* Timing: * startup - 0x10 (17 clocks) * internal trigger clock - 0x60 (96 clocks) */ dacc_set_timing(DACC_BASE, 0x10, 0x60); /* Enable DAC */ dacc_enable(DACC_BASE); #else /* Power save: * sleep mode - 0 (disabled) * fast wakeup - 0 (disabled) */ dacc_set_power_save(DACC_BASE, 0, 0); /* Timing: * refresh - 0x08 (1024*8 dacc clocks) * max speed mode - 0 (disabled) * startup time - 0x10 (1024 dacc clocks) */ dacc_set_timing(DACC_BASE, 0x08, 0, 0x10); /* Disable TAG and select output channel DACC_CHANNEL */ dacc_set_channel_selection(DACC_BASE, DACC_CHANNEL); /* Enable output channel DACC_CHANNEL */ dacc_enable_channel(DACC_BASE, DACC_CHANNEL); /* Set up analog current */ dacc_set_analog_control(DACC_BASE, DACC_ANALOG_CONTROL); #endif /* (SAM3N) */ g_l_amplitude = MAX_AMPLITUDE / 2; g_ul_frequency = DEFAULT_FREQUENCY; SysTick_Config(sysclk_get_cpu_hz() / (g_ul_frequency * SAMPLES)); /* Main menu */ display_menu(); while (1) { usart_serial_getchar((Usart *)CONSOLE_UART, &uc_key); switch (uc_key) { case '0': puts("Frequency:"); ul_freq = get_input_value(MIN_FREQUENCY, MAX_FREQUENCY); puts("\r"); if (ul_freq != VAL_INVALID) { printf("Set frequency to : %luHz\n\r", (unsigned long)ul_freq); SysTick_Config(sysclk_get_cpu_hz() / (ul_freq * SAMPLES)); g_ul_frequency = ul_freq; } break; case '1': puts("Amplitude:"); ul_amp = get_input_value(MIN_AMPLITUDE, MAX_AMPLITUDE); puts("\r"); if (ul_amp != VAL_INVALID) { printf("Set amplitude to : %lu\n\r", (unsigned long)ul_amp); g_l_amplitude = ul_amp; } break; case 'i': case 'I': printf("-I- Frequency : %lu Hz Amplitude : %ld\n\r", (unsigned long)g_ul_frequency, (long)g_l_amplitude); break; case 'w': case 'W': printf("-I- Switch wave to : %s\n\r", g_uc_wave_sel ? "SINE" : "Full Amplitude SQUARE"); g_uc_wave_sel = (g_uc_wave_sel + 1) & 1; break; case 'm': case 'M': display_menu(); break; } puts("Press \'m\' or \'M\' to display the main menu again!\r"); } }