Exemple #1
0
static int
virtio_enable_intx(struct virtio_softc *sc)
{
	int ret;

	ret = ddi_intr_enable(sc->sc_intr_htable[0]);
	if (ret != DDI_SUCCESS) {
		dev_err(sc->sc_dev, CE_WARN,
		    "Failed to enable interrupt: %d", ret);
	}

	return (ret);
}
static int
virtio_fixed_intr_setup(virtionet_state_t *sp, ddi_intr_handler_t inthandler)
{
	int			rc;
	int			nintr;
	uint_t			pri;

	rc = ddi_intr_get_nintrs(sp->dip, DDI_INTR_TYPE_FIXED, &nintr);
	if (rc != DDI_SUCCESS) {
		return (DDI_FAILURE);
	}

	ASSERT(nintr == 1);

	rc = ddi_intr_alloc(sp->dip, &sp->ihandle, DDI_INTR_TYPE_FIXED, 0, 1,
	    &nintr, DDI_INTR_ALLOC_NORMAL);
	if (rc != DDI_SUCCESS) {
		return (DDI_FAILURE);
	}

	ASSERT(nintr == 1);

	rc = ddi_intr_get_pri(sp->ihandle, &pri);
	if (rc != DDI_SUCCESS) {
		(void) ddi_intr_free(sp->ihandle);
		return (DDI_FAILURE);
	}

	/* Test for high level mutex */
	if (pri >= ddi_intr_get_hilevel_pri()) {
		cmn_err(CE_WARN, "Hi level interrupt not supported");
		(void) ddi_intr_free(sp->ihandle);
		return (DDI_FAILURE);
	}

	rc = ddi_intr_add_handler(sp->ihandle, inthandler, sp, NULL);
	if (rc != DDI_SUCCESS) {
		(void) ddi_intr_free(sp->ihandle);
		return (DDI_FAILURE);
	}

	rc = ddi_intr_enable(sp->ihandle);
	if (rc != DDI_SUCCESS) {
		(void) ddi_intr_remove_handler(sp->ihandle);
		(void) ddi_intr_free(sp->ihandle);
		return (DDI_FAILURE);
	}
	return (DDI_SUCCESS);
}
Exemple #3
0
/*
 * Autoconfiguration entry points.
 */
int
efe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
	ddi_acc_handle_t pci;
	int types;
	int count;
	int actual;
	uint_t pri;
	efe_t *efep;
	mac_register_t *macp;

	switch (cmd) {
	case DDI_ATTACH:
		break;

	case DDI_RESUME:
		efep = ddi_get_driver_private(dip);
		return (efe_resume(efep));

	default:
		return (DDI_FAILURE);
	}

	/*
	 * PCI configuration.
	 */
	if (pci_config_setup(dip, &pci) != DDI_SUCCESS) {
		efe_error(dip, "unable to setup PCI configuration!");
		return (DDI_FAILURE);
	}

	pci_config_put16(pci, PCI_CONF_COMM,
	    pci_config_get16(pci, PCI_CONF_COMM) | PCI_COMM_MAE | PCI_COMM_ME);

	pci_config_teardown(&pci);

	if (ddi_intr_get_supported_types(dip, &types)
	    != DDI_SUCCESS || !(types & DDI_INTR_TYPE_FIXED)) {
		efe_error(dip, "fixed interrupts not supported!");
		return (DDI_FAILURE);
	}

	if (ddi_intr_get_nintrs(dip, DDI_INTR_TYPE_FIXED, &count)
	    != DDI_SUCCESS || count != 1) {
		efe_error(dip, "no fixed interrupts available!");
		return (DDI_FAILURE);
	}

	/*
	 * Initialize soft state.
	 */
	efep = kmem_zalloc(sizeof (efe_t), KM_SLEEP);
	ddi_set_driver_private(dip, efep);

	efep->efe_dip = dip;

	if (ddi_regs_map_setup(dip, 1, (caddr_t *)&efep->efe_regs, 0, 0,
	    &efe_regs_acc_attr, &efep->efe_regs_acch) != DDI_SUCCESS) {
		efe_error(dip, "unable to setup register mapping!");
		goto failure;
	}

	efep->efe_rx_ring = efe_ring_alloc(efep->efe_dip, RXDESCL);
	if (efep->efe_rx_ring == NULL) {
		efe_error(efep->efe_dip, "unable to allocate rx ring!");
		goto failure;
	}

	efep->efe_tx_ring = efe_ring_alloc(efep->efe_dip, TXDESCL);
	if (efep->efe_tx_ring == NULL) {
		efe_error(efep->efe_dip, "unable to allocate tx ring!");
		goto failure;
	}

	if (ddi_intr_alloc(dip, &efep->efe_intrh, DDI_INTR_TYPE_FIXED, 0,
	    count, &actual, DDI_INTR_ALLOC_STRICT) != DDI_SUCCESS ||
	    actual != count) {
		efe_error(dip, "unable to allocate fixed interrupt!");
		goto failure;
	}

	if (ddi_intr_get_pri(efep->efe_intrh, &pri) != DDI_SUCCESS ||
	    pri >= ddi_intr_get_hilevel_pri()) {
		efe_error(dip, "unable to get valid interrupt priority!");
		goto failure;
	}

	mutex_init(&efep->efe_intrlock, NULL, MUTEX_DRIVER,
	    DDI_INTR_PRI(pri));

	mutex_init(&efep->efe_txlock, NULL, MUTEX_DRIVER,
	    DDI_INTR_PRI(pri));

	/*
	 * Initialize device.
	 */
	mutex_enter(&efep->efe_intrlock);
	mutex_enter(&efep->efe_txlock);

	efe_reset(efep);

	mutex_exit(&efep->efe_txlock);
	mutex_exit(&efep->efe_intrlock);

	/* Use factory address as default */
	efe_getaddr(efep, efep->efe_macaddr);

	/*
	 * Enable the ISR.
	 */
	if (ddi_intr_add_handler(efep->efe_intrh, efe_intr, efep, NULL)
	    != DDI_SUCCESS) {
		efe_error(dip, "unable to add interrupt handler!");
		goto failure;
	}

	if (ddi_intr_enable(efep->efe_intrh) != DDI_SUCCESS) {
		efe_error(dip, "unable to enable interrupt!");
		goto failure;
	}

	/*
	 * Allocate MII resources.
	 */
	if ((efep->efe_miih = mii_alloc(efep, dip, &efe_mii_ops)) == NULL) {
		efe_error(dip, "unable to allocate mii resources!");
		goto failure;
	}

	/*
	 * Allocate MAC resources.
	 */
	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
		efe_error(dip, "unable to allocate mac resources!");
		goto failure;
	}

	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
	macp->m_driver = efep;
	macp->m_dip = dip;
	macp->m_src_addr = efep->efe_macaddr;
	macp->m_callbacks = &efe_m_callbacks;
	macp->m_min_sdu = 0;
	macp->m_max_sdu = ETHERMTU;
	macp->m_margin = VLAN_TAGSZ;

	if (mac_register(macp, &efep->efe_mh) != 0) {
		efe_error(dip, "unable to register with mac!");
		goto failure;
	}
	mac_free(macp);

	ddi_report_dev(dip);

	return (DDI_SUCCESS);

failure:
	if (macp != NULL) {
		mac_free(macp);
	}

	if (efep->efe_miih != NULL) {
		mii_free(efep->efe_miih);
	}

	if (efep->efe_intrh != NULL) {
		(void) ddi_intr_disable(efep->efe_intrh);
		(void) ddi_intr_remove_handler(efep->efe_intrh);
		(void) ddi_intr_free(efep->efe_intrh);
	}

	mutex_destroy(&efep->efe_txlock);
	mutex_destroy(&efep->efe_intrlock);

	if (efep->efe_tx_ring != NULL) {
		efe_ring_free(&efep->efe_tx_ring);
	}
	if (efep->efe_rx_ring != NULL) {
		efe_ring_free(&efep->efe_rx_ring);
	}

	if (efep->efe_regs_acch != NULL) {
		ddi_regs_map_free(&efep->efe_regs_acch);
	}

	kmem_free(efep, sizeof (efe_t));

	return (DDI_FAILURE);
}
Exemple #4
0
static int
virtio_enable_msi(struct virtio_softc *sc)
{
	int ret, i;
	int vq_handler_count = sc->sc_intr_num;

	/* Number of handlers, not counting the counfig. */
	if (sc->sc_intr_config)
		vq_handler_count--;

	/* Enable the iterrupts. Either the whole block, or one by one. */
	if (sc->sc_intr_cap & DDI_INTR_FLAG_BLOCK) {
		ret = ddi_intr_block_enable(sc->sc_intr_htable,
		    sc->sc_intr_num);
		if (ret != DDI_SUCCESS) {
			dev_err(sc->sc_dev, CE_WARN,
			    "Failed to enable MSI, falling back to INTx");
			goto out_enable;
		}
	} else {
		for (i = 0; i < sc->sc_intr_num; i++) {
			ret = ddi_intr_enable(sc->sc_intr_htable[i]);
			if (ret != DDI_SUCCESS) {
				dev_err(sc->sc_dev, CE_WARN,
				    "Failed to enable MSI %d, "
				    "falling back to INTx", i);

				while (--i >= 0) {
					(void) ddi_intr_disable(
					    sc->sc_intr_htable[i]);
				}
				goto out_enable;
			}
		}
	}

	/* Bind the allocated MSI to the queues and config */
	for (i = 0; i < vq_handler_count; i++) {
		int check;

		ddi_put16(sc->sc_ioh,
		    /* LINTED E_BAD_PTR_CAST_ALIGN */
		    (uint16_t *)(sc->sc_io_addr +
		    VIRTIO_CONFIG_QUEUE_SELECT), i);

		ddi_put16(sc->sc_ioh,
		    /* LINTED E_BAD_PTR_CAST_ALIGN */
		    (uint16_t *)(sc->sc_io_addr +
		    VIRTIO_CONFIG_QUEUE_VECTOR), i);

		check = ddi_get16(sc->sc_ioh,
		    /* LINTED E_BAD_PTR_CAST_ALIGN */
		    (uint16_t *)(sc->sc_io_addr +
		    VIRTIO_CONFIG_QUEUE_VECTOR));
		if (check != i) {
			dev_err(sc->sc_dev, CE_WARN, "Failed to bind handler "
			    "for VQ %d, MSI %d. Check = %x", i, i, check);
			ret = ENODEV;
			goto out_bind;
		}
	}

	if (sc->sc_intr_config) {
		int check;

		ddi_put16(sc->sc_ioh,
		    /* LINTED E_BAD_PTR_CAST_ALIGN */
		    (uint16_t *)(sc->sc_io_addr +
		    VIRTIO_CONFIG_CONFIG_VECTOR), i);

		check = ddi_get16(sc->sc_ioh,
		    /* LINTED E_BAD_PTR_CAST_ALIGN */
		    (uint16_t *)(sc->sc_io_addr +
		    VIRTIO_CONFIG_CONFIG_VECTOR));
		if (check != i) {
			dev_err(sc->sc_dev, CE_WARN, "Failed to bind handler "
			    "for Config updates, MSI %d", i);
			ret = ENODEV;
			goto out_bind;
		}
	}

	return (DDI_SUCCESS);

out_bind:
	/* Unbind the vqs */
	for (i = 0; i < vq_handler_count - 1; i++) {
		ddi_put16(sc->sc_ioh,
		    /* LINTED E_BAD_PTR_CAST_ALIGN */
		    (uint16_t *)(sc->sc_io_addr +
		    VIRTIO_CONFIG_QUEUE_SELECT), i);

		ddi_put16(sc->sc_ioh,
		    /* LINTED E_BAD_PTR_CAST_ALIGN */
		    (uint16_t *)(sc->sc_io_addr +
		    VIRTIO_CONFIG_QUEUE_VECTOR),
		    VIRTIO_MSI_NO_VECTOR);
	}
	/* And the config */
	/* LINTED E_BAD_PTR_CAST_ALIGN */
	ddi_put16(sc->sc_ioh, (uint16_t *)(sc->sc_io_addr +
	    VIRTIO_CONFIG_CONFIG_VECTOR), VIRTIO_MSI_NO_VECTOR);

	ret = DDI_FAILURE;

out_enable:
	return (ret);
}
/**
 * Sets IRQ for VMMDev.
 *
 * @returns Solaris error code.
 * @param   pDip     Pointer to the device info structure.
 */
static int VBoxGuestSolarisAddIRQ(dev_info_t *pDip)
{
    LogFlow((DEVICE_NAME "::AddIRQ: pDip=%p\n", pDip));

    int IntrType = 0;
    int rc = ddi_intr_get_supported_types(pDip, &IntrType);
    if (rc == DDI_SUCCESS)
    {
        /* We won't need to bother about MSIs. */
        if (IntrType & DDI_INTR_TYPE_FIXED)
        {
            int IntrCount = 0;
            rc = ddi_intr_get_nintrs(pDip, IntrType, &IntrCount);
            if (   rc == DDI_SUCCESS
                && IntrCount > 0)
            {
                int IntrAvail = 0;
                rc = ddi_intr_get_navail(pDip, IntrType, &IntrAvail);
                if (   rc == DDI_SUCCESS
                    && IntrAvail > 0)
                {
                    /* Allocated kernel memory for the interrupt handles. The allocation size is stored internally. */
                    g_pIntr = RTMemAlloc(IntrCount * sizeof(ddi_intr_handle_t));
                    if (g_pIntr)
                    {
                        int IntrAllocated;
                        rc = ddi_intr_alloc(pDip, g_pIntr, IntrType, 0, IntrCount, &IntrAllocated, DDI_INTR_ALLOC_NORMAL);
                        if (   rc == DDI_SUCCESS
                            && IntrAllocated > 0)
                        {
                            g_cIntrAllocated = IntrAllocated;
                            uint_t uIntrPriority;
                            rc = ddi_intr_get_pri(g_pIntr[0], &uIntrPriority);
                            if (rc == DDI_SUCCESS)
                            {
                                /* Initialize the mutex. */
                                mutex_init(&g_IrqMtx, NULL, MUTEX_DRIVER, DDI_INTR_PRI(uIntrPriority));

                                /* Assign interrupt handler functions and enable interrupts. */
                                for (int i = 0; i < IntrAllocated; i++)
                                {
                                    rc = ddi_intr_add_handler(g_pIntr[i], (ddi_intr_handler_t *)VBoxGuestSolarisISR,
                                                            NULL /* No Private Data */, NULL);
                                    if (rc == DDI_SUCCESS)
                                        rc = ddi_intr_enable(g_pIntr[i]);
                                    if (rc != DDI_SUCCESS)
                                    {
                                        /* Changing local IntrAllocated to hold so-far allocated handles for freeing. */
                                        IntrAllocated = i;
                                        break;
                                    }
                                }
                                if (rc == DDI_SUCCESS)
                                    return rc;

                                /* Remove any assigned handlers */
                                LogRel((DEVICE_NAME ":failed to assign IRQs allocated=%d\n", IntrAllocated));
                                for (int x = 0; x < IntrAllocated; x++)
                                    ddi_intr_remove_handler(g_pIntr[x]);
                            }
                            else
                                LogRel((DEVICE_NAME "::AddIRQ: failed to get priority of interrupt. rc=%d\n", rc));

                            /* Remove allocated IRQs, too bad we can free only one handle at a time. */
                            for (int k = 0; k < g_cIntrAllocated; k++)
                                ddi_intr_free(g_pIntr[k]);
                        }
                        else
                            LogRel((DEVICE_NAME "::AddIRQ: failed to allocated IRQs. count=%d\n", IntrCount));
                        RTMemFree(g_pIntr);
                    }
                    else
                        LogRel((DEVICE_NAME "::AddIRQ: failed to allocated IRQs. count=%d\n", IntrCount));
                }
                else
                    LogRel((DEVICE_NAME "::AddIRQ: failed to get or insufficient available IRQs. rc=%d IntrAvail=%d\n", rc, IntrAvail));
            }
            else
                LogRel((DEVICE_NAME "::AddIRQ: failed to get or insufficient number of IRQs. rc=%d IntrCount=%d\n", rc, IntrCount));
        }
        else
            LogRel((DEVICE_NAME "::AddIRQ: invalid irq type. IntrType=%#x\n", IntrType));
    }
    else
        LogRel((DEVICE_NAME "::AddIRQ: failed to get supported interrupt types\n"));
    return rc;
}
/**
 * Sets IRQ for VMMDev.
 *
 * @returns Solaris error code.
 * @param   pDip     Pointer to the device info structure.
 */
static int vgdrvSolarisAddIRQ(dev_info_t *pDip)
{
    LogFlow(("vgdrvSolarisAddIRQ: pDip=%p\n", pDip));

    /* Get the types of interrupt supported for this hardware. */
    int fIntrType = 0;
    int rc = ddi_intr_get_supported_types(pDip, &fIntrType);
    if (rc == DDI_SUCCESS)
    {
        /* We only support fixed interrupts at this point, not MSIs. */
        if (fIntrType & DDI_INTR_TYPE_FIXED)
        {
            /* Verify the number of interrupts supported by this device. There can only be one fixed interrupt. */
            int cIntrCount = 0;
            rc = ddi_intr_get_nintrs(pDip, fIntrType, &cIntrCount);
            if (   rc == DDI_SUCCESS
                && cIntrCount == 1)
            {
                /* Allocated kernel memory for the interrupt handle. The allocation size is stored internally. */
                g_pahIntrs = RTMemAllocZ(cIntrCount * sizeof(ddi_intr_handle_t));
                if (g_pahIntrs)
                {
                    /* Allocate the interrupt for this device and verify the allocation. */
                    int cIntrAllocated;
                    rc = ddi_intr_alloc(pDip, g_pahIntrs, fIntrType, 0 /* interrupt number */, cIntrCount, &cIntrAllocated,
                                        DDI_INTR_ALLOC_NORMAL);
                    if (   rc == DDI_SUCCESS
                        && cIntrAllocated == 1)
                    {
                        /* Get the interrupt priority assigned by the system. */
                        uint_t uIntrPriority;
                        rc = ddi_intr_get_pri(g_pahIntrs[0], &uIntrPriority);
                        if (rc == DDI_SUCCESS)
                        {
                            /* Check if the interrupt priority is scheduler level or above, if so we need to use a high-level
                               and low-level interrupt handlers with corresponding mutexes. */
                            cmn_err(CE_CONT, "!vboxguest: uIntrPriority=%d hilevel_pri=%d\n", uIntrPriority, ddi_intr_get_hilevel_pri());
                            if (uIntrPriority >= ddi_intr_get_hilevel_pri())
                            {
                                /* Initialize the high-level mutex. */
                                mutex_init(&g_HighLevelIrqMtx, NULL /* pszDesc */, MUTEX_DRIVER, DDI_INTR_PRI(uIntrPriority));

                                /* Assign interrupt handler function to the interrupt handle. */
                                rc = ddi_intr_add_handler(g_pahIntrs[0], (ddi_intr_handler_t *)&vgdrvSolarisHighLevelISR,
                                                          NULL /* pvArg1 */, NULL /* pvArg2 */);

                                if (rc == DDI_SUCCESS)
                                {
                                    /* Add the low-level interrupt handler. */
                                    rc = ddi_intr_add_softint(pDip, &g_hSoftIntr, DDI_INTR_SOFTPRI_MAX,
                                                              (ddi_intr_handler_t *)&vgdrvSolarisISR, NULL /* pvArg1 */);
                                    if (rc == DDI_SUCCESS)
                                    {
                                        /* Initialize the low-level mutex at the corresponding level. */
                                        mutex_init(&g_IrqMtx, NULL /* pszDesc */,  MUTEX_DRIVER,
                                                   DDI_INTR_PRI(DDI_INTR_SOFTPRI_MAX));

                                        g_fSoftIntRegistered = true;
                                        /* Enable the high-level interrupt. */
                                        rc = ddi_intr_enable(g_pahIntrs[0]);
                                        if (rc == DDI_SUCCESS)
                                            return rc;

                                        LogRel((DEVICE_NAME "::AddIRQ: failed to enable interrupt. rc=%d\n", rc));
                                        mutex_destroy(&g_IrqMtx);
                                    }
                                    else
                                        LogRel((DEVICE_NAME "::AddIRQ: failed to add soft interrupt handler. rc=%d\n", rc));

                                    ddi_intr_remove_handler(g_pahIntrs[0]);
                                }
                                else
                                    LogRel((DEVICE_NAME "::AddIRQ: failed to add high-level interrupt handler. rc=%d\n", rc));

                                mutex_destroy(&g_HighLevelIrqMtx);
                            }
                            else
                            {
                                /* Interrupt handler runs at reschedulable level, initialize the mutex at the given priority. */
                                mutex_init(&g_IrqMtx, NULL /* pszDesc */, MUTEX_DRIVER, DDI_INTR_PRI(uIntrPriority));

                                /* Assign interrupt handler function to the interrupt handle. */
                                rc = ddi_intr_add_handler(g_pahIntrs[0], (ddi_intr_handler_t *)vgdrvSolarisISR,
                                                          NULL /* pvArg1 */, NULL /* pvArg2 */);
                                if (rc == DDI_SUCCESS)
                                {
                                    /* Enable the interrupt. */
                                    rc = ddi_intr_enable(g_pahIntrs[0]);
                                    if (rc == DDI_SUCCESS)
                                        return rc;

                                    LogRel((DEVICE_NAME "::AddIRQ: failed to enable interrupt. rc=%d\n", rc));
                                    mutex_destroy(&g_IrqMtx);
                                }
                            }
                        }
                        else
                            LogRel((DEVICE_NAME "::AddIRQ: failed to get priority of interrupt. rc=%d\n", rc));

                        Assert(cIntrAllocated == 1);
                        ddi_intr_free(g_pahIntrs[0]);
                    }
                    else
                        LogRel((DEVICE_NAME "::AddIRQ: failed to allocated IRQs. count=%d\n", cIntrCount));
                    RTMemFree(g_pahIntrs);
                }
                else
                    LogRel((DEVICE_NAME "::AddIRQ: failed to allocated IRQs. count=%d\n", cIntrCount));
            }
            else
                LogRel((DEVICE_NAME "::AddIRQ: failed to get or insufficient number of IRQs. rc=%d cIntrCount=%d\n", rc, cIntrCount));
        }
        else
            LogRel((DEVICE_NAME "::AddIRQ: fixed-type interrupts not supported. IntrType=%#x\n", fIntrType));
    }
    else
        LogRel((DEVICE_NAME "::AddIRQ: failed to get supported interrupt types. rc=%d\n", rc));
    return rc;
}
Exemple #7
0
int
ddi_add_intr(dev_info_t *dip, uint_t inumber,
    ddi_iblock_cookie_t *iblock_cookiep,
    ddi_idevice_cookie_t *idevice_cookiep,
    uint_t (*int_handler)(caddr_t int_handler_arg),
    caddr_t int_handler_arg)
{
	ddi_intr_handle_t	*hdl_p;
	size_t			hdl_sz;
	int			actual, ret;
	uint_t			pri;

	DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: name=%s%d dip=0x%p "
	    "inum=0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip),
	    (void *)dip, inumber));

	hdl_sz = sizeof (ddi_intr_handle_t) * (inumber + 1);
	hdl_p = kmem_zalloc(hdl_sz, KM_SLEEP);

	if ((ret = ddi_intr_alloc(dip, hdl_p, DDI_INTR_TYPE_FIXED,
	    inumber, 1, &actual, DDI_INTR_ALLOC_NORMAL)) != DDI_SUCCESS) {
		DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
		    "ddi_intr_alloc failed, ret 0x%x\n", ret));
		kmem_free(hdl_p, hdl_sz);
		return (DDI_INTR_NOTFOUND);
	}

	if ((ret = ddi_intr_get_pri(hdl_p[inumber], &pri)) != DDI_SUCCESS)  {
		DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
		    "ddi_intr_get_pri failed, ret 0x%x\n", ret));
		(void) ddi_intr_free(hdl_p[inumber]);
		kmem_free(hdl_p, hdl_sz);
		return (DDI_FAILURE);
	}

	if ((ret = ddi_intr_add_handler(hdl_p[inumber], (ddi_intr_handler_t *)
	    int_handler, int_handler_arg, NULL)) != DDI_SUCCESS) {
		DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
		    "ddi_intr_add_handler failed, ret 0x%x\n", ret));
		(void) ddi_intr_free(hdl_p[inumber]);
		kmem_free(hdl_p, hdl_sz);
		return (DDI_FAILURE);
	}

	if ((ret = ddi_intr_enable(hdl_p[inumber])) != DDI_SUCCESS) {
		DDI_INTR_APIDBG((CE_CONT, "ddi_add_intr: "
		    "ddi_intr_enable failed, ret 0x%x\n", ret));
		(void) ddi_intr_remove_handler(hdl_p[inumber]);
		(void) ddi_intr_free(hdl_p[inumber]);
		kmem_free(hdl_p, hdl_sz);
		return (DDI_FAILURE);
	}

	if (iblock_cookiep)
		*iblock_cookiep = (ddi_iblock_cookie_t)(uintptr_t)pri;

	if (idevice_cookiep) {
		idevice_cookiep->idev_vector = 0;
		idevice_cookiep->idev_priority = pri;
	}

	kmem_free(hdl_p, hdl_sz);

	return (DDI_SUCCESS);
}