Exemple #1
0
int dct(bmp_block source, dct_data *target) {
    int i, j, ret;
    ret = dct_init(target, source.width, source.height);
    if (ret != DCT_OK)
        return ret;
    for (i = 0; i < source.width; i++)
        for (j = 0; j < source.height; j++)
            block_dct(source.block[i][j], &target->block[i][j]);
    return DCT_OK;
}
Exemple #2
0
void mfcc_init( Mfcc **phMfcc, AUD_Int32s winSize, AUD_Float fs,
                AUD_Float fl, AUD_Float fh, AUD_Int32s fbLen, AUD_Float melMul, AUD_Float melDiv, AUD_Int32s mfccLen, AUD_AmpCompress compressType )
{
	Mfcc       *pMfcc = NULL;
	AUD_Int32s fftOrder, i;

	pMfcc = (Mfcc*)calloc( sizeof(Mfcc), 1 );
	if ( pMfcc == NULL )
	{
		*phMfcc = NULL;
		return;
	}
	*phMfcc = pMfcc;

	pMfcc->fftLen       = winSize / 2;
	pMfcc->fbLen        = fbLen;
	pMfcc->mfccLen      = mfccLen;
	pMfcc->compressType = compressType;

	melfb_init( &(pMfcc->pFb), &fftOrder, winSize, fs, fl, fh, fbLen, melMul, melDiv );

	pMfcc->fbBuffer = (AUD_Int32s*)calloc( fbLen * sizeof(AUD_Int32s), 1 );
	if ( pMfcc->fbBuffer == NULL )
	{
		free( pMfcc );
		*phMfcc = NULL;
		return;
	}

	dct_init( &(pMfcc->pDct), 1, mfccLen, fbLen, 15 );

	for ( i = 0; i < RAW_BUFLEN; i++ )
	{
		pMfcc->pState[i] = (AUD_Int32s*)calloc( mfccLen * sizeof(AUD_Int32s), 1 );
		AUD_ASSERT( pMfcc->pState[i] );
	}

	return;
}
Exemple #3
0
int main(int argc, char **argv)
{
    FFTComplex *tab, *tab1, *tab_ref;
    FFTSample *tab2;
    enum tf_transform transform = TRANSFORM_FFT;
    FFTContext *m, *s;
#if FFT_FLOAT
    RDFTContext *r;
    DCTContext *d;
#endif /* FFT_FLOAT */
    int it, i, err = 1;
    int do_speed = 0, do_inverse = 0;
    int fft_nbits = 9, fft_size;
    double scale = 1.0;
    AVLFG prng;

#if !AVFFT
    s = av_mallocz(sizeof(*s));
    m = av_mallocz(sizeof(*m));
#endif

#if !AVFFT && FFT_FLOAT
    r = av_mallocz(sizeof(*r));
    d = av_mallocz(sizeof(*d));
#endif

    av_lfg_init(&prng, 1);

    for (;;) {
        int c = getopt(argc, argv, "hsimrdn:f:c:");
        if (c == -1)
            break;
        switch (c) {
        case 'h':
            help();
            return 1;
        case 's':
            do_speed = 1;
            break;
        case 'i':
            do_inverse = 1;
            break;
        case 'm':
            transform = TRANSFORM_MDCT;
            break;
        case 'r':
            transform = TRANSFORM_RDFT;
            break;
        case 'd':
            transform = TRANSFORM_DCT;
            break;
        case 'n':
            fft_nbits = atoi(optarg);
            break;
        case 'f':
            scale = atof(optarg);
            break;
        case 'c':
        {
            unsigned cpuflags = av_get_cpu_flags();

            if (av_parse_cpu_caps(&cpuflags, optarg) < 0)
                return 1;

            av_force_cpu_flags(cpuflags);
            break;
        }
        }
    }

    fft_size = 1 << fft_nbits;
    tab      = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab1     = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab_ref  = av_malloc_array(fft_size, sizeof(FFTComplex));
    tab2     = av_malloc_array(fft_size, sizeof(FFTSample));

    if (!(tab && tab1 && tab_ref && tab2))
        goto cleanup;

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        av_log(NULL, AV_LOG_INFO, "Scale factor is set to %f\n", scale);
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IMDCT");
        else
            av_log(NULL, AV_LOG_INFO, "MDCT");
        mdct_init(&m, fft_nbits, do_inverse, scale);
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IFFT");
        else
            av_log(NULL, AV_LOG_INFO, "FFT");
        fft_init(&s, fft_nbits, do_inverse);
        if ((err = fft_ref_init(fft_nbits, do_inverse)) < 0)
            goto cleanup;
        break;
#if FFT_FLOAT
#    if CONFIG_RDFT
    case TRANSFORM_RDFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "IDFT_C2R");
        else
            av_log(NULL, AV_LOG_INFO, "DFT_R2C");
        rdft_init(&r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
        if ((err = fft_ref_init(fft_nbits, do_inverse)) < 0)
            goto cleanup;
        break;
#    endif /* CONFIG_RDFT */
#    if CONFIG_DCT
    case TRANSFORM_DCT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO, "DCT_III");
        else
            av_log(NULL, AV_LOG_INFO, "DCT_II");
            dct_init(&d, fft_nbits, do_inverse ? DCT_III : DCT_II);
        break;
#    endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    default:
        av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
        goto cleanup;
    }
    av_log(NULL, AV_LOG_INFO, " %d test\n", fft_size);

    /* generate random data */

    for (i = 0; i < fft_size; i++) {
        tab1[i].re = frandom(&prng);
        tab1[i].im = frandom(&prng);
    }

    /* checking result */
    av_log(NULL, AV_LOG_INFO, "Checking...\n");

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        if (do_inverse) {
            imdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
            imdct_calc(m, tab2, &tab1->re);
            err = check_diff(&tab_ref->re, tab2, fft_size, scale);
        } else {
            mdct_ref(&tab_ref->re, &tab1->re, fft_nbits);
            mdct_calc(m, tab2, &tab1->re);
            err = check_diff(&tab_ref->re, tab2, fft_size / 2, scale);
        }
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        fft_permute(s, tab);
        fft_calc(s, tab);

        fft_ref(tab_ref, tab1, fft_nbits);
        err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 1.0);
        break;
#if FFT_FLOAT
#if CONFIG_RDFT
    case TRANSFORM_RDFT:
    {
        int fft_size_2 = fft_size >> 1;
        if (do_inverse) {
            tab1[0].im          = 0;
            tab1[fft_size_2].im = 0;
            for (i = 1; i < fft_size_2; i++) {
                tab1[fft_size_2 + i].re =  tab1[fft_size_2 - i].re;
                tab1[fft_size_2 + i].im = -tab1[fft_size_2 - i].im;
            }

            memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
            tab2[1] = tab1[fft_size_2].re;

            rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            for (i = 0; i < fft_size; i++) {
                tab[i].re = tab2[i];
                tab[i].im = 0;
            }
            err = check_diff(&tab_ref->re, &tab->re, fft_size * 2, 0.5);
        } else {
            for (i = 0; i < fft_size; i++) {
                tab2[i]    = tab1[i].re;
                tab1[i].im = 0;
            }
            rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            tab_ref[0].im = tab_ref[fft_size_2].re;
            err = check_diff(&tab_ref->re, tab2, fft_size, 1.0);
        }
        break;
    }
#endif /* CONFIG_RDFT */
#if CONFIG_DCT
    case TRANSFORM_DCT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        dct_calc(d, &tab->re);
        if (do_inverse)
            idct_ref(&tab_ref->re, &tab1->re, fft_nbits);
        else
            dct_ref(&tab_ref->re, &tab1->re, fft_nbits);
        err = check_diff(&tab_ref->re, &tab->re, fft_size, 1.0);
        break;
#endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    }

    /* do a speed test */

    if (do_speed) {
        int64_t time_start, duration;
        int nb_its;

        av_log(NULL, AV_LOG_INFO, "Speed test...\n");
        /* we measure during about 1 seconds */
        nb_its = 1;
        for (;;) {
            time_start = av_gettime_relative();
            for (it = 0; it < nb_its; it++) {
                switch (transform) {
                case TRANSFORM_MDCT:
                    if (do_inverse)
                        imdct_calc(m, &tab->re, &tab1->re);
                    else
                        mdct_calc(m, &tab->re, &tab1->re);
                    break;
                case TRANSFORM_FFT:
                    memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
                    fft_calc(s, tab);
                    break;
#if FFT_FLOAT
                case TRANSFORM_RDFT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    rdft_calc(r, tab2);
                    break;
                case TRANSFORM_DCT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    dct_calc(d, tab2);
                    break;
#endif /* FFT_FLOAT */
                }
            }
            duration = av_gettime_relative() - time_start;
            if (duration >= 1000000)
                break;
            nb_its *= 2;
        }
        av_log(NULL, AV_LOG_INFO,
               "time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
               (double) duration / nb_its,
               (double) duration / 1000000.0,
               nb_its);
    }

    switch (transform) {
#if CONFIG_MDCT
    case TRANSFORM_MDCT:
        mdct_end(m);
        break;
#endif /* CONFIG_MDCT */
    case TRANSFORM_FFT:
        fft_end(s);
        break;
#if FFT_FLOAT
#    if CONFIG_RDFT
    case TRANSFORM_RDFT:
        rdft_end(r);
        break;
#    endif /* CONFIG_RDFT */
#    if CONFIG_DCT
    case TRANSFORM_DCT:
        dct_end(d);
        break;
#    endif /* CONFIG_DCT */
#endif /* FFT_FLOAT */
    }

cleanup:
    av_free(tab);
    av_free(tab1);
    av_free(tab2);
    av_free(tab_ref);
    av_free(exptab);

#if !AVFFT
    av_free(s);
    av_free(m);
#endif

#if !AVFFT && FFT_FLOAT
    av_free(r);
    av_free(d);
#endif

    if (err)
        printf("Error: %d.\n", err);

    return !!err;
}