Exemple #1
0
pulsesequence()
{
  char lkflg[MAXSTR];
  getstr("lkflg",lkflg);
  status(A);
   dec3blank();
  if (lkflg[A]=='y') lk_sample();
   hsdelay(d1);
  status(B);
   pulse(p1, zero);
   hsdelay(d2);
  status(C);
   pulse(pw,oph);
   if (lkflg[A]=='y') lk_hold();
   dec3unblank();
}
Exemple #2
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */
/* sequence are declared and initialized as 0.0 in bionmr.h, and       */
/* reinitialized below  */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
 	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */
 
int         t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni = getval("ni"),
	    ni2 = getval("ni2");

double      d2_init=0.0,  		        /* used for states tppi in t1 */
	    d3_init=0.0,  	 	        /* used for states tppi in t2 */
	    tau1,         				         /*  t1 delay */
         BPdpwrspinlock,        /*  user-defined upper limit for spinlock(Hz) */
         BPpwrlimits,           /*  =0 for no limit, =1 for limit             */
	    t1a,		       /* time increments for first dimension */
	    t1b,
	    t1c,
	    tauCH = getval("tauCH"), 		         /* 1/4J delay for CH */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
	    epsilon = 1.05e-3,				      /* other delays */
	    zeta = 3.0e-3,
	    eta = 4.6e-3,
	    theta = 14.0e-3,
	    sheila,  /* to transfer J evolution time hyperbolically into tau1 */

	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
 
   widthHd,

   pwS1,					/* length of square 90 on Cab */
   pwS2,					/* length of square 180 on Ca */
   phi7cal = getval("phi7cal"),  /* phase in degrees of the last C13 90 pulse */
   spinlock = getval("spinlock"), 	/* DIPSI-3 spinlock field */
   ncyc = getval("ncyc"), 	/* no. of cycles of DIPSI-3 decoupling on Cab */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),
        waltzB1 = getval("waltzB1"),
	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("TROSY",TROSY);

    widthHd=2.069*(waltzB1/sfrq);  /* produces same field as std. sequence */

/*   LOAD PHASE TABLE    */

	settable(t3,1,phx);
	settable(t4,1,phx);
	settable(t5,2,phi5);
	settable(t6,2,phi6);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,2,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}

        

/*   INITIALIZE VARIABLES   */

  P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1);
  P_getreal(GLOBAL,"BPdpwrspinlock",&BPdpwrspinlock,1);
  if (BPpwrlimits > 0.5)
  {
   if (spinlock > BPdpwrspinlock)
    {
     printf("spinlock too large, reset to user-defined limit (BPdpwrspinlock)");
     psg_abort(1);
    }
  }
 	kappa = 5.4e-3;
	lambda = 2.4e-3;

    if( pwC > 24.0*600.0/sfrq )
	{ printf("increase pwClvl so that pwC < 24*600/sfrq");
	  psg_abort(1); }

    /* get calculated pulse lengths of shaped C13 pulses */
	pwS1 = c13pulsepw("cab", "co", "square", 90.0); 
	pwS2 = c13pulsepw("ca", "co", "square", 180.0); 
	

/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( gt4 > epsilon - 0.6*pwC)
       { printf(" gt4 is too big. Make gt4 equal to %f or less.\n", 
  	 (epsilon - 0.6*pwC)); psg_abort(1);}

    if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY)
       { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", 
  	 ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}
    if ( dpwr2 > 50 )
       { printf("dpwr2 too large! recheck value  "); psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value "); psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value "); psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y' )
       { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);}
 

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2) tsadd(t3,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }



/*  C13 TIME INCREMENTATION and set up f1180  */

/*  Set up f1180  */

    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;



/*  Hyperbolic sheila seems superior to original zeta approach  */ 

			          /* subtract unavoidable delays from tauCH */
    tauCH = tauCH - gt0 - 2.0*GRADIENT_DELAY - 5.0e-5;

 if ((ni-1)/(2.0*sw1) > 2.0*tauCH)
    { 
      if (tau1 > 2.0*tauCH) sheila = tauCH;
      else if (tau1 > 0) sheila = 1.0/(1.0/tau1+1.0/tauCH-1.0/(2.0*tauCH));
      else          sheila = 0.0;
    }
 else
    {    
      if (tau1 > 0) sheila = 1.0/(1.0/tau1 + 1.0/tauCH - 2.0*sw1/((double)(ni-1)));
      else          sheila = 0.0;
    }
    t1a = tau1 + tauCH;
    t1b = tau1 - sheila;
    t1c = tauCH - sheila;



/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2; 
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3; 
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
   	delay(d1);
        if ( dm3[B] == 'y' )
          { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/

	rcvroff();
        set_c13offset("cab");
	obsoffset(tof);
	obspower(tpwr);
 	obspwrf(4095.0);
	decpower(pwClvl);
	decpwrf(4095.0);
 	dec2power(pwNlvl);
	txphase(three);
	delay(1.0e-5);
        if (TROSY[A] == 'n')
	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
        if (TROSY[A] == 'n')
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          gzlvl0=0.0; gzlvl3=0.0; gzlvl4=0.0;  /* no gradients during 2H decoupling */
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }

	rgpulse(pw, three, 0.0, 0.0);                  /* 1H pulse excitation */
                                             			/* point a */
        txphase(zero);
        decphase(zero);
	zgradpulse(gzlvl0, gt0); 			/* 2.0*GRADIENT_DELAY */
	delay(5.0e-5);
	delay(t1a - 2.0*pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

	delay(t1b);

	rgpulse(2.0*pw, zero, 0.0, 0.0);

	zgradpulse(gzlvl0, gt0);   	 	        /* 2.0*GRADIENT_DELAY */
        txphase(t3);
	delay(5.0e-5);
	delay(t1c);
             							/* point b */
	rgpulse(pw, t3, 0.0, 0.0);	
	zgradpulse(gzlvl3, gt3);
	delay(2.0e-4);
        decrgpulse(pwC, zero, 0.0, 0.0);
					                        /* point c */
	zgradpulse(gzlvl4, gt4);
	delay(epsilon - gt4 - 0.6*pwC);

							  /* WFG2_START_DELAY */
	sim_c13pulse("", "cab", "co", "square", 2.0*pw, 180.0,
						zero, zero, 2.0e-6, 2.0e-6);
	delay(WFG2_START_DELAY);
	zgradpulse(gzlvl4, gt4);
	delay(epsilon - gt4);
                     						/* point d */	
	decrgpulse(0.5e-3, zero, 0.0, 0.0);
	c13decouple("cab", "DIPSI3", 2.0*spinlock/dfrq, ncyc);	    /* PRG_STOP_DELAY */
				              			/* point e */	
	h1decon("DIPSI2", widthHd, 0.0);/*POWER_DELAY+PWRF_DELAY+PRG_START_DELAY */

	decphase(t5);
	delay(zeta - PRG_STOP_DELAY - PRG_START_DELAY - POWER_DELAY -
 						PWRF_DELAY - 0.5*10.933*pwC);

	decrgpulse(pwC*158.0/90.0, t5, 0.0, 0.0);
	decrgpulse(pwC*171.2/90.0, t6, 0.0, 0.0);
	decrgpulse(pwC*342.8/90.0, t5, 0.0, 0.0);	/* Shaka composite   */
	decrgpulse(pwC*145.5/90.0, t6, 0.0, 0.0);
	decrgpulse(pwC*81.2/90.0, t5, 0.0, 0.0);
	decrgpulse(pwC*85.3/90.0, t6, 0.0, 0.0);

	decphase(zero);
	delay(zeta - 0.5*10.933*pwC - 0.6*pwS1 - WFG_START_DELAY - 2.0e-6);

				        		  /* WFG_START_DELAY  */
	c13pulse("cab", "co", "square", 90.0, zero, 2.0e-6, 0.0);  /* point f */
	decphase(t5);
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           gzlvl0=getval("gzlvl0");
           gzlvl3=getval("gzlvl3");
           gzlvl4=getval("gzlvl4");
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }
	zgradpulse(gzlvl3, gt3);
	delay(2.0e-4);
	c13pulse("co", "ca", "sinc", 90.0, t5, 2.0e-6, 0.0);
	     							/* point g */ 

 	decphase(zero);
	delay(eta - 2.0*POWER_DELAY - 2.0*PWRF_DELAY);

					        /* 2*POWER_DELAY+2*PWRF_DELAY */
	c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0);     /* pwS2 */

		
	dec2phase(zero);
	delay(theta - eta - pwS2 - WFG3_START_DELAY);

							  /* WFG3_START_DELAY */
	sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,
					     zero, zero, zero, 2.0e-6, 2.0e-6);

	initval(phi7cal, v7);
	decstepsize(1.0);
	dcplrphase(v7);					        /* SAPS_DELAY */
	dec2phase(t8);
	delay(theta - SAPS_DELAY);
                              					/* point h */

	nh_evol_se_train("co", "ca"); /* common part of sequence in bionmr.h  */
        if (dm3[B]=='y') lk_sample();

}		 
Exemple #3
0
void pulsesequence()
{

/* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */
/* sequence are declared and initialized as 0.0 in bionmr.h, and       */
/* reinitialized below  */

char        f2180[MAXSTR],   		      /* Flag to start t2 @ halfdwell */
            fil_flg1[MAXSTR],
            had_flg[MAXSTR],
            shname1[MAXSTR],
	    shname2[MAXSTR],
	    ala_flg[MAXSTR],	    
            ser_flg[MAXSTR],
	    SE_flg[MAXSTR],			    /* SE_flg */
  	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */

int         t2_counter,  		        /* used for states tppi in t2 */
	    ni2 = getval("ni2");

double      d3_init=0.0,  		        /* used for states tppi in t2 */
            stCwidth = 80.0,
	    shpw1,shpw2,         				         /*  t1 delay */
	    tauCH = getval("tauCH"), 		         /* 1/4J delay for CH */
	    tauC1 = getval("tauC1"),
	    tauC2 = getval("tauC2"),
	    tauC3 = getval("tauC3"),
            had2,had3,
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
	    eta = 4.6e-3,
	    theta = 14.0e-3,
            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */

   pwS1, pwS2,	pwS3,	pwS4, pwS5,pwS6,pwS7,
   phi7cal = getval("phi7cal"),  /* phase in degrees of the last C13 90 pulse */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw2 = getval("sw2"),

	gt3 = getval("gt3"),
	gt5 = getval("gt5"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl5 = getval("gzlvl5"),
	flip_angle=120.0,had1=0.0,
	epsilon = getval("epsilon");
    fil_flg1[0]='n'; 
    ser_flg[0]='n';   /*initialize*/

    getstr("f2180",f2180);
    getstr("had_flg",had_flg);
    getstr("shname1",shname1);
    getstr("shname2",shname2);    
    getstr("TROSY",TROSY);
    getstr("SE_flg",SE_flg);


/*   LOAD PHASE TABLE    */

	settable(t1,4,phi1);
	settable(t3,4,phi3);
	settable(t4,1,phx);
	settable(t5,2,phi5);
	settable(t6,2,phi6);
        settable(t8,1,phx);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);

	settable(t12,8,phi12);
	settable(t13,8,rec2);




/*   INITIALIZE VARIABLES   */

        shpw1 = pw*8.0;
        shpw2 = pwC*8.0;
 	kappa = 5.4e-3;
	lambda = 2.4e-3;
        had2=0.5/135.0;
        had3=0.5/135.0;

        ala_flg[0]='n';

        if (had_flg[0] == '1')
          { fil_flg1[0]='n';ser_flg[0]='n';flip_angle=120.0;had1=0.0;} 
        if (had_flg[0] == '2')
          { fil_flg1[0]='y';ser_flg[0]='n';flip_angle=120.0;had1=0.0;} 
        if (had_flg[0] == '3')
          { fil_flg1[0]='n';ser_flg[0]='y';flip_angle=120.0;had1=0.0;} 
        if (had_flg[0] == '4')
          { fil_flg1[0]='y';ser_flg[0]='y';flip_angle=120.0;had1=0.0;} 
        if (had_flg[0] == '5')
          { fil_flg1[0]='n';ser_flg[0]='n';flip_angle=60.0;had1=0.5/140.0;} 
        if (had_flg[0] == '6')
          { fil_flg1[0]='y';ser_flg[0]='n';flip_angle=60.0;had1=0.5/140.0;} 
        if (had_flg[0] == '7')
          { fil_flg1[0]='n';ser_flg[0]='y';flip_angle=60.0;had1=0.5/140.0;} 
        if (had_flg[0] == '8')
          { fil_flg1[0]='y';ser_flg[0]='y';flip_angle=60.0;had1=0.5/140.0;} 
	


    if( pwC > 20.0*600.0/sfrq )
	{ printf("increase pwClvl so that pwC < 20*600/sfrq");
	  psg_abort(1); }

    /* get calculated pulse lengths of shaped C13 pulses */
	pwS1 = c13pulsepw("cab", "co", "square", 90.0); 
	pwS2 = c13pulsepw("ca", "co", "square", 180.0); 
	pwS3 = c13pulsepw("co", "ca", "sinc", 180.0); 
        pwS4 = c_shapedpw("isnob5",80.0,0.0,zero, 2.0e-6, 2.0e-6);

        pwS6 = c_shapedpw("reburp",80.0,0.0,zero, 2.0e-6, 2.0e-6); /* attention, y a aussi des 180 CaCb après les filtres*/

        pwS7 = c_shapedpw(shname2,80.0,150.0,zero, 2.0e-6, 2.0e-6);
        pwS5 = c_shapedpw("isnob5",30.0,0.0,zero, 2.0e-6, 2.0e-6);

/* CHECK VALIDITY OF PARAMETER RANGES */


    if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY)
       { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", 
  	 ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); 	     psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}
    if ( dpwr2 > 46 )
       { printf("dpwr2 too large! recheck value  ");		     psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value ");	             psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value ");	             psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y' )
       { text_error("Choose either TROSY='n' or dm2='n' ! ");        psg_abort(1);}



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {
	if (SE_flg[0]=='y') 
                  {
		  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
	          else 			       icosel = -1;    
		  }
	else {  if (phase2 == 2)  {tsadd(t8,1,4); }
              }
	 }



/*  Set up f2180  */

    tau2 = d3;    /* run 2D exp for NH correlation, but must use tau2 instead of tau1
                     because bionmr.h is written for nh_evol* to do tau2 evolution*/

    if((f2180[A] == 'y') && (ni2 > 1.0))  /* use f2180 to control tau2 */
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw1 + 0.5 );
   if(t2_counter % 2)
        { tsadd(t8,2,4); tsadd(t12,2,4);  tsadd(t13,2,4);  }




/* BEGIN PULSE SEQUENCE */

status(A);
   	delay(d1);
      if (dm3[B]=='y') lk_hold();

	rcvroff();
        set_c13offset("cab");
	obsoffset(tof);
	obspower(tpwr);
 	obspwrf(4095.0);
	decpower(pwClvl);
	decpwrf(4095.0);
 	dec2power(pwNlvl);
	txphase(one);
	delay(1.0e-5);
        if (TROSY[A] == 'n')
	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(gstab);
      if (TROSY[A] == 'n')
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(gstab);

      if(dm3[B] == 'y')			  /*optional 2H decoupling on */
         {dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);} 
        rgpulse(pw, zero, 2.0e-6, 0.0);
        zgradpulse(gzlvl5, gt5);
        delay(tauCH - gt5 - WFG2_START_DELAY - 0.5e-3 + 68.0e-6 );

        sim_c13adiab_inv_pulse("", "aliph", stCwidth, "sech1", 2.0*pw, 1.0e-3,
                                                  zero, zero, 2.0e-6, 2.0e-6);

        zgradpulse(gzlvl5, gt5);
        delay(tauCH - gt5 - 0.5e-3 + 68.0e-6);
        rgpulse(pw, one, 0.0, 0.0);

      if (ser_flg[0] == 'n' )
         delay(pwS5);
      if (ser_flg[0] == 'y' )
        c_shapedpulse("isnob5",30.0,24.0,zero, 2.0e-6, 2.0e-6);  

/*********************************** transfer  CB->CA + DEPT CBH **************/
	zgradpulse(gzlvl3, gt3*1.2);
	delay(gstab);

        decrgpulse(pwC, t3, 0.0, 0.0);

        rgpulse(pw, three, 0.0, 0.0);
      if (flip_angle > 90.0) delay(pw*(flip_angle/90.0-1));

      if (fil_flg1[0] == 'y') 
        {
         /* JCOCA & JCOCB is turned on*/
          zgradpulse(gzlvl3, gt3);
	  delay(had2*0.5-pwS4*0.5-pwS7-gt3);
          c_simshapedpulse(shname2,80.0,150.0,0.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);	
          c_simshapedpulse("isnob5",80.0,0.0,pw*2.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);
          zgradpulse(gzlvl3, gt3);        
          delay(had2*0.5-pwS4*0.5-gt3);
          rgpulse(pw*flip_angle/90.0, t1, 0.0, 0.0);
	if (flip_angle < 90.0) delay(pw*(1-flip_angle/90.0));
          zgradpulse(gzlvl3, 1.1*gt3);		
          delay(had3*0.5-shpw1*0.5-1.1*gt3);		
          shaped_pulse(shname1,shpw1,two,0.0,0.0);
          delay((tauC3-(had2+pw*120/90*2))*0.5-pwS4*0.5-had3*0.5-shpw1*0.5-pwS7);
          c_simshapedpulse(shname2,80.0,150.0,0.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);			
          c_shapedpulse("isnob5",80.0,0.0,two, 2.0e-6, 2.0e-6);  
          zgradpulse(gzlvl3, 1.1*gt3);	
          delay((tauC3-(had2+pw*120/90*2))*0.5-pwS4*0.5-1.1*gt3);
       }

     if (fil_flg1[0] == 'n') 
       {
         /* JCOCA & JCOCB is turned off*/
          zgradpulse(gzlvl3, gt3);
          delay(epsilon/4.0-pwS7*0.5-gt3);
	  c_simshapedpulse(shname2,80.0,150.0,0.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);	
          delay(had2*0.5-pwS4*0.5-epsilon/4.0-pwS7*0.5);
          c_simshapedpulse("isnob5",80.0,0.0,pw*2.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);
          zgradpulse(gzlvl3, gt3);
          delay(had2*0.5-pwS4*0.5-gt3);
          rgpulse(pw*flip_angle/90.0, t1, 0.0, 0.0);
	if (flip_angle < 90.0) delay(pw*(1-flip_angle/90.0));
        if (had3*0.5-shpw1*0.5-epsilon/4.0-pwS7*0.5>0.0)		
          {
            zgradpulse(gzlvl3, 1.1*gt3);		
	    delay(epsilon/4.0-pwS7*0.5-1.1*gt3);
	    c_simshapedpulse(shname2,80.0,150.0,0.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);		
	    delay(had3*0.5-shpw1*0.5-epsilon/4.0-pwS7*0.5);		
	    shaped_pulse(shname1,shpw1,two,0.0,0.0);
	    delay((tauC3-(had2+pw*120/90*2))*0.5-pwS4*0.5-had3*0.5-shpw1*0.5);
          }
        else 
          {
            zgradpulse(gzlvl3, 1.1*gt3);		
	    delay(had3*0.5-shpw1*0.5-1.1*gt3);		
	    shaped_pulse(shname1,shpw1,two,0.0,0.0);
	    delay(epsilon/4.0-pwS7*0.5-had3*0.5-shpw1*0.5);
	    c_simshapedpulse(shname2,80.0,150.0,0.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);		
	    delay((tauC3-(had2+pw*120/90*2))*0.5-pwS4*0.5-epsilon/4.0-pwS7*0.5);
          }
	
	  c_shapedpulse("isnob5",80.0,0.0,two, 2.0e-6, 2.0e-6);  
          zgradpulse(gzlvl3, 1.1*gt3);		
	  delay((tauC3-(had2+pw*120/90*2))*0.5-pwS4*0.5-1.1*gt3);
       }

     if (fil_flg1[0] == 'c') 
       {
        /* JCOCA & JCOCB is turned off*/
          zgradpulse(gzlvl3, gt3);
	  delay(had2*0.5-pwS4*0.5-gt3);
	  c_simshapedpulse("isnob5",80.0,0.0,pw*2.0,0.0,zero,zero,zero, 2.0e-6, 2.0e-6);
          zgradpulse(gzlvl3, gt3);
	  delay(had2*0.5-pwS4*0.5-gt3);
          rgpulse(pw*flip_angle/90.0, t1, 0.0, 0.0);
	if (flip_angle < 90.0) delay(pw*(1-flip_angle/90.0));
          zgradpulse(gzlvl3, 1.1*gt3);
	  delay(had3*0.5-shpw1*0.5-1.1*gt3);		
	  shaped_pulse(shname1,shpw1,two,0.0,0.0);
	  delay((tauC3-(had2+pw*120.0/90.0*2.0))*0.5-pwS4*0.5-had3*0.5-shpw1*0.5);
	  c_shapedpulse("isnob5",80.0,0.0,two, 2.0e-6, 2.0e-6);  
          zgradpulse(gzlvl3, 1.1*gt3);
       	  delay((tauC3-(had2+pw*120.0/90.0*2.0))*0.5-pwS4*0.5-1.1*gt3);
       }

/*********************************** 2nd transfer  CB->CA +DEPT CAH ***********/
          decrgpulse(pwC, zero, 0.0, 0.0);
	  c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);  
          delay(tauC1-pwS3-pwS4*0.5);
          c_shapedpulse("reburp",80.0,0.0,zero, 2.0e-6, 2.0e-6);  
          delay(tauC1-tauC2-pwS3-pwS4*0.5);
	  c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);  
          delay(tauC2-pw*8.0-had1);
          shaped_pulse(shname1,shpw1,two,0.0,0.0);
          delay(had1);
	  c13pulse("cab", "co", "square", 90.0, zero, 0.0, 0.0);  
/******************************************************************************/
        if(dm3[B] == 'y')		         /*optional 2H decoupling off */
           {dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank();
            setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank();}
  	  zgradpulse(gzlvl3, gt3);
	  delay(2.0e-4);
	  h1decon("DIPSI2", 27.0, 0.0);/*POWER_DELAY+PWRF_DELAY+PRG_START_DELAY */
	  c13pulse("co", "ca", "sinc", 90.0, t5, 2.0e-6, 0.0);          /* point e */
 	  decphase(zero);
	  delay(eta - 2.0*POWER_DELAY - 2.0*PWRF_DELAY);
					        /* 2*POWER_DELAY+2*PWRF_DELAY */
	  c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0);     /* pwS2 */
	  dec2phase(zero);
	  delay(theta - eta - pwS2 - WFG3_START_DELAY);
							  /* WFG3_START_DELAY */
	  sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,
					     zero, zero, zero, 2.0e-6, 2.0e-6);
  	  initval(phi7cal, v7);
	  decstepsize(1.0);
	  dcplrphase(v7);					        /* SAPS_DELAY */
	  dec2phase(t8);
	  delay(theta - SAPS_DELAY);
      if (SE_flg[0]=='y')                                               /* point f */
	{
 	  nh_evol_se_train("co", "ca"); /* common part of sequence in bionmr.h  */
          if (dm3[B]=='y') lk_sample();
	}
	else
	{
	  nh_evol_train("co", "ca"); /* common part of sequence in bionmr.h  */
          if (dm3[B]=='y') lk_sample();
	}
}		 
pulsesequence()
{
/* DECLARE VARIABLES */

 char       autocal[MAXSTR],  /* auto-calibration flag */
            fsat[MAXSTR],
	    fscuba[MAXSTR],
            f1180[MAXSTR],    /* Flag to start t1 @ halfdwell             */
            f2180[MAXSTR],    /* Flag to start t2 @ halfdwell             */
            f3180[MAXSTR],    /* Flag to start t3 @ halfdwell             */
            fco180[MAXSTR],    /* Flag for checking sequence              */
            fca180[MAXSTR],    /* Flag for checking sequence              */
            spca180[MAXSTR],  /* string for the waveform Ca 180 */
            spco180[MAXSTR],  /* string for the waveform Co 180 */
            spchirp[MAXSTR],  /* string for the waveform reburp 180 */
            ddseq[MAXSTR],    /* 2H decoupling seqfile */
            shp_sl[MAXSTR],   /* string for seduce shape */
            sel_flg[MAXSTR];

 int         phase, phase2, phase3, ni2, ni3, icosel,
             t1_counter,   /* used for states tppi in t1           */ 
             t2_counter,   /* used for states tppi in t2           */ 
             t3_counter;   /* used for states tppi in t3           */ 

 double      tau1,         /*  t1 delay */
             tau2,         /*  t2 delay */
             tau3,         /*  t2 delay */
             taua,         /*  ~ 1/4JNH =  2.25 ms */
             taub,         /*  ~ 1/4JNH =  2.25 ms */
             zeta,        /* time for C'-N to refocuss set to 0.5*24.0 ms */
             bigTN,       /* nitrogen T period */
             pwc90,       /* PW90 for c nucleus @ d_c90         */
             pwc180on,    /* PW180 at @ d_c180         */
             pwchirp,     /* PW180 for ca nucleus @ d_creb         */
             pwc180off,     /* PW180 at d_c180 + pad              */
             tsatpwr,     /* low level 1H trans.power for presat  */
             d_c90,       /* power level for 13C pulses(pwc90 = sqrt(15)/4delta)
                             delta is the separation between Ca and Co  */
             d_c180,      /* power level for 180 13C pulses
				(pwc180on=sqrt(3)/2delta   */
	     d_chirp,
             sw1,          /* sweep width in f1                    */             
             sw2,          /* sweep width in f2                    */             
             sw3,          /* sweep width in f3                    */             
             pw_sl,        /* pw90 for H selective pulse on water ~ 2ms */
             phase_sl,     /* phase for pw_sl */
             tpwrsl,       /* power level for square pw_sl       */

	     pwDlvl,	   /* Power for D decoupling */
	     pwD,	   /* pw90 at pwDlvl  */

	     pwC, pwClvl,  /* C-13 calibration */
	     compC, 

             pwN,         /* PW90 for 15N pulse              */
             pwNlvl,       /* high dec2 pwr for 15N hard pulses    */

             gstab,       /* delay to compensate for gradient gt5 */

             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gt9,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7, 
             gzlvl8, 
             gzlvl9; 

/* LOAD VARIABLES */


  getstr("autocal",autocal);
  getstr("fsat",fsat);
  getstr("fco180",fco180);
  getstr("fca180",fca180);
  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("f3180",f3180);
  getstr("fscuba",fscuba);
  getstr("ddseq",ddseq);
  getstr("shp_sl",shp_sl);

  getstr("sel_flg",sel_flg);

  taua   = getval("taua"); 
  taub   = getval("taub"); 
  zeta  = getval("zeta");
  bigTN = getval("bigTN");
  tpwr = getval("tpwr");
  tsatpwr = getval("tsatpwr");
  dpwr = getval("dpwr");
  pwN = getval("pwN");
  pwNlvl = getval("pwNlvl");
  pwD = getval("pwD");
  pwDlvl = getval("pwDlvl");
  phase = (int) ( getval("phase") + 0.5);
  phase2 = (int) ( getval("phase2") + 0.5);
  phase3 = (int) ( getval("phase3") + 0.5);
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  sw3 = getval("sw3");
  ni2 = getval("ni2");
  ni3 = getval("ni3");
  pw_sl = getval("pw_sl");
  phase_sl = getval("phase_sl");
  tpwrsl = getval("tpwrsl");

  gstab = getval("gstab");

  gt1 = getval("gt1");
  if (getval("gt2") > 0) gt2=getval("gt2");
    else gt2=gt1*0.1;
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");
  gt9 = getval("gt9");

  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");
  gzlvl9 = getval("gzlvl9");

  if(autocal[0]=='n')
  {     
    getstr("spca180",spca180);
    getstr("spco180",spco180);
    getstr("spchirp",spchirp);
    pwc90 = getval("pwc90");
    pwc180on = getval("pwc180on");
    pwc180off = getval("pwc180off");
    d_c90 = getval("d_c90");
    d_c180 = getval("d_c180");
    pwchirp = getval("pwchirp");
    d_chirp = getval("d_chirp");    
  }
  else
  {    
    strcpy(spca180,"Phard180ca");
    strcpy(spco180,"Phard180co");    
    strcpy(spchirp,"Pchirp180");    
    
    if (FIRST_FID)
    {
      pwC = getval("pwC");
      compC = getval("compC");
      pwClvl = getval("pwClvl");
      co90 = pbox("cal", CO90, CO180ps, dfrq, pwC*compC, pwClvl);          
      co180 = pbox("cal", CO180, CO180ps, dfrq, pwC*compC, pwClvl);          
      ca180 = pbox(spca180, CA180, CA180ps, dfrq, pwC*compC, pwClvl);  
      co180a = pbox(spco180, CO180a, CA180ps, dfrq, pwC*compC, pwClvl);                        
      chirp = pbox(spchirp, CHIRP, CHIRPps, dfrq, pwC*compC, pwClvl);
    }
    pwc90 = co90.pw;         d_c90 = co90.pwr;
    pwc180on = co180.pw;     d_c180 = co180.pwr;    
    pwc180off = ca180.pw;            
    pwchirp = chirp.pw;      d_chirp = chirp.pwr;    
  }   

/* LOAD PHASE TABLE */

  settable(t1,2,phi1);
  settable(t2,2,phi2);
  settable(t3,4,phi3);
  settable(t4,1,phi4);
  settable(t5,4,phi5);
  settable(t6,4,rec);

/* CHECK VALIDITY OF PARAMETER RANGES */


    if( bigTN - (ni3-1)*0.5/sw3 - WFG3_START_DELAY < 0.2e-6 )
    {
        text_error(" ni3 is too big\n");
        text_error(" please set ni3 smaller or equal to %d\n",
			(int) ((bigTN -WFG3_START_DELAY)*sw3*2.0) +1 );
        psg_abort(1);
    }


    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' || dm[D] == 'y' ))
    {
        text_error("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y'))
    {
        text_error("incorrect dec2 decoupler flags! Should be 'nnnn' ");
        psg_abort(1);
    }


    if( tsatpwr > 6 )
    {
        text_error("TSATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 46 )
    {
        text_error("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 46 )
    {
        text_error("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( dpwr3 > 50 )
    {
        text_error("don't fry the probe, dpwr3 too large!  ");
        psg_abort(1);
    }

    if( d_c90 > 62 )
    {
        text_error("don't fry the probe, DHPWR too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        text_error("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 
    if( pwN > 200.0e-6 )
    {
        text_error("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 
    if( pwc90 > 200.0e-6 )
    {
        text_error("dont fry the probe, pwc90 too high ! ");
        psg_abort(1);
    } 
    if( pwc180off > 200.0e-6 )
    {
        text_error("dont fry the probe, pwc180 too high ! ");
        psg_abort(1);
    } 

    if( gt3 > 2.5e-3 ) 
    {
        text_error("gt3 is too long\n");
        psg_abort(1);
    }
    if( gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3
        || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3
	|| gt9 > 10.0e-3)
    {
        text_error("gt values are too long. Must be < 10.0e-3 or gt11=50us\n");
        psg_abort(1);
    } 

    if((fca180[A] == 'y') && (ni2 > 1))
    {
        text_error("must set fca180='n' to allow Calfa evolution (ni2>1)\n");
        psg_abort(1);
    } 

    if((fco180[A] == 'y') && (ni > 1))
    {
        text_error("must set fco180='n' to allow CO evolution (ni>1)\n");
        psg_abort(1);
    } 


/*  Phase incrementation for hypercomplex 2D data */

    if (phase == 2) tsadd(t1,1,4);

    if (phase2 == 2) tsadd(t5,1,4);

    if (phase3 == 2) { tsadd(t4, 2, 4); icosel = 1; }
      else icosel = -1;

/*  Set up f1180  tau1 = t1               */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1)) {
      if (pwc180off > 2.0*pwN) 
        tau1 += (1.0/(2.0*sw1) - 4.0*pwc90/PI - pwc180off 
	      - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6);
      else 
        tau1 += (1.0/(2.0*sw1) - 4.0*pwc90/PI - 2.0*pwN 
              - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6);

        if(tau1 < 0.2e-6) {
         tau1 = 0.4e-6;
	 text_error("tau1 could be negative");
	}
    }
    else
    {

      if (pwc180off > 2.0*pwN)
        tau1 = tau1 - 4.0*pwc90/PI - pwc180off
              - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6;
      else
        tau1 = tau1 - 4.0*pwc90/PI - 2.0*pwN 
              - WFG3_START_DELAY - WFG3_STOP_DELAY - 4.0e-6 - 2.0*POWER_DELAY - 4.0e-6;
 
        if(tau1 < 0.2e-6) tau1 = 0.4e-6;
     }

        tau1 = tau1/2.0;

/*  Set up f2180  tau2 = t2               */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1)) {
	if (pwc180off > 2.0*pwN)
          tau2 += ( 1.0 / (2.0*sw2) - 4.0*pwc90/PI - 4.0e-6
		 - 2.0*POWER_DELAY
		 - WFG3_START_DELAY - pwc180off - WFG3_STOP_DELAY - 4.0e-6);
	else
          tau2 += ( 1.0 / (2.0*sw2) - 4.0*pwc90/PI - 4.0e-6
                 - 2.0*POWER_DELAY
                 - WFG3_START_DELAY - 2.0*pwN - WFG3_STOP_DELAY - 4.0e-6);
        if(tau2 < 0.2e-6) {
	  tau2 = 0.4e-6;
	  text_error("tau2 could be negative");
 	} 

    }
    else
    {
        if (pwc180off > 2.0*pwN)
          tau2 = tau2 - 4.0*pwc90/PI - 4.0e-6
                 - 2.0*POWER_DELAY
                 - WFG3_START_DELAY - pwc180off - WFG3_STOP_DELAY - 4.0e-6;
        else
          tau2 = tau2 - 4.0*pwc90/PI - 4.0e-6
                 - 2.0*POWER_DELAY
                 - WFG3_START_DELAY - 2.0*pwN - WFG3_STOP_DELAY - 4.0e-6;
        if(tau2 < 0.2e-6) tau2 = 0.4e-6;
    }

        tau2 = tau2/2.0;

/*  Set up f3180  tau3 = t3               */
 
    tau3 = d4;
    if ((f3180[A] == 'y') && (ni3 > 1)) {
        tau3 += ( 1.0 / (2.0*sw3) );
        if(tau3 < 0.2e-6) tau3 = 0.4e-6;
    }
        tau3 = tau3/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
      tsadd(t1,2,4);     
      tsadd(t6,2,4);    
    }

   if( ix == 1) d3_init = d3 ;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) {
      tsadd(t5,2,4);
      tsadd(t6,2,4);
    }

   if( ix == 1) d4_init = d4 ;
   t3_counter = (int) ( (d4-d4_init)*sw3 + 0.5 );
   if(t3_counter % 2) {
      tsadd(t2,2,4);  
      tsadd(t6,2,4);    
    }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obsoffset(tof);
   decoffset(dof);		/* set Dec1 carrier at Co		      */
   obspower(tsatpwr);      /* Set transmitter power for 1H presaturation */
   decpower(d_chirp);      /* Set Dec1 power for hard 13C pulses         */
   dec2power(pwNlvl);      /* Set Dec2 power for 15N hard pulses         */

/* Presaturation Period */

   if (fsat[0] == 'y')
     {
      delay(2.0e-5);
      rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */
      obspower(tpwr);      /* Set transmitter power for hard 1H pulses */
      delay(2.0e-5);
      if (fscuba[0] == 'y')
        {
         delay(2.2e-2);
         rgpulse(pw,zero,2.0e-6,0.0);
         rgpulse(2*pw,one,2.0e-6,0.0);
         rgpulse(pw,zero,2.0e-6,0.0);
         delay(2.2e-2);
        }
     }
    else
     {
      delay(d1);
     }

   obspower(tpwr);           /* Set transmitter power for hard 1H pulses */
   txphase(zero);
   dec2phase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(B);

   rcvroff();
   lk_hold();
   delay(20.0e-6);

   initval(1.0,v2);
   obsstepsize(phase_sl);
   xmtrphase(v2);

   /* shaped pulse */
   obspower(tpwrsl);
   shaped_pulse(shp_sl,pw_sl,one,4.0e-6,0.0);
   xmtrphase(zero);
   obspower(tpwr);  txphase(zero);  
   delay(4.0e-6);
   /* shaped pulse */

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(0.2e-6);
   zgradpulse(gzlvl5,gt5);
   delay(2.0e-6);

   delay(taua - gt5 - 2.2e-6);   /* taua <= 1/4JNH */ 

   sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0);

   txphase(three); dec2phase(zero); decphase(zero); 

   delay(0.2e-6);
   zgradpulse(gzlvl5,gt5);
   delay(200.0e-6);

   delay(taua - gt5 - 200.2e-6 - 2.0e-6); 

   if (sel_flg[A] == 'n') 
     {
      rgpulse(pw,three,2.0e-6,0.0);

      delay(0.2e-6);
      zgradpulse(gzlvl3,gt3);
      delay(200.0e-6);

      dec2rgpulse(pwN,zero,0.0,0.0);

      delay( zeta );
  
      dec2rgpulse(2.0*pwN,zero,0.0,0.0);
      decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0);

      delay(zeta -WFG_START_DELAY -pwchirp -WFG_STOP_DELAY -2.0e-6);

     dec2rgpulse(pwN,zero,2.0e-6,0.0);

    }
   else 
    {
     rgpulse(pw,one,2.0e-6,0.0);

     initval(1.0,v3);
     dec2stepsize(45.0); 
     dcplr2phase(v3);

     delay(0.2e-6);
     zgradpulse(gzlvl3,gt3);
     delay(200.0e-6);

     dec2rgpulse(pwN,zero,0.0,0.0);
     dcplr2phase(zero);

     delay(1.34e-3 - SAPS_DELAY - 2.0*pw);

     rgpulse(pw,one,0.0,0.0);
     rgpulse(2.0*pw,zero,0.0,0.0);
     rgpulse(pw,one,0.0,0.0);

     delay( zeta - 1.34e-3 - 2.0*pw);
  
     dec2rgpulse(2.0*pwN,zero,0.0,0.0);
     decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0);

     delay(zeta -WFG_START_DELAY -pwchirp -WFG_STOP_DELAY -2.0e-6);

     dec2rgpulse(pwN,zero,2.0e-6,0.0);
    }

   dec2phase(zero); decphase(t1);
   decpower(d_c90);

   delay(0.2e-6);
   zgradpulse(gzlvl8,gt8);
   delay(200.0e-6);

   decrgpulse(pwc90,t1,2.0e-6,0.0);
/* t1 period for Co evolution begins */
   if (fco180[A]=='n')  
     {
      decpower(d_c180);

      delay(tau1);
      sim3shaped_pulse("",spca180,"",0.0,pwc180off,2.0*pwN,zero,zero,zero,4.0e-6,0.0);

      decpower(d_c90);

       delay(tau1);
     }
   else /* for checking sequence */
     {
      decpower(d_c180);
      decrgpulse(pwc180on,zero,4.0e-6,0.0);
      decpower(d_c90);
     }
/* t1 period for Co evolution ends */
   decrgpulse(pwc90,zero,4.0e-6,0.0);

   decoffset(dof-(174-56)*dfrq);   /* change Dec1 carrier to Ca (55 ppm) */
   delay(0.2e-6);
   zgradpulse(gzlvl4,gt4);
   delay(150.0e-6);

   /* Turn on D decoupling using the third decoupler */
   dec3phase(one);
   dec3power(pwDlvl);
   dec3rgpulse(pwD,one,4.0e-6,0.0);
   dec3phase(zero);
   dec3power(dpwr3);
   dec3unblank();
   setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
   /* Turn on D decoupling */

   decrgpulse(pwc90,t5,2.0e-6,0.0);
/* t2 period  for Ca evolution begins */
  if (fca180[A]=='n')
    {
     decphase(zero); dec2phase(zero);
     decpower(d_c180); 
     delay(tau2);
     sim3shaped_pulse("",spco180,"",0.0,pwc180off,2.0*pwN,zero,zero,zero,4.0e-6,0.0);
     decpower(d_c90); 
     delay(tau2);
    }
   else /* for checking sequence */
    {
     decpower(d_c180);
     decrgpulse(pwc180on,zero,4.0e-6,0.0);
     decpower(d_c90);
    }
/* t2 period  for Ca evolution ends */
   decrgpulse(pwc90,zero,4.0e-6,0.0);
 
   /* Turn off D decoupling */
   setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
   dec3blank();
   dec3phase(three);
   dec3power(pwDlvl);
   dec3rgpulse(pwD,three,4.0e-6,0.0);
   /* Turn off D decoupling */

   decoffset(dof);   /* set carrier back to Co */
   decpower(d_chirp);

   delay(0.2e-6);
   zgradpulse(gzlvl9,gt9);
   delay(150.0e-6);

/* t3 period begins */
   dec2rgpulse(pwN,t2,2.0e-6,0.0);

   dec2phase(t3);

   delay(bigTN - tau3);

   dec2rgpulse(2.0*pwN,t3,0.0,0.0);
   decshaped_pulse(spchirp,pwchirp,zero,0.0,0.0);

   txphase(zero);
   dec2phase(t4);

   delay(0.2e-6);
   zgradpulse(gzlvl1,gt1);
   delay(500.0e-6);

   delay(bigTN - WFG_START_DELAY - pwchirp - WFG_STOP_DELAY
         -gt1 -500.2e-6 -2.0*GRADIENT_DELAY);

   delay(tau3);

   sim3pulse(pw,0.0e-6,pwN,zero,zero,t4,0.0,0.0);
/* t3 period ends */

   decpower(d_c90);
   decrgpulse(pwc90,zero,4.0e-6,0.0);
   decoffset(dof-(174-56)*dfrq);
   decrgpulse(pwc90,zero,20.0e-6,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl6,gt6);
   delay(2.0e-6);

   dec2phase(zero);
   delay(taub - POWER_DELAY - 4.0e-6 - pwc90 - 20.0e-6 - pwc90 - gt6 - 2.2e-6);

   sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0);

   decoffset(dof);
   delay(0.2e-6);
   zgradpulse(gzlvl6,gt6);
   delay(200.0e-6);
   
   txphase(one);
   dec2phase(one);

   delay(taub - gt6 - 200.2e-6);

   sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl7,gt7);
   delay(2.0e-6);
 
   txphase(zero);
   dec2phase(zero);

   delay(taub - gt7 - 2.2e-6);

   sim3pulse(2*pw,0.0e-6,2*pwN,zero,zero,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl7,gt7);
   delay(200.0e-6);

   delay(taub - gt7 - 200.2e-6);

   sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0);

   delay(gt2 +gstab -0.5*(pwN -pw) -2.0*pw/PI);

   rgpulse(2*pw,zero,0.0,0.0);

   delay(2.0e-6);
   zgradpulse(icosel*gzlvl2,gt2);
   decpower(dpwr);
   dec2power(dpwr2);
   delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY);

   lk_sample();
/* BEGIN ACQUISITION */
status(C);
   setreceiver(t6);

}
Exemple #5
0
pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
 	    SCT[MAXSTR],    /* Semi-constant time flag for N-15 evolution */
	    CT_c[MAXSTR],            /* Constant time flag for C-13 evolution */
 	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */
 
int         icosel,          			  /* used to get n and p type */
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
            PRexp,                          /* projection-reconstruction flag */
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    tauC = getval("tauC"), 	      /* delay for CO to Ca evolution */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
	    timeTC = getval("timeTC"),     /* constant time for 13C evolution */
	    t2a=0.0, t2b=0.0, halfT2=0.0, CTdelay=0.0,
	    kappa = 5.4e-3,
	    lambda = 2.4e-3,
            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* 90 degree pulse at Ca (56ppm), first off-resonance null at CO (174ppm)     */
        pwC1,		              /* 90 degree pulse length on C13 at rf1 */
        rf1,		       /* fine power for 4.7 kHz rf for 600MHz magnet */

/* 180 degree pulse at Ca (56ppm), first off-resonance null at CO(174ppm)     */
        pwC2,		                    /* 180 degree pulse length at rf2 */
        rf2,		      /* fine power for 10.5 kHz rf for 600MHz magnet */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "proteincal".  SLP pulse shapes, "offC6" etc are called     */
/* directly from your shapelib.                    			      */
   pwC3 = getval("pwC3"),  /*180 degree pulse at Ca(56ppm) null at CO(174ppm) */
   pwC6 = getval("pwC6"),     /* 90 degree selective sinc pulse on CO(174ppm) */
   pwC8 = getval("pwC8"),    /* 180 degree selective sinc pulse on CO(174ppm) */
   pwC9 = getval("pwC9"),    /* 180 degree selective sinc pulse on CO(174ppm) */
   phshift9,             /* phase shift induced on Ca by pwC9 ("offC9") pulse */
   pwZ,					   /* the largest of pwC9 and 2.0*pwN */
   pwZ1,                 /* the larger of pwC8 and 2.0*pwN for 1D experiments */
   rf3,	                           /* fine power for the pwC3 ("offC3") pulse */
   rf6,	                           /* fine power for the pwC6 ("offC6") pulse */
   rf8,	                           /* fine power for the pwC8 ("offC8") pulse */
   rf9,	                           /* fine power for the pwC9 ("offC9") pulse */

   dofCO,			       /* channel 2 offset for most CO pulses */
	
   compH = getval("compH"),       /* adjustment for C13 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

   	pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
   	tpwrsf = getval("tpwrsf"),    /* fine power adjustment for flipback   */
   	tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

        csa, sna,
        pra = M_PI*getval("pra")/180.0,
   	pwHd,	    		        /* H1 90 degree pulse length at tpwrd */
   	tpwrd,	  	                           /* rf for WALTZ decoupling */

        waltzB1 = getval("waltzB1"),  /* waltz16 field strength (in Hz)     */
	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal  = getval("gzcal"),            /* g/cm to DAC conversion factor */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gt7 = getval("gt7"),
	gt9 = getval("gt9"),
	gt10 = getval("gt10"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6"),
	gzlvl7 = getval("gzlvl7"),
	gzlvl8 = getval("gzlvl8"),
	gzlvl9 = getval("gzlvl9"),
	gzlvl10 = getval("gzlvl10");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("mag_flg",mag_flg);
    getstr("SCT",SCT);
    getstr("CT_c",CT_c);
    getstr("TROSY",TROSY);

/*   LOAD PHASE TABLE    */
     
	settable(t3,2,phi3);
	settable(t4,1,phx);
	settable(t5,4,phi5);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,4,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}




/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

    /* offset during CO pulses, except for t1 evolution period */	
	dofCO = dof + 118.0*dfrq;

    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

     /* 90 degree pulse on Ca, null at CO 118ppm away */
       pwC1 = sqrt(15.0)/(4.0*118.0*dfrq);
        rf1 = 4095.0*(compC*pwC)/pwC1;
        rf1 = (int) (rf1 + 0.5);

    /* 180 degree pulse on Ca, null at CO 118ppm away */
        pwC2 = sqrt(3.0)/(2.0*118.0*dfrq);
	rf2 = (compC*4095.0*pwC*2.0)/pwC2;
        rf2 = (int) (rf2 + 0.5);
        if( rf2 > 4095.0 )
       { printf("increase pwClvl so that C13 90 < 24us*(600/sfrq)"); psg_abort(1);}

    /* 180 degree pulse on Ca, null at CO 118ppm away */
	rf3 = (compC*4095.0*pwC*2.0)/pwC3;
	rf3 = (int) (rf3 + 0.5);

    /* 90 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
	rf6 = (compC*4095.0*pwC*1.69)/pwC6;	/* needs 1.69 times more     */
	rf6 = (int) (rf6 + 0.5);		/* power than a square pulse */

    /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
	rf8 = (compC*4095.0*pwC*2.0*1.65)/pwC8;	/* needs 1.65 times more     */
	rf8 = (int) (rf8 + 0.5);		/* power than a square pulse */

    /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
	rf9 = (compC*4095.0*pwC*2.0*1.65)/pwC8;	/* needs 1.65 times more     */
	rf9 = (int) (rf9 + 0.5);		/* power than a square pulse */

    /* the pwC9 pulse at the middle of t1  */
        if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0;
        if (pwC8 > 2.0*pwN) pwZ = pwC8; else pwZ = 2.0*pwN;
        if ((pwC9==0.0) && (pwC8>2.0*pwN)) pwZ1=pwC8-2.0*pwN; else pwZ1=0.0;
	if ( ni > 1 )     pwC9 = pwC8;
	if ( pwC9 > 0 )   phshift9 = 140.0;
	else              phshift9 = 0.0;
	
    /* selective H20 one-lobe sinc pulse */
    tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */
    tpwrs = (int) (tpwrs);                       /* power than a square pulse */

    /* power level and pulse time for WALTZ 1H decoupling */
	pwHd = 1/(4.0 * waltzB1) ;                              /* 7.5 kHz rf   */
	tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw));
	tpwrd = (int) (tpwrd + 0.5);
 
/* set up Projection-Reconstruction experiment */
 
    tau1 = d2; tau2 = d3; 
    PRexp=0; csa = 1.0; sna = 0.0;   
    if((pra > 0.0) && (pra < 90.0)) /* PR experiments */
    {
      PRexp = 1;
      csa = cos(pra); 
      sna = sin(pra);
      tau1 = d2*csa;  
      tau2 = d2*sna;
    }

/* CHECK VALIDITY OF PARAMETER RANGES */

    if(SCT[A] == 'n')
    {
      if (PRexp) 
      {
        if( 0.5*ni*sna/sw1 > timeTN - WFG3_START_DELAY)
          { printf(" ni is too big. Make ni equal to %d or less.\n",
          ((int)((timeTN - WFG3_START_DELAY)*2.0*sw1/sna)));         psg_abort(1);}
      }
      else 
      {
        if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY)
         { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", 
           ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2)));              psg_abort(1);}
      }
    }

    if(CT_c[A] == 'y')
    {
      if ( 0.5*ni*csa/sw1 > timeTC)
       { printf(" ni is too big. Make ni less than %d or less.\n", 
         ((int)(timeTC*2.0*sw1/csa - 4e-6 - SAPS_DELAY)));           psg_abort(1);} 	 	                                  
    }

    if ( tauC < (gt7+1.0e-4+0.5*10.933*pwC))  gt7=(tauC-1.0e-4-0.5*10.933*pwC);

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}	
    if ( dpwr2 > 50 )
       { printf("dpwr2 too large! recheck value  ");		     psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value ");	             psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value ");	             psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y')
       { text_error("Choose either TROSY='n' or dm2='n' ! ");        psg_abort(1);}



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)   tsadd(t3,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }

/* Set up CONSTANT/SEMI-CONSTANT time evolution in N15 */

    halfT2 = 0.0;  
    CTdelay = timeTN + pwC8 + WFG_START_DELAY - SAPS_DELAY;

    if(ni>1)                
    {
      if(f1180[A] == 'y')     /*  Set up f1180 */
        tau1 += 0.5*csa/sw1;  /* if not PRexp then csa = 1.0 */
      if(PRexp)
      {
        halfT2 = 0.5*(ni-1)/sw1;  /* ni2 is not defined */
        if(f1180[A] == 'y') 
        { tau2 += 0.5*sna/sw1; halfT2 += 0.25*sna/sw1; }
        t2b = (double) t1_counter*((halfT2 - CTdelay)/((double)(ni-1)));
      }
    }
    if (ni2>1)
    {
      halfT2 = 0.5*(ni2-1)/sw2;
      if(f2180[A] == 'y')        /*  Set up f2180  */
      { tau2 += 0.5/sw2; halfT2 += 0.25/sw2; }
      t2b = (double) t2_counter*((halfT2 - CTdelay)/((double)(ni2-1)));
    }
    tau1 = tau1/2.0;
    tau2 = tau2/2.0;
    if(tau1 < 0.2e-6) tau1 = 0.0; 
    if(tau2 < 0.2e-6) tau2 = 0.0; 

    if(t2b < 0.0) t2b = 0.0;
    t2a = CTdelay - tau2 + t2b;
    if(t2a < 0.2e-6)  t2a = 0.0;

/* uncomment these lines to check t2a and t2b 
    printf("%d: t2a = %.12f", t2_counter,t2a);
    printf(" ; t2b = %.12f\n", t2b);
*/


/* BEGIN PULSE SEQUENCE */

status(A);
   	delay(d1);
        if ( dm3[B] == 'y' )
          { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/
 
	rcvroff();
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rf0);
	obsoffset(tof);
	decoffset(dofCO);
	txphase(zero);
   	delay(1.0e-5);

       if (TROSY[A] == 'n')
	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(-gzlvl0, 0.5e-3);
	delay(1.0e-4);
       if (TROSY[A] == 'n')
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(-0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

  	rgpulse(pw, zero, 0.0, 0.0);                   /* 1H pulse excitation */

   	dec2phase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

   	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

   	txphase(one);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

 	rgpulse(pw, one, 0.0, 0.0);
    if (tpwrsf < 4095.0) 
     {obspwrf(tpwrsf);
        obspower(tpwrs+6.0);}                 /* increases tpwrs by 6dB, now need */
     else
        obspower(tpwrs);
                                          /* tpwrsf to be ~ 2048 for equivalence */

if (TROSY[A]=='y')
   {txphase(two);
    shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0);
    obspower(tpwr); obspwrf(4095.0);
    zgradpulse(gzlvl3, gt3);
    delay(2.0e-4);
    dec2rgpulse(pwN, zero, 0.0, 0.0);

    delay(0.5*kappa - 2.0*pw);

    rgpulse(2.0*pw, two, 0.0, 0.0);

    obspower(tpwrd);	  				       /* POWER_DELAY */
    decphase(zero);
    dec2phase(zero);
    decpwrf(rf8);
    delay(timeTN -0.5*kappa - POWER_DELAY - WFG3_START_DELAY);
   }
else
   {txphase(zero);
    if (tpwrsf < 4095.0) 
     {obspwrf(tpwrsf); 
        obspower(tpwrs+6.0);}                 /* increases tpwrs by 6dB, now need */
     else
        obspower(tpwrs);
                                          /* tpwrsf to be ~ 2048 for equivalence */
    shaped_pulse("H2Osinc",pwHs,zero,5.0e-4,0.0);
    obspower(tpwrd); obspwrf(4095.0);
    zgradpulse(gzlvl3, gt3);
    delay(2.0e-4);
    dec2rgpulse(pwN, zero, 0.0, 0.0);

    txphase(one);
    delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY);

    rgpulse(pwHd,one,0.0,0.0);
    txphase(zero);
    delay(2.0e-6);
    obsprgon("waltz16", pwHd, 90.0);	          /* PRG_START_DELAY */
    xmtron();
    decphase(zero);
    dec2phase(zero);
    decpwrf(rf8);
    delay(timeTN - kappa - WFG3_START_DELAY);
   }
							  /* WFG3_START_DELAY */
	sim3shaped_pulse("", "offC8", "", 0.0, pwC8, 2.0*pwN, zero, zero, zero, 
								     0.0, 0.0);
	decphase(zero);
	decpwrf(rf6);
	delay(timeTN);

	dec2rgpulse(pwN, zero, 0.0, 0.0);
if (TROSY[A]=='n')
   {xmtroff();
    obsprgoff();
    rgpulse(pwHd,three,2.0e-6,0.0);}
	zgradpulse(-gzlvl3, gt3);
 	delay(2.0e-4);
	decshaped_pulse("offC6", pwC6, zero, 0.0, 0.0);

	zgradpulse(-gzlvl7, gt7);
	decpwrf(rf0);
	decphase(zero);
	delay(tauC - gt7 - 0.5*10.933*pwC);

	decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0);
	decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0);
	decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0);      /* Shaka 6 composite */
	decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0);
	decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0);
	decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0);

	zgradpulse(-gzlvl7, gt7);
	decpwrf(rf6);
	decphase(one);
	txphase(one);
        delay(tauC - gt7 - 0.5*10.933*pwC - WFG_START_DELAY);
							   /* WFG_START_DELAY */
	decshaped_pulse("offC6", pwC6, one, 0.0, 0.0);
	decoffset(dof);
	zgradpulse(-gzlvl9, gt9);
	decpwrf(rf1);
	decphase(t3);
	delay(2.0e-4);
      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }
        rgpulse(pwHd,one,0.0,0.0);
	txphase(zero);
 	delay(2.0e-6);
	obsprgon("waltz16", pwHd, 90.0);
	xmtron();

	decrgpulse(pwC1, t3, 0.0, 0.0);
	decphase(zero);

/*   xxxxxxxxxxxxxxxxxxxxxx       13Ca EVOLUTION        xxxxxxxxxxxxxxxxxx    */

  if (ni==1.0)         /* special 1D check of pwC9 phase enabled when ni=1 */
  {
        decpwrf(rf9);
	delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1);
							  /* WFG3_START_DELAY */
	sim3shaped_pulse("", "offC9", "", 0.0, pwC9, 2.0*pwN, zero, zero, zero,
							          2.0e-6, 0.0);
	initval(phshift9, v9);
	decstepsize(1.0);
	dcplrphase(v9);  					/* SAPS_DELAY */
	delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1);
  }
  else if(CT_c[A] == 'y')           /* xxxxxxx 13Ca Constant Time EVOLUTION xxxxxxxx */
  {
    decpwrf(rf9);
    if(tau1 - 2.0*pwC1/PI - WFG_START_DELAY -POWER_DELAY > 0.0) {
       delay(tau1 -2.0*pwC1/PI -POWER_DELAY -WFG_START_DELAY);
       sim3shaped_pulse("","offC9","",0.0,pwC8, 2.0*pwN, zero, zero, zero, 
								0.0, 0.0);
    }
    else
       sim3shaped_pulse("","offC9","",0.0,pwC8, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
    
    delay(timeTC- 2.0e-6 -WFG_STOP_DELAY-POWER_DELAY); 

    decpwrf(rf2);
    decrgpulse(pwC2, zero, 2.0e-6, 2.0e-6); 	             /* 13Ca 180 degree pulse */ 

    delay(timeTC-tau1- 4.0e-6 -SAPS_DELAY);
    
    phshift9 = 230.0;  /* = 320-90 - correction for -90 degree phase shift in F1 */
    initval(phshift9, v9);
    decstepsize(1.0);
    dcplrphase(v9);                                         /* SAPS_DELAY */
  }
  else                         /* xxxxxxx 13Ca Conventional EVOLUTION xxxxxxxxx */
  {
    if ((ni>1.0) && (tau1>0.0))          /* total 13C evolution equals d2 exactly */
    {         /* 2.0*pwC1/PI compensates for evolution at 64% rate during pwC1 */
       decpwrf(rf9);
       if(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ > 0.0)
       {	   
	   delay(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ);
							  
	   sim3shaped_pulse("", "offC9", "", 0.0, pwC8, 2.0*pwN, zero, zero, zero,
								      0.0, 0.0);
	   initval(phshift9, v9);
	   decstepsize(1.0);
	   dcplrphase(v9);  				        /* SAPS_DELAY */
	   delay(tau1 - 2.0*pwC1/PI  - SAPS_DELAY - 0.5*pwZ - 2.0e-6);
       }
       else
       {
	 initval(180.0, v9);
	 decstepsize(1.0);
	 dcplrphase(v9);  				        /* SAPS_DELAY */
	 delay(2.0*tau1 - 4.0*pwC1/PI - SAPS_DELAY - 2.0e-6);
       }
    }
    else		       /* 13Ca evolution refocused for 1st increment  */
    {
	decpwrf(rf2);
	delay(10.0e-6);	
	decrgpulse(pwC2, zero, 2.0e-6, 0.0);
	delay(10.0e-6);	
    }
  }
        decphase(t5);
	decpwrf(rf1);
	decrgpulse(pwC1, t5, 2.0e-6, 0.0);


/*   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx    */

	xmtroff();
	obsprgoff();
        rgpulse(pwHd,three,2.0e-6,0.0);
	decoffset(dofCO);
	decpwrf(rf6);
	decphase(one);
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }
	zgradpulse(gzlvl10, gt10);
 	delay(2.0e-4);
	decshaped_pulse("offC6", pwC6, one, 0.0, 0.0);

	zgradpulse(gzlvl8, gt7);
	decpwrf(rf0);
	decphase(zero);
	delay(tauC - gt7 - 0.5*10.933*pwC);

	decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0);
	decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0);
	decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0);	/* Shaka 6 composite */
	decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0);
	decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0);
	decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0);

	zgradpulse(gzlvl8, gt7);
	decpwrf(rf6);
	decphase(zero);
	delay(tauC - gt7 - 0.5*10.933*pwC - WFG_START_DELAY);
							   /* WFG_START_DELAY */
	decshaped_pulse("offC6", pwC6, zero, 0.0, 0.0);

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

	zgradpulse(gzlvl4, gt4);
	txphase(one);
	decphase(zero);
	decpwrf(rf8);
	dcplrphase(zero);
	dec2phase(t8);
 	delay(2.0e-4);
 	
        if (TROSY[A]=='n')
	   {rgpulse(pwHd,one,0.0,0.0);
	    txphase(zero);
	    delay(2.0e-6);
	    obsprgon("waltz16", pwHd, 90.0);
	    xmtron();}
	    
	dec2rgpulse(pwN, t8, 0.0, 0.0); /* N15 EVOLUTION BEGINS HERE */
	dec2phase(t9);

        if(SCT[A] == 'y')
        {
	  delay(t2a);
          dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);
	  delay(t2b);
          decshaped_pulse("offC8", pwC8, zero, 0.0, 0.0); /* WFG_START_DELAY  */
        }
        else
        {	
	  delay(timeTN - WFG3_START_DELAY - tau2);       /* WFG3_START_DELAY  */							 
	  sim3shaped_pulse("", "offC8", "", 0.0, pwC8, 2.0*pwN, zero, zero, t9, 
								   0.0, 0.0);
        }
	dec2phase(t10);
        decpwrf(rf3);

if (TROSY[A]=='y')
{    if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs)
	{
	  txphase(three);
          delay(timeTN - pwC3 - WFG_START_DELAY);         /* WFG_START_DELAY */
          decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs);
          if (mag_flg[A]=='y')  magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
    if (tpwrsf < 4095.0) 
     {obspwrf(tpwrsf); 
        obspower(tpwrs+6.0);}                 /* increases tpwrs by 6dB, now need */
     else
        obspower(tpwrs);
                                          /* tpwrsf to be ~ 2048 for equivalence */
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
          obspower(tpwr); obspwrf(4095.0);
	  txphase(t4);
	  delay(0.5e-4 - POWER_DELAY);
	}

    else if (tau2 > pwHs + 0.5e-4)
	{
	  txphase(three);
          delay(timeTN-pwC3-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                     /* WFG_START_DELAY */
          decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0);
          delay(tau2 - pwHs - 0.5e-4);
    if (tpwrsf < 4095.0) 
     {obspwrf(tpwrsf); 
        obspower(tpwrs+6.0);}                 /* increases tpwrs by 6dB, now need */
     else
        obspower(tpwrs);
                                          /* tpwrsf to be ~ 2048 for equivalence */
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
          obspower(tpwr); obspwrf(4095.0);
	  txphase(t4);
	  delay(0.5e-4 - POWER_DELAY);
	}
    else
	{
	  txphase(three);
          delay(timeTN - pwC3 - WFG_START_DELAY - gt1 - 2.0*GRADIENT_DELAY
							    - 1.5e-4 - pwHs);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                     /* WFG_START_DELAY */
    if (tpwrsf < 4095.0) 
     {obspwrf(tpwrsf); 
        obspower(tpwrs+6.0);}                 /* increases tpwrs by 6dB, now need */
     else
        obspower(tpwrs);
                                          /* tpwrsf to be ~ 2048 for equivalence */
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
          obspower(tpwr); obspwrf(4095.0);
	  txphase(t4);
	  delay(0.5e-4 - POWER_DELAY);
          decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0);
          delay(tau2);
	}
}
else
{
    if (tau2 > kappa)
	{
          delay(timeTN - pwC3 - WFG_START_DELAY);     	   /* WFG_START_DELAY */
          decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0);
          delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
          delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else if (tau2 > (kappa - pwC3 - WFG_START_DELAY))
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);                                     /* WFG_START_DELAY */
          decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0);
          delay(kappa -pwC3 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4)
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
          delay(kappa - tau2 - pwC3 - WFG_START_DELAY);   /* WFG_START_DELAY */
          decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
	  obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
    	  delay(kappa-tau2-pwC3-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                    /* WFG_START_DELAY */
          decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0);
          delay(tau2);
	}
}                                                          
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
	if (TROSY[A]=='y')  rgpulse(pw, t4, 0.0, 0.0);
	else                sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 0.65*(pw + pwN) - gt5);
	else   delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(t11);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl6, gt5);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	dec2phase(t10);
	zgradpulse(gzlvl6, gt5);
	if (TROSY[A]=='y')   delay(lambda - 1.6*pwN - gt5);
	else   delay(lambda - 0.65*pwN - gt5);

	if (TROSY[A]=='y')   dec2rgpulse(pwN, t10, 0.0, 0.0); 
	else    	     rgpulse(pw, zero, 0.0, 0.0); 

	delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

	rgpulse(2.0*pw, zero, 0.0,rof1);
	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')    magradpulse(icosel*gzcal*gzlvl2, gt1/10.0);
        else   zgradpulse(icosel*gzlvl2, gt1/10.0);            /* 2.0*GRADIENT_DELAY */

        delay(gstab);
        rcvron();
statusdelay(C,1.0e-4 - rof1);
   if (dm3[B]=='y') lk_sample();

	setreceiver(t12);
}		 
Exemple #6
0
pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
	    rna_stCdec[MAXSTR],	       /* calls STUD+ waveforms from shapelib */
	    STUD[MAXSTR];   /* apply automatically calculated STUD decoupling */
 
int         icosel1,          			  /* used to get n and p type */
	    icosel2,
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    del = getval("del"),     /* time delays for CH coupling evolution */
	    del1 = getval("del1"),
	    del2 = getval("del2"),
/* STUD+ waveforms automatically calculated by macro "rnacal" */
/* and string parameter rna_stCdec calls them from your shapelib.*/
   stdmf,                              		   /* dmf for STUD decoupling */
   studlvl,	                         /* coarse power for STUD+ decoupling */
   rf80 = getval("rf80"), 			  /* rf in Hz for 80ppm STUD+ */

	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rfC,            	  /* maximum fine power when using pwC pulses */
	dofa,                             /* dof shifted to 80 ppm for ribose */

/* p_d is used to calculate the isotropic mixing on the Cab region */
        p_d,                   	        /* 50 degree pulse for DIPSI-3 at rfd */
        rfd,                   			     /* fine power for 35 ppm */
	ncyc = getval("ncyc"), 			  /* no. of cycles of DIPSI-3 */

   compC = getval("compC"),       /* adjustment for C13 amplifier compression */


	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

 grecov = getval("grecov"),   /* Gradient recovery delay, typically 150-200us */

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt3 = getval("gt3"),				   /* other gradients */
	gt5 = getval("gt5"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("STUD",STUD);
    getstr("f1180",f1180);
    getstr("f2180",f2180);

/*   LOAD PHASE TABLE    */

	settable(t3,2,phi3);
	settable(t6,1,phi6);
	settable(t5,4,phi5);
	settable(t10,1,phi10);
	settable(t11,4,rec);

        

/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ text_error("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

/* maximum fine power for pwC pulses */
	rfC = 4095.0;

/*  Center dof in RIBOSE region on 80 ppm. */
        dofa = dof - 30.0*dfrq;
		
/* dipsi-3 decoupling C-ribose */
 	p_d = (5.0)/(9.0*4.0*7000.0*(sfrq/800.0)); /* DIPSI-3 covers 35 ppm */
 	rfd = (compC*4095.0*pwC*5.0)/(p_d*9.0);
	rfd = (int) (rfd + 0.5);
  	ncyc = (int) (ncyc + 0.5);

/* 80 ppm STUD+ decoupling */
        strcpy(rna_stCdec, "wurst80");
	stdmf = getval("dmf80");
        studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80);
        studlvl = (int) (studlvl + 0.5);


/* CHECK VALIDITY OF PARAMETER RANGES */

  if( gt1 > 0.5*del - 0.5*grecov )
  { text_error(" gt1 is too big. Make gt1 less than %f.\n", (0.5*del - 0.5*grecov)); psg_abort(1);}

  if((dm3[A] == 'y' || dm3[C] == 'y' ))
  { text_error("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y'))
  { text_error("incorrect dec2 decoupler flags! Should be 'nnn' or 'nny' "); psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y'))
  { text_error("incorrect dec1 decoupler flags! Should be 'nny' "); psg_abort(1); }

  if( (((dm[C] == 'y') && (dm2[C] == 'y')) && (STUD[A] == 'y')) )
  { text_error("incorrect dec2 decoupler flags! Should be 'nnn' if STUD='y'"); psg_abort(1); }

  if( dpwr > 50 )
  { text_error("don't fry the probe, DPWR too large!  "); psg_abort(1); }

  if( dpwr2 > 50 )
  { text_error("don't fry the probe, DPWR2 too large!  "); psg_abort(1); }

  if( (pw > 20.0e-6) && (tpwr > 56) )
  { text_error("don't fry the probe, pw too high ! "); psg_abort(1); }

  if( (pwC > 40.0e-6) && (pwClvl > 56) )
  { text_error("don't fry the probe, pwN too high ! "); psg_abort(1); }

  if( (pwN > 100.0e-6) && (pwNlvl > 56) )
  { text_error("don't fry the probe, pwN too high ! "); psg_abort(1); }

  if ((dm3[B] == 'y'  &&   dpwr3 > 44 ))
  { text_error ("Deuterium decoupling power too high ! "); psg_abort(1); }

  if ((ncyc > 1 ) && (ix == 1))
  { text_error("mixing time is %f ms.\n",(ncyc*97.8*4*p_d)); }


/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    icosel1 = -1;  icosel2 = -1;
    if (phase1 == 2) 
	{ tsadd(t6,2,4); icosel1 = -1*icosel1; }
    if (phase2 == 2) 
	{ tsadd(t10,2,4); icosel2 = -1*icosel2; tsadd(t6,2,4); }


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t11,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t5,2,4); tsadd(t11,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
 if (dm3[B]=='y') lk_sample();
   	delay(d1);
 if (dm3[B]=='y') lk_hold();

	rcvroff();
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rfC);
	obsoffset(tof);
        decoffset(dofa);
        dec2offset(dof2);
	txphase(t3);
	delay(1.0e-5);

	decrgpulse(pwC, zero, 0.0, 0.0);	   /*destroy C13 magnetization*/
	zgradpulse(gzlvl1, 0.5e-3);
	delay(grecov/2);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl1, 0.5e-3);
	delay(5.0e-4);

   if(dm3[B] == 'y')				  /*optional 2H decoupling on */
        { 
          dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
         } 
	rgpulse(pw, t3, 0.0, 0.0);                    /* 1H pulse excitation */

        decphase(zero);
	delay(0.5*del + tau1 - 2.0*pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        txphase(zero);
	delay(tau1);

	rgpulse(2.0*pw, zero, 0.0, 0.0);

	zgradpulse(icosel1*gzlvl1, 0.1*gt1);
        decphase(t5);
	delay(0.5*del - 0.1*gt1);

	simpulse(pw, pwC, zero, t5, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        decphase(zero);
	delay(0.5*del2 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        txphase(t6);
        decphase(one);
	delay(0.5*del2 - gt3);

	simpulse(pw, pwC, t6, one, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
        txphase(zero);
        decphase(zero);
	delay(0.5*del1 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
	delay(0.5*del1 - gt3);

	decrgpulse(pwC, zero, 0.0, 0.0);
	decpwrf(rfd);
	delay(2.0e-6);
	initval(ncyc, v2);
	starthardloop(v2);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
	endhardloop();

        dec2phase(zero);
        decphase(zero);
        txphase(zero);
	decpwrf(rfC);
	delay(tau2);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	delay(tau2);
	decpwrf(rfC);
	zgradpulse(-icosel2*gzlvl2, 1.8*gt1);
	delay(grecov+2.0e-6);

	decrgpulse(2.0*pwC, zero, 0.0, 0.0);

	decpwrf(rfC);
	zgradpulse(icosel2*gzlvl2, 1.8*gt1);
	delay(grecov + pwN);

	decrgpulse(pwC, zero, 0.0, 0.0);
	decpwrf(rfC);
	decrgpulse(pwC, zero, 2.0e-6, 0.0);

	zgradpulse(gzlvl5, gt5);
	delay(0.5*del1 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	decphase(t10);
	delay(0.5*del1 - gt5);

	simpulse(pw, pwC, one, t10, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	txphase(zero);
	decphase(zero);
	delay(0.5*del2 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	delay(0.5*del2 - gt5);

	simpulse(pw, pwC, zero, zero, 0.0, 0.0);

	delay(0.5*del - 0.5*pwC);

	simpulse(2.0*pw,2.0*pwC, zero, zero, 0.0, 0.0);
   if (STUD[A]=='y') decpower(studlvl);

   else
    {
	decpower(dpwr);
	dec2power(dpwr2);
    }
	zgradpulse(gzlvl1, gt1);         		/* 2.0*GRADIENT_DELAY */
   if(dm3[B] == 'y') 
	delay(0.5*del - gt1 -1/dmf3 - 2.0*GRADIENT_DELAY - POWER_DELAY);
      else
	delay(0.5*del - gt1 - 2.0*GRADIENT_DELAY - POWER_DELAY);
   if(dm3[B] == 'y')			         /*optional 2H decoupling off */
        {
          dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank();
          setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
          dec3blank();
        }
	decpower(dpwr);				               /* POWER_DELAY */
  if (dm3[B]=='y') lk_sample();
  if ((STUD[A]=='y') && (dm[C] == 'y'))
        {decpower(studlvl);
         decunblank();
         decon();
         decprgon(rna_stCdec,1/stdmf, 1.0);
         startacq(alfa);
         acquire(np, 1.0/sw);
         decprgoff();
         decoff();
         decblank();
        }
      else
	 status(C);
 setreceiver(t11);
}		 
Exemple #7
0
pulsesequence()
{
  /* DECLARE AND LOAD VARIABLES */

  char f1180[MAXSTR],		/* Flag to start t1 @ halfdwell */
       f2180[MAXSTR],		/* Flag to start t2 @ halfdwell */
       H2Opurge[MAXSTR], stCdec[MAXSTR],	/* calls STUD+ waveforms from shapelib */
       STUD[MAXSTR];		/* apply automatically calculated STUD decoupling */

  int t1_counter,		/* used for states tppi in t1 */
      t2_counter;		/* used for states tppi in t2 */

  double tau1,			/*  t1 delay */
         BPdpwrspinlock,        /*  user-defined upper limit for spinlock(Hz) */
         BPpwrlimits,           /*  =0 for no limit, =1 for limit             */
         tau2,			/*  t2 delay */
         ni = getval("ni"), ni2 = getval("ni2"),
	 stdmf = getval("dmf80"),	/* dmf for 80 ppm of STUD decoupling */
         rf80 = getval("rf80"),	/* rf in Hz for 80ppm STUD+ */
         taua = getval("taua"),	/* time delays for CH coupling evolution */
         taub = getval("taub"), tauc = getval("tauc"),
	 /* string parameter stCdec calls stud decoupling waveform from your shapelib. */
         studlvl,		/* coarse power for STUD+ decoupling */
         pwClvl = getval("pwClvl"),	/* coarse power for C13 pulse */
         pwC = getval("pwC"),	/* C13 90 degree pulse length at pwClvl */
         rf0,			/* maximum fine power when using pwC pulses */
	 /* p_d is used to calculate the isotropic mixing on the Cab region            */
         p_d,			/* 50 degree pulse for DIPSI-3 at rfd  */
         rfd,			/* fine power for 9.0 kHz rf at 600MHz         */
         ncyc = getval("ncyc"),	/* no. of cycles of DIPSI-3 */
         spinlock = getval("spinlock"),		/* DIPSI-3 Field Strength in Hz */
	 /* the following pulse length for the SLP pulse is automatically calculated   */
	 /* by the macro "hcch_tocsy".  The SLP pulse shape,"offC10" is called         */
	 /* directly from your shapelib.                                               */
         pwC10 = getval("pwC10"),	/* 180 degree selective sinc pulse on CO(174ppm) */
         rf7,			/* fine power for the pwC10 ("offC10") pulse */
         compC = getval("compC"),	/* adjustment for C13 amplifier compression */
         pwNlvl = getval("pwNlvl"),	/* power for N15 pulses */
         pwN = getval("pwN"),	/* N15 90 degree pulse length at pwNlvl */
         sw1 = getval("sw1"), sw2 = getval("sw2"),
	 gt0 = getval("gt0"),	/* other gradients */
         gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"),
         gt7 = getval("gt7"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"),
         gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"),
         gzlvl7 = getval("gzlvl7");

  getstr("f1180", f1180);
  getstr("f2180", f2180);
  getstr("H2Opurge", H2Opurge);
  getstr("STUD", STUD);
  /* 80 ppm STUD+ decoupling */
  strcpy(stCdec, "stCdec80");
  studlvl = pwClvl + 20.0 * log10(compC * pwC * 4.0 * rf80);
  studlvl = (int) (studlvl + 0.5);

  P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1);
  P_getreal(GLOBAL,"BPdpwrspinlock",&BPdpwrspinlock,1);

  /*   LOAD PHASE TABLE    */
  settable(t3, 2, phi3);
  settable(t5, 4, phi5);
  settable(t9, 8, phi9);
  settable(t11, 8, rec);


  /*   INITIALIZE VARIABLES   */
  if (BPpwrlimits > 0.5)
  {
   if (spinlock > BPdpwrspinlock)
    {
     spinlock = BPdpwrspinlock;  
     printf("spinlock too large, reset to user-defined limit (BPdpwrspinlock)");
     psg_abort(1);
    }
  }

  if (dpwrf < 4095)
  {
    printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
    psg_abort(1);
  }

  if ((pwC > (25.0e-6 * 600.0 / sfrq)) && (ncyc > 0.0))
  {
    printf("Increase pwClvl so that pwC < 25*600/sfrq");
    psg_abort(1);
  }

  /* maximum fine power for pwC pulses */
  rf0 = 4095.0;

  /* 180 degree one-lobe sinc pulse on CO, null at Ca 139ppm away */
  rf7 = (compC * 4095.0 * pwC * 2.0 * 1.65) / pwC10;	/* needs 1.65 times more     */
  rf7 = (int) (rf7 + 0.5);	/* power than a square pulse */

  if (spinlock < 1000.0)
  {
    printf("Spinlock seems too low. Please check spinlock value ! ");
    psg_abort(1);
  }

  /* dipsi-3 spinlock on CbCa */
  p_d = (5.0) / (9.0 * 4.0 * spinlock);		/* DIPSI-3 */
  rfd = (compC * 4095.0 * pwC * 5.0) / (p_d * 9.0);
  rfd = (int) (rfd + 0.5);
  ncyc = (int) (ncyc + 0.5);
/*************************For Ultra-High Field Probes***************************/
if (sfrq>590.0)
{
 if (ncyc>2)
  {
    if (pwC>15)
     {
      if (rfd > 2000)
       {
        printf("spinlock too large. Lower value for probe protection");
        psg_abort(1);
       }
     }
    else
     {
      if (pwC>14)
       {
        if (rfd > 1800)
         {
          printf("spinlock too large. Lower value for probe protection");
          psg_abort(1);
         }
       }
      else
       {
        if (pwC>13)
         {
          if (rfd > 1600)
           {
            printf("spinlock too large. Lower value for probe protection");
            psg_abort(1);
           }
         }
        else
         {
          if (pwC>12)
           {
            if (rfd > 1400)
             {
               printf("spinlock too large. Lower value for probe protection");
               psg_abort(1);
             }
           }
          else
           {
            if (pwC>11)
             {
              if (rfd > 1200)
               {
                printf("spinlock too large. Lower value for probe protection");
                psg_abort(1);
               }
             }
            else
             {
                if (rfd > 1000)
                 {
                  printf("spinlock too large. Lower value for probe protection");
                  psg_abort(1);
                 }
             }
           }
         }    
       }
     }
  }
 else 
  {
   if (ncyc == 2)
    {
     if (pwC>15)
      {
       if (rfd > 2200)
        {
         printf("spinlock too large. Lower value for probe protection");
         psg_abort(1);
        }
      }
     else
      {
       if (pwC>14)
        {
         if (rfd > 2000)
          {
           printf("spinlock too large. Lower value for probe protection");
           psg_abort(1);
          }
        }
       else
        {
         if (pwC>13)
          {
           if (rfd > 1800)
            {
             printf("spinlock too large. Lower value for probe protection");
             psg_abort(1);
            }
          }
         else
          {
           if (pwC>12)
            {
             if (rfd > 1600)
              {
                printf("spinlock too large. Lower value for probe protection");
                psg_abort(1);
              }
            }
           else
            {
             if (pwC>11)
              {
               if (rfd > 1400)
                {
                 printf("spinlock too large. Lower value for probe protection");
                 psg_abort(1);
                }
              }
             else
              {
                 if (rfd > 1200)
                  {
                   printf("spinlock too large. Lower value for probe protection");
                   psg_abort(1);
                  }
              }
            }
          }    
        }
      }
     }
   else
    {
     if (ncyc == 1)
      {
       if (pwC>15)
        {
         if (rfd > 2400)
          {
           printf("spinlock too large. Lower value for probe protection");
           psg_abort(1);
          }
        }
       else
        {
         if (pwC>14)
          {
           if (rfd > 2200)
            {
             printf("spinlock too large. Lower value for probe protection");
             psg_abort(1);
            }
          }
         else
          {
           if (pwC>13)
            {
             if (rfd > 2000)
              {
               printf("spinlock too large. Lower value for probe protection");
               psg_abort(1);
              }
            }
           else
            {
             if (pwC>12)
              {
               if (rfd > 1800)
                {
                  printf("spinlock too large. Lower value for probe protection");
                  psg_abort(1);
                }
              }
             else
              {
               if (pwC>11)
                {
                 if (rfd > 1600)
                  {
                   printf("spinlock too large. Lower value for probe protection");
                   psg_abort(1);
                  }
                }
               else
                {
                   if (rfd > 1400)
                    {
                     printf("spinlock too large. Lower value for probe protection");
                     psg_abort(1);
                    }
                }
              }
            }       
          }
        }
      }
    }

  }


}
/*********************End: For Ultra-High Field Probes***************************/

  /* CHECK VALIDITY OF PARAMETER RANGES */

  if ((dm[A] == 'y' || dm[B] == 'y'))
  {
    printf("incorrect dec1 decoupler flags! Should be 'nny' or 'nnn' ");
    psg_abort(1);
  }

  if ((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y'))
  {
    printf("incorrect dec2 decoupler flags! Should be 'nnn' ");
    psg_abort(1);
  }

  if ((dm3[A] == 'y' || dm3[C] == 'y'))
  {
    printf("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' ");
    psg_abort(1);
  }

  if (dpwr > 52)
  {
    printf("don't fry the probe, DPWR too large!  ");
    psg_abort(1);
  }

  if (pw > 80.0e-6)
  {
    printf("dont fry the probe, pw too high ! ");
    psg_abort(1);
  }

  if (pwN > 100.0e-6)
  {
    printf("dont fry the probe, pwN too high ! ");
    psg_abort(1);
  }


  /* PHASES AND INCREMENTED TIMES */
  /*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */
  if (phase1 == 2)
    tsadd(t3, 1, 4);
  if (phase2 == 2)
    tsadd(t5, 1, 4);

  /*  C13 TIME INCREMENTATION and set up f1180  */

  /*  Set up f1180  */
  tau1 = d2;

  if (f1180[A] == 'y')
  {
    tau1 += (1.0 / (2.0 * sw1));
    if (tau1 < 0.2e-6)
      tau1 = 0.0;
  }

  tau1 = tau1 / 2.0;


  /*  Set up f2180  */

  tau2 = d3;

  if (f2180[A] == 'y')
  {
    tau2 += (1.0 / (2.0 * sw2));
    if (tau2 < 0.2e-6)
      tau2 = 0.0;
  }

  tau2 = tau2 / 2.0;



  /* Calculate modifications to phases for States-TPPI acquisition          */

  if (ix == 1)
    d2_init = d2;
  t1_counter = (int) ((d2 - d2_init) * sw1 + 0.5);
  if (t1_counter % 2)
  {
    tsadd(t3, 2, 4);
    tsadd(t11, 2, 4);
  }

  if (ix == 1)
    d3_init = d3;
  t2_counter = (int) ((d3 - d3_init) * sw2 + 0.5);
  if (t2_counter % 2)
  {
    tsadd(t5, 2, 4);
    tsadd(t11, 2, 4);
  }



  /*   BEGIN PULSE SEQUENCE   */

  status(A);
  if (dm3[B] == 'y')
    lk_sample();
  if ((ni / sw1 - d2) > 0)
    delay(ni / sw1 - d2);	/*decreases as t1 increases for const.heating */
  if ((ni2 / sw2 - d3) > 0)
    delay(ni2 / sw2 - d3);	/*decreases as t2 increases for const.heating */
  delay(d1);
  if (dm3[B] == 'y')
  {
    lk_hold();
    lk_sampling_off();
  }				/*freezes z0 correction, stops lock pulsing */
  rcvroff();

  obspower(tpwr);
  decpower(pwClvl);
  dec2power(pwNlvl);
  decpwrf(rf0);
  obsoffset(tof);
  txphase(t3);
  delay(1.0e-5);

  decrgpulse(pwC, zero, 0.0, 0.0);	/*destroy C13 magnetization */
  zgradpulse(gzlvl0, 0.5e-3);
  delay(1.0e-4);
  decrgpulse(pwC, one, 0.0, 0.0);
  zgradpulse(0.7 * gzlvl0, 0.5e-3);
  delay(5.0e-4);

  if (dm3[B] == 'y')		/* begins optional 2H decoupling */
  {
    dec3rgpulse(1 / dmf3, one, 10.0e-6, 2.0e-6);
    dec3unblank();
    dec3phase(zero);
    delay(2.0e-6);
    setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
  }

  rgpulse(pw, t3, 0.0, 0.0);	/* 1H pulse excitation */
  zgradpulse(gzlvl0, gt0);	/* 2.0*GRADIENT_DELAY */
  decphase(zero);
  delay(taua + tau1 - gt0 - 2.0 * GRADIENT_DELAY - 2.0 * pwC);
  decrgpulse(2.0 * pwC, zero, 0.0, 0.0);
  txphase(zero);
  delay(tau1);
  rgpulse(2.0 * pw, zero, 0.0, 0.0);
  zgradpulse(gzlvl0, gt0);
  txphase(one);
  decphase(t5);
  delay(taua - gt0);
  rgpulse(pw, one, 0.0, 0.0);
  zgradpulse(gzlvl3, gt3);
  delay(2.0e-4);
  decrgpulse(pwC, t5, 0.0, 0.0);
  delay(tau2);
  dec2rgpulse(2.0 * pwN, zero, 0.0, 0.0);
  zgradpulse(gzlvl4, gt4);	/* 2.0*GRADIENT_DELAY */
  decphase(zero);
  decpwrf(rf7);
  delay(taub - 2.0 * pwN - gt4 - 2.0 * GRADIENT_DELAY);
  decshaped_pulse("offC10", pwC10, zero, 0.0, 0.0);
  txphase(zero);
  decpwrf(rf0);
  delay(taub - 2.0 * pw);
  rgpulse(2.0 * pw, zero, 0.0, 0.0);
  delay(tau2);
  decrgpulse(2.0 * pwC, zero, 0.0, 0.0);
  decpwrf(rf7);
  delay(taub);
  decshaped_pulse("offC10", pwC10, zero, 0.0, 0.0);
  zgradpulse(gzlvl4, gt4);	/* 2.0*GRADIENT_DELAY */
  delay(taub - gt4 - 2.0 * GRADIENT_DELAY);
  decpwrf(rfd);
  decrgpulse(1.0e-3, zero, 0.0, 0.0);
  if (ncyc>0)
  {
  initval(ncyc, v2);
  starthardloop(v2);
  decrgpulse(4.9 * p_d, one, 0.0, 0.0);
  decrgpulse(7.9 * p_d, three, 0.0, 0.0);
  decrgpulse(5.0 * p_d, one, 0.0, 0.0);
  decrgpulse(5.5 * p_d, three, 0.0, 0.0);
  decrgpulse(0.6 * p_d, one, 0.0, 0.0);
  decrgpulse(4.6 * p_d, three, 0.0, 0.0);
  decrgpulse(7.2 * p_d, one, 0.0, 0.0);
  decrgpulse(4.9 * p_d, three, 0.0, 0.0);
  decrgpulse(7.4 * p_d, one, 0.0, 0.0);
  decrgpulse(6.8 * p_d, three, 0.0, 0.0);
  decrgpulse(7.0 * p_d, one, 0.0, 0.0);
  decrgpulse(5.2 * p_d, three, 0.0, 0.0);
  decrgpulse(5.4 * p_d, one, 0.0, 0.0);
  decrgpulse(0.6 * p_d, three, 0.0, 0.0);
  decrgpulse(4.5 * p_d, one, 0.0, 0.0);
  decrgpulse(7.3 * p_d, three, 0.0, 0.0);
  decrgpulse(5.1 * p_d, one, 0.0, 0.0);
  decrgpulse(7.9 * p_d, three, 0.0, 0.0);

  decrgpulse(4.9 * p_d, three, 0.0, 0.0);
  decrgpulse(7.9 * p_d, one, 0.0, 0.0);
  decrgpulse(5.0 * p_d, three, 0.0, 0.0);
  decrgpulse(5.5 * p_d, one, 0.0, 0.0);
  decrgpulse(0.6 * p_d, three, 0.0, 0.0);
  decrgpulse(4.6 * p_d, one, 0.0, 0.0);
  decrgpulse(7.2 * p_d, three, 0.0, 0.0);
  decrgpulse(4.9 * p_d, one, 0.0, 0.0);
  decrgpulse(7.4 * p_d, three, 0.0, 0.0);
  decrgpulse(6.8 * p_d, one, 0.0, 0.0);
  decrgpulse(7.0 * p_d, three, 0.0, 0.0);
  decrgpulse(5.2 * p_d, one, 0.0, 0.0);
  decrgpulse(5.4 * p_d, three, 0.0, 0.0);
  decrgpulse(0.6 * p_d, one, 0.0, 0.0);
  decrgpulse(4.5 * p_d, three, 0.0, 0.0);
  decrgpulse(7.3 * p_d, one, 0.0, 0.0);
  decrgpulse(5.1 * p_d, three, 0.0, 0.0);
  decrgpulse(7.9 * p_d, one, 0.0, 0.0);

  decrgpulse(4.9 * p_d, three, 0.0, 0.0);
  decrgpulse(7.9 * p_d, one, 0.0, 0.0);
  decrgpulse(5.0 * p_d, three, 0.0, 0.0);
  decrgpulse(5.5 * p_d, one, 0.0, 0.0);
  decrgpulse(0.6 * p_d, three, 0.0, 0.0);
  decrgpulse(4.6 * p_d, one, 0.0, 0.0);
  decrgpulse(7.2 * p_d, three, 0.0, 0.0);
  decrgpulse(4.9 * p_d, one, 0.0, 0.0);
  decrgpulse(7.4 * p_d, three, 0.0, 0.0);
  decrgpulse(6.8 * p_d, one, 0.0, 0.0);
  decrgpulse(7.0 * p_d, three, 0.0, 0.0);
  decrgpulse(5.2 * p_d, one, 0.0, 0.0);
  decrgpulse(5.4 * p_d, three, 0.0, 0.0);
  decrgpulse(0.6 * p_d, one, 0.0, 0.0);
  decrgpulse(4.5 * p_d, three, 0.0, 0.0);
  decrgpulse(7.3 * p_d, one, 0.0, 0.0);
  decrgpulse(5.1 * p_d, three, 0.0, 0.0);
  decrgpulse(7.9 * p_d, one, 0.0, 0.0);

  decrgpulse(4.9 * p_d, one, 0.0, 0.0);
  decrgpulse(7.9 * p_d, three, 0.0, 0.0);
  decrgpulse(5.0 * p_d, one, 0.0, 0.0);
  decrgpulse(5.5 * p_d, three, 0.0, 0.0);
  decrgpulse(0.6 * p_d, one, 0.0, 0.0);
  decrgpulse(4.6 * p_d, three, 0.0, 0.0);
  decrgpulse(7.2 * p_d, one, 0.0, 0.0);
  decrgpulse(4.9 * p_d, three, 0.0, 0.0);
  decrgpulse(7.4 * p_d, one, 0.0, 0.0);
  decrgpulse(6.8 * p_d, three, 0.0, 0.0);
  decrgpulse(7.0 * p_d, one, 0.0, 0.0);
  decrgpulse(5.2 * p_d, three, 0.0, 0.0);
  decrgpulse(5.4 * p_d, one, 0.0, 0.0);
  decrgpulse(0.6 * p_d, three, 0.0, 0.0);
  decrgpulse(4.5 * p_d, one, 0.0, 0.0);
  decrgpulse(7.3 * p_d, three, 0.0, 0.0);
  decrgpulse(5.1 * p_d, one, 0.0, 0.0);
  decrgpulse(7.9 * p_d, three, 0.0, 0.0);

  endhardloop();
  }
  decrgpulse(9.0 * p_d / 5.0, t9, 2.0e-6, 0.0);
  if (H2Opurge[A] == 'y')
  {
    obspwrf(1000);
    rgpulse(900 * pw, zero, 0.0, 0.0);
    rgpulse(500 * pw, one, 0.0, 0.0);
    obspwrf(4095.0);
  }
  zgradpulse(gzlvl7, gt7);
  decpwrf(rf0);
  delay(50.0e-6);
  rgpulse(pw, zero, 0.0, 0.0);
  zgradpulse(gzlvl7, gt7 / 1.6);
  decrgpulse(pwC, three, 100.0e-6, 0.0);
  zgradpulse(gzlvl5, gt5);
  decphase(zero);
  delay(tauc - gt5);
  simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, 0.0);
  zgradpulse(gzlvl5, gt5);
  delay(tauc - gt5);
  decrgpulse(pwC, zero, 0.0, 0.0);
  zgradpulse(gzlvl3, gt3);
  if (dm3[B] == 'y')		/* turns off 2H decoupling  */
  {
    setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
    dec3rgpulse(1 / dmf3, three, 2.0e-6, 2.0e-6);
    dec3blank();
    lk_autotrig();		/* resumes lock pulsing */
  }
  delay(2.0e-4);
  rgpulse(pw, zero, 0.0, 0.0);
  zgradpulse(gzlvl6, gt5);
  delay(taua - gt5 + rof1);
  simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, rof1);
  zgradpulse(gzlvl6, gt5);
  if (STUD[A] == 'y')
    decpower(studlvl);
  else
    decpower(dpwr);
  dec2power(dpwr2);
  delay(taua - gt5 - 2.0 * POWER_DELAY);
  rgpulse(pw, zero, 0.0, rof2);
  rcvron();
  if (dm3[B] == 'y')
    lk_sample();
  setreceiver(t11);
  if ((STUD[A] == 'y') && (dm[C] == 'y'))
  {
    decprgon(stCdec, 1.0 / stdmf, 1.0);
    decon();
    if (dm2[C] == 'y')
    {
      setstatus(DEC2ch, TRUE, dmm2[C], FALSE, dmf2);
    }
  }
  else
    status(C);
}
Exemple #8
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */
/* sequence are declared and initialized as 0.0 in bionmr.h, and       */
/* reinitialized below  */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            stCshape[MAXSTR],
 	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */
 
int         t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni = getval("ni"),
	    ni2 = getval("ni2");

double      d2_init=0.0,  		        /* used for states tppi in t1 */
	    d3_init=0.0,  	 	        /* used for states tppi in t2 */
	    tau1,         				         /*  t1 delay */
	    tauCH = getval("tauCH"), 		         /* 1/4J delay for CH */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
            timeNCA = getval("timeNCA"),
            timeC = getval("timeC"),      /* other delays */
            tauCC = getval("tauCC"),
	    zeta = getval("zeta"),

	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
        compC = getval("compC"),
        rf0,
        rfst,

   widthHd,
   pwS1,					/* length of square 90 on Cab */
   pwS2,					/* length of square 180 on Ca */
   phi7cal = getval("phi7cal"),  /* phase in degrees of the last C13 90 pulse */
   phshift = getval("phshift"),        /*  phase shift induced on CO by 180 on CA in middle of t1 */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),
        waltzB1 = getval("waltzB1"),
	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("TROSY",TROSY);

    widthHd=2.069*(waltzB1/sfrq);  /* produces same field as std. sequence */

/*   LOAD PHASE TABLE    */

	settable(t1,2,phi1);
	settable(t2,4,phi2);
        settable(t4,1,phx);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,4,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,16,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,8,rec);}

        

/*   INITIALIZE VARIABLES   */

 	kappa = 5.4e-3;
	lambda = 2.4e-3;

/* maximum fine power for pwC pulses (and initialize rfst) */
        rf0 = 4095.0;    rfst=0.0;

    if( pwC > 20.0*600.0/sfrq )
	{ printf("increase pwClvl so that pwC < 20*600/sfrq");
	  psg_abort(1); }



/* 30 ppm sech/tanh inversion for Ca-Carbons */

        rfst = (compC*4095.0*pwC*4000.0*sqrt((4.5*sfrq/600.0+3.85)/0.41));
        rfst = (int) (rfst + 0.5);
        strcpy(stCshape, "stC30");

    /* get calculated pulse lengths of shaped C13 pulses */
	pwS1 = c13pulsepw("co", "ca", "sinc", 90.0); 
	pwS2 = c13pulsepw("ca", "co", "square", 180.0); 
	

/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( gt4 > zeta - 0.6*pwC)
       { printf(" gt4 is too big. Make gt4 equal to %f or less.\n", 
  	 (zeta - 0.6*pwC)); 	     				     psg_abort(1);}

    if ( 0.5*ni*1/(sw1) > 2.0*timeC + tauCC - OFFSET_DELAY - SAPS_DELAY)
       { printf(" ni is too big. Make ni equal to %d or less.\n", 
  	 ((int)((2.0*timeC - OFFSET_DELAY)*2.0*sw1))); 	     psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}
    if ( dpwr2 > 46 )
       { printf("dpwr2 too large! recheck value  ");		     psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value ");	             psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value ");	             psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y' )
       { text_error("Choose either TROSY='n' or dm2='n' ! ");        psg_abort(1);}
 

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2) tsadd(t2,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }



/*  C13 TIME INCREMENTATION and set up f1180  */

/*  Set up f1180  */

    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;


/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2; 
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t2,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3; 
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
   	delay(d1);
        if (dm3[B]=='y') lk_hold();

	rcvroff();
        set_c13offset("ca");
	obsoffset(tof);
	obspower(tpwr);
 	obspwrf(4095.0);
	decpower(pwClvl);
	decpwrf(4095.0);
 	dec2power(pwNlvl);
	txphase(three);
	delay(1.0e-5);

	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

        if(dm3[B] == 'y')			  /*optional 2H decoupling on */
         {dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);} 

	rgpulse(pw, zero, 0.0, 0.0);                  /* 1H pulse excitation */
                          
        txphase(zero);
        decphase(zero);
	zgradpulse(gzlvl0, gt0);			/* 2.0*GRADIENT_DELAY */

	decpwrf(rfst);
        delay(tauCH - gt0 - WFG2_START_DELAY - 0.5e-3 + 70.0e-6);

        simshaped_pulse("",stCshape, 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);

        delay(tauCH - gt0 - 0.5e-3 + 70.0e-6 - 150.0e-6);

        decpwrf(rf0);

	zgradpulse(gzlvl0, gt0);   	 	        /* 2.0*GRADIENT_DELAY */
	delay(150.0e-6);
           
	rgpulse(pw, one, 0.0, 0.0);	
	zgradpulse(gzlvl3, gt3);
	delay(2.0e-4);
        decrgpulse(pwC, t1, 0.0, 0.0);

        set_c13offset("co");

	delay(zeta - 0.6*pwC - OFFSET_DELAY - POWER_DELAY - PWRF_DELAY - PRG_START_DELAY);
        
        h1decon("DIPSI2", widthHd, 0.0); /*POWER_DELAY+PWRF_DELAY+PRG_START_DELAY */
         
	delay(2.0*timeC - zeta);
 
        c13pulse("co", "ca", "sinc", 90.0, t2, 0.0, 0.0); /* pwS1 */		
	
        delay(timeNCA - tau1);

        c13pulse("ca", "co", "sinc", 180.0, zero, 2.0e-6, 2.0e-6);
        sim3_c13pulse("", "co", "ca", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); /* pwS2 */

        delay(timeNCA + tau1 + (60.0e-6));
        
        initval(phshift, v3);
        decstepsize(1.0);
        dcplrphase(v3);        
        c13pulse("co", "ca", "sinc", 90.0, one, 0.0, 0.0); /* pwS1 */

        delay(2.0*timeC + tauCC - OFFSET_DELAY - SAPS_DELAY - tau1);
        c13pulse("ca", "co", "sinc", 180.0, zero, 0.0, 0.0);
        delay(tauCC);
        sim3_c13pulse("", "co", "ca", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 0.0, 60.0e-6); 
        delay(tau1);

        set_c13offset("ca");

        initval(phi7cal, v7);
        decstepsize(1.0);
        dcplrphase(v7);                                         /* SAPS_DELAY */
        dec2phase(t8);

	nh_evol_se_train("ca", "co"); /* common part of sequence in bionmr.h  */

if (dm3[B] == 'y')  lk_sample();

}		 
pulsesequence()
{
/* DECLARE VARIABLES */

 char       satmode[MAXSTR],
	    fscuba[MAXSTR],
            cbdecseq[MAXSTR],
            chirp_shp[MAXSTR],  /* name of variable containing name of Pbox shape */
            fco180[MAXSTR],    /* Flag for checking sequence              */
            fca180[MAXSTR],    /* Flag for checking sequence              */
            sel_flg[MAXSTR];

 int         icosel,
             ni = getval("ni"),
             t1_counter;   /* used for states tppi in t1           */ 

 double      d2_init=0.0,                        /* used for states tppi in t1 */
             tau1,         /*  t1 delay */
             tau2,         /*  t2 delay */
             tau3,         /*  t2 delay */
             taua,         /*  ~ 1/4JNH =  2.25 ms */
             taub,         /*  ~ 1/4JNH =  2.25 ms */
             zeta,        /* time for C'-N to refocuss set to 0.5*24.0 ms */
             bigTN,       /* nitrogen T period */
             BigT1,       /* delay to compensate for gradient gt5 */
             satpwr,     /* low level 1H trans.power for presat  */
             sw1,          /* sweep width in f1                    */             
             sw2,          /* sweep width in f2                    */             
             cophase,      /* phase correction for CO evolution  */
             caphase,      /* phase correction for Ca evolution  */
             cbpwr,        /* power level for selective CB decoupling */
             cbdmf,        /* pulse width for selective CB decoupling */
             cbres,        /* decoupling resolution of CB decoupling */
             pwS1,         /* length of  90 on Ca */
             pwS2,         /* length of  90 on CO */
             pwS3,         /* length of 180 on Ca  */
             pwS4,         /* length of 180 on CO  */
             pwS5,         /* CHIRP inversion pulse on CO and CA  */
             pwrS5=0.0,        /* power of CHIRP pulse */

             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gt9,
             gstab,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7, 
             gzlvl8, 
             gzlvl9, 

             compH = getval("compH"),         /* adjustment for amplifier compression */
             pwHs = getval ("pwHs"),         /* H1 90 degree pulse at tpwrs */
             tpwrs,                          /* power for pwHs ("H2osinc") pulse */
             waltzB1 = getval("waltzB1"),

             pwClvl = getval("pwClvl"),                 /* coarse power for C13 pulse */
             pwC = getval("pwC"),             /* C13 90 degree pulse length at pwClvl */
             compC = getval("compC"),             /* ampl. compression */

             pwNlvl = getval("pwNlvl"),                       /* power for N15 pulses */
             pwN = getval("pwN"),             /* N15 90 degree pulse length at pwNlvl */

  swCa = getval("swCa"),
  swCO = getval("swCO"),
  swN  = getval("swN"),
  swTilt,                     /* This is the sweep width of the tilt vector */

  cos_N, cos_CO, cos_Ca,
  angle_N, angle_CO, angle_Ca;
  angle_N=0.0;


/* LOAD VARIABLES */


  getstr("satmode",satmode);
  getstr("fco180",fco180);
  getstr("fca180",fca180);
  getstr("fscuba",fscuba);

  getstr("sel_flg",sel_flg);

  taua   = getval("taua"); 
  taub   = getval("taub"); 
  zeta  = getval("zeta");
  bigTN = getval("bigTN");
  BigT1 = getval("BigT1");
  tpwr = getval("tpwr");
  satpwr = getval("tsatpwr");
  dpwr = getval("dpwr");
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  cophase = getval("cophase");
  caphase = getval("caphase");

  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");
  gt9 = getval("gt9");

  gstab = getval("gstab");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");
  gzlvl9 = getval("gzlvl9");

/* Load variable */
        cbpwr = getval("cbpwr");
        cbdmf = getval("cbdmf");
        cbres = getval("cbres");
        tau1 = 0;
        tau2 = 0;
        tau3 = 0;
        cos_N = 0;
        cos_CO = 0;
        cos_Ca = 0;

    getstr("cbdecseq", cbdecseq);

/* LOAD PHASE TABLE */

  settable(t1,2,phi1);
  settable(t2,2,phi2);
  settable(t3,1,phi3);
  settable(t4,8,phi4);
  settable(t5,4,phi5);
  settable(t6,8,rec);

  /* get calculated pulse lengths of shaped C13 pulses */
        pwS1 = c13pulsepw("ca", "co", "square", 90.0);
        pwS2 = c13pulsepw("co", "ca", "sinc", 90.0);
        pwS3 = c13pulsepw("ca","co","square",180.0);
        pwS4 = c13pulsepw("co","ca","sinc",180.0);


  /*this section creates the chirp pulse inverting both co and ca*/
  /*Pcoca180 is the name of the shapelib file created            */
  /*chirp180 is a file produced by Pbox psg containing parameter values from shape*/

  strcpy(chirp_shp,"Pcoca180");
   if (FIRST_FID)                  /* make shape once */
    chirp180 = pbox(chirp_shp, CHIRP180, CHIRP180ps, dfrq, compC*pwC, pwClvl);
   pwrS5 = chirp180.pwr;             /* get pulse power from file */
   pwS5 = chirp180.pw;             /* get pulse width from file */

   tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));   /*needs 1.69 times more*/
   tpwrs = (int) (tpwrs);                          /*power than a square pulse */
   widthHd = 2.681*waltzB1/sfrq;  /* bandwidth of H1 WALTZ16 decoupling */
   pwHd = h1dec90pw("WALTZ16", widthHd, 0.0);     /* H1 90 length for WALTZ16 */


/* CHECK VALIDITY OF PARAMETER RANGES */


    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    {
        printf("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' ))
    {
        printf("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }


    if( satpwr > 6 )
    {
        printf("SATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 46 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 46 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pwClvl > 62 )
    {
        printf("don't fry the probe, pwClvl too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 
    if( pwN > 200.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 
    if( pwC > 200.0e-6 )
    {
        printf("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( gt3 > 2.5e-3 ) 
    {
        printf("gt3 is too long\n");
        psg_abort(1);
    }
    if( gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3
        || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3
	|| gt9 > 10.0e-3)
    {
        printf("gt values are too long. Must be < 10.0e-3 or gt11=50us\n");
        psg_abort(1);
    } 


/* PHASES AND INCREMENTED TIMES */


   /* Set up angles and phases */

   angle_CO=getval("angle_CO");  cos_CO=cos(PI*angle_CO/180.0);
   angle_Ca=getval("angle_Ca");  cos_Ca=cos(PI*angle_Ca/180.0);

   if ( (angle_CO < 0) || (angle_CO > 90) )
   {  printf ("angle_CO must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( (angle_Ca < 0) || (angle_Ca > 90) )
   {  printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( 1.0 < (cos_CO*cos_CO + cos_Ca*cos_Ca) )
   {
       printf ("Impossible angles.\n"); psg_abort(1);
   }
   else
   {
           cos_N=sqrt(1.0- (cos_CO*cos_CO + cos_Ca*cos_Ca));
           angle_N = 180.0*acos(cos_N)/PI;
   }

   swTilt=swCO*cos_CO + swCa*cos_Ca + swN*cos_N;

   if (ix ==1)
   {
      printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
      printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt);
      printf ("Anlge_CO:\t%6.2f\n", angle_CO);
      printf ("Anlge_Ca:\t%6.2f\n", angle_Ca);
      printf ("Anlge_N :\t%6.2f\n", angle_N );
   }

/* Set up hyper complex */

   /* sw1 is used as symbolic index */
   if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); }

   if (ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if (t1_counter % 2)  { tsadd(t2,2,4); tsadd(t6,2,4); }

   if (phase1 == 1)  { ;}                                                  /* CC */
   else if (phase1 == 2)  { tsadd(t1,1,4);}                                /* SC */
   else if (phase1 == 3)  { tsadd(t5,1,4); }                               /* CS */
   else if (phase1 == 4)  { tsadd(t1,1,4); tsadd(t5,1,4); }                /* SS */
   else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); }

   if (phase2 == 2)  { tsadd(t4,2,4); icosel = +1; }                      /* N  */
            else                       icosel = -1;

   tau1 = 1.0*t1_counter*cos_CO/swTilt;
   tau2 = 1.0*t1_counter*cos_Ca/swTilt;
   tau3 = 1.0*t1_counter*cos_N/swTilt;

   tau1 = tau1/2.0;  tau2 = tau2/2.0;  tau3 = tau3/2.0;


/* CHECK VALIDITY OF PARAMETER RANGES */

    if (bigTN - 0.5*ni*(cos_N/swTilt) < 0.2e-6)
       { printf(" ni is too big. Make ni equal to %d or less.\n",
         ((int)((bigTN )*2.0*swTilt/cos_N)));         psg_abort(1);}


/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   set_c13offset("co");		/* set Dec1 carrier at Co		      */
   obspower(satpwr);      /* Set transmitter power for 1H presaturation */
   obspwrf(4095.0);
   decpower(pwClvl);      /* Set Dec1 power for hard 13C pulses         */
   decpwrf(4095.0);
   dec2power(pwNlvl);      /* Set Dec2 power for 15N hard pulses         */
   dec2pwrf(4095.0);

/* Presaturation Period */

   if (satmode[0] == 'y')
   {
	delay(2.0e-5);
        rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */
   	obspower(tpwr);      /* Set transmitter power for hard 1H pulses */
	delay(2.0e-5);
	if(fscuba[0] == 'y')
	{
		delay(2.2e-2);
		rgpulse(pw,zero,2.0e-6,0.0);
		rgpulse(2*pw,one,2.0e-6,0.0);
		rgpulse(pw,zero,2.0e-6,0.0);
		delay(2.2e-2);
	}
   }
   else
   {
    delay(d1);
   }
   obspower(tpwr);           /* Set transmitter power for hard 1H pulses */
   txphase(one);
   dec2phase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(B);

   rcvroff();
   lk_hold();
   delay(20.0e-6);
   shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 2.0e-6);
   txphase(zero);

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(0.2e-6);
   zgradpulse(gzlvl1, gt1);
   delay(2.0e-6);

   delay(taua - gt1 - 2.2e-6);   /* taua <= 1/4JNH */ 

   sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

   txphase(three); dec2phase(zero); decphase(zero); 

   delay(0.2e-6);
   zgradpulse(gzlvl1, gt1);
   delay(gstab);

   delay(taua - gt1 - gstab - 2.0e-6); 

   if(sel_flg[A] == 'n') {

   rgpulse(pw,three,2.0e-6,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl2, gt2);
   delay(gstab);

   dec2rgpulse(pwN,zero,0.0,0.0);
   decpower(pwrS5);
   delay( zeta -POWER_DELAY);
  
   dec2rgpulse(2.0*pwN,zero,0.0,0.0);
   decshapedpulse(chirp_shp, pwS5, zero, 0.0, 0.0);
   decpower(pwClvl);

   delay(zeta - pwS5 - POWER_DELAY - 2.0e-6);

   dec2rgpulse(pwN,zero,2.0e-6,0.0);

  }

  else {

   rgpulse(pw,one,2.0e-6,0.0);

   initval(1.0,v3);
   dec2stepsize(45.0); 
   dcplr2phase(v3);

   delay(0.2e-6);
   zgradpulse(gzlvl2, gt2);
   delay(gstab);

   dec2rgpulse(pwN,zero,0.0,0.0);
   dcplr2phase(zero);

   delay(1.34e-3 - SAPS_DELAY - 2.0*pw);

   rgpulse(pw,one,0.0,0.0);
   rgpulse(2.0*pw,zero,0.0,0.0);
   rgpulse(pw,one,0.0,0.0);

   decpower(pwrS5);
   delay( zeta - 1.34e-3 - 2.0*pw -POWER_DELAY);
  
   dec2rgpulse(2.0*pwN,zero,0.0,0.0);
   decshapedpulse(chirp_shp, pwS5, zero, 0.0, 0.0);
   decpower(pwClvl);

   delay(zeta - pwS5 - POWER_DELAY - 2.0e-6);

   dec2rgpulse(pwN,zero,2.0e-6,0.0);

   }

   dec2phase(zero); decphase(t1);

   delay(0.2e-6);
   zgradpulse(gzlvl3, gt3);
   delay(gstab);

/* t1 period for CO evolution */
   c13pulse("co", "ca", "sinc", 90.0, t1, 0.0, 0.0);

    if (!strcmp(fco180, "y"))
    {
      delay(10.0e-6);
      sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 2.0e-6, 2.0e-6);
      decstepsize(1.0);
      initval(cophase,v4);
      dcplrphase(v4);
      delay(10.0e-6);
    }
    else
    {
     if (tau1-2.0*pwS2/PI-pwN-WFG3_START_DELAY-POWER_DELAY-2.0e-6 > 0.0)
     {
      delay(tau1-2.0*pwS2/PI-pwN-WFG3_START_DELAY-POWER_DELAY-2.0e-6);
      sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 2.0e-6, 2.0e-6);

      decstepsize(1.0);
      initval(cophase,v4);
      dcplrphase(v4);

      delay(tau1-2.0*pwS2/PI-pwN-SAPS_DELAY-WFG3_STOP_DELAY-POWER_DELAY-2.0e-6);
     }
    else
     {
     c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);
     }
    }

   c13pulse("co", "ca", "sinc", 90.0, zero, 4.0e-6, 0.0);
   dcplrphase(zero);

   set_c13offset("ca");   /* change Dec1 carrier to Ca (55 ppm) */
   delay(0.2e-6);
   zgradpulse(gzlvl4, gt4);
   delay(gstab);

/*  t2 period  for Ca evolution*/
 
                /* Turn on D decoupling using the third decoupler */
                dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0);
                dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
                /* Turn on D decoupling */

   c13pulse("ca", "co", "square", 90.0, t5, 0.0, 0.0);

    if (!strcmp(fca180, "y"))
    {
      delay(10.0e-6);
      sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 2.0e-6, 2.0e-6);
      decstepsize(1.0);
      initval(caphase,v5);
      dcplrphase(v5);
      delay(10.0e-6);
    }
    else
    {

    if (tau2-pwN-2.0*pwS1/PI-WFG3_START_DELAY-2*POWER_DELAY-
        -WFG_STOP_DELAY-WFG_START_DELAY-2.0e-6 > 0.0)
    {
      decpower(cbpwr);
      decphase(zero);
      decprgon(cbdecseq,1/cbdmf,cbres);
      decon();

     delay(tau2-pwN-2.0*pwS1/PI-WFG3_START_DELAY-2*POWER_DELAY-
           WFG_STOP_DELAY-WFG_START_DELAY-2.0e-6);

      decoff();
      decprgoff();

     decphase(zero); dec2phase(zero);
     decpower(pwClvl);
     sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 2.0e-6, 2.0e-6);

      decpower(cbpwr);
      decphase(zero);
      decprgon(cbdecseq,1/cbdmf,cbres);
      decon();

     delay(tau2-pwN-2.0*pwS1/PI-SAPS_DELAY-WFG3_STOP_DELAY-2*POWER_DELAY-
           WFG_STOP_DELAY-WFG_START_DELAY-2.0e-6);

      decoff();
      decprgoff();

      decstepsize(1.0);
      initval(caphase,v5);
      dcplrphase(v5);

     decpower(pwClvl);

    }
     else 
     {
     c13pulse("ca", "co", "square", 180.0, zero, 0.0, 0.0);
     }
    }
 
   c13pulse("ca", "co", "square", 90.0, zero, 4.0e-6, 0.0);
   dcplrphase(zero);
 
                /* Turn off D decoupling */
                dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank();
                setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank();
                /* Turn off D decoupling */
 
   set_c13offset("co");   /* set carrier back to Co */

   delay(0.2e-6);
   zgradpulse(gzlvl9, gt9);
   delay(gstab);


/* t3 period */
   dec2rgpulse(pwN,t2,2.0e-6,0.0);

   dec2phase(t3);
   decpower(pwrS5);
   delay(bigTN - tau3 -POWER_DELAY);

   dec2rgpulse(2.0*pwN,t3,0.0,0.0);
   decshapedpulse(chirp_shp, pwS5, zero, 0.0, 0.0);
   decpower(pwClvl);

   txphase(zero);
   dec2phase(t4);

   delay(0.2e-6);
   zgradpulse(icosel*gzlvl5, gt5);
   delay(gstab);

 
  delay(bigTN - WFG_START_DELAY - pwS5 - WFG_STOP_DELAY
         - gt5 - gstab - 2.0*GRADIENT_DELAY);

   delay(tau3);

   sim3pulse(pw,0.0,pwN,zero,zero,t4,0.0,0.0);

   c13pulse("co", "ca", "sinc", 90.0, zero, 4.0e-6, 0.0);
      set_c13offset("ca");
   c13pulse("ca", "co", "square", 90.0, zero, 20.0e-6, 0.0);


   delay(0.2e-6);
   zgradpulse(gzlvl6, gt6);
   delay(2.0e-6);

   dec2phase(zero);
   delay(taub - POWER_DELAY - 4.0e-6 - pwS1 - 20.0e-6 - pwS2 - gt6 - 2.2e-6);

   sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

   set_c13offset("co");
   delay(0.2e-6);
   zgradpulse(gzlvl6, gt6);
   delay(gstab);
   
   txphase(one);
   dec2phase(one);

   delay(taub - gt6 - gstab);

   sim3pulse(pw,0.0,pwN,one,zero,one,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl7, gt7);
   delay(2.0e-6);
 
   txphase(zero);
   dec2phase(zero);

   delay(taub - gt7 - 2.2e-6);

   sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl7, gt7);
   delay(gstab);

   delay(taub - gt7 - gstab);

   sim3pulse(pw,0.0,pwN,zero,zero,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(-gzlvl8, gt8/2.0);
   delay(gstab);

   delay(BigT1 - gt8/2.0 - gstab - 0.5*(pwN - pw) - 2.0*pw/PI);

   rgpulse(2*pw,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl8, gt8/2.0);
   delay(gstab);
   
   dec2power(dpwr2);
   decpower(dpwr);
   
   delay(BigT1 - gt8/2.0 - gstab - 2.0*POWER_DELAY);

lk_sample();

status(C);
         setreceiver(t6);

}
Exemple #10
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */
/* sequence are declared and initialized as 0.0 in bionmr.h, and       */
/* reinitialized below  */

char        sel_flg[MAXSTR], autocal[MAXSTR],
            glyshp[MAXSTR];
   
int         t1_counter,                       /* used for states tppi in t1 */
            ni = getval("ni");

double      d2_init=0.0,                      /* used for states tppi in t1 */
            tau1,         
            tau2,
            tau3,
   glypwr,glypwrf,                    /* Power levels for Cgly selective 90 */
   pwgly,                              /* Pulse width for Cgly selective 90 */
   bw,ppm,                             /* Used for autocal Cgly selective 90*/

   tauCC = getval("tauCC"),                      /* delay for Ca to Cb cosy */
   timeTN = getval("timeTN"),            /* constant time for 15N evolution */
   waltzB1 = getval("waltzB1"),
   pwC = getval("pwC"),                              /* C13 pulse at pwClvl */
   pwClvl = getval("pwClvl"),                 /* coarse power for C13 pulse */
   compC  = getval("compC"),         /* correction for amplifier compression*/
   pwCa180,
   pwCO180,
   pwCab90,
   pwCab180,

   pwS1,                                      /* length of square 90 on Cab */
   phshift = getval("phshift"),    /* phase shift on Cab by 180 on CO in t1 */
   pwS2,                                             /* length of 180 on CO */
   pwS3,
   pwS = getval("pwS"), /*used to change 180 on CO in t1 for 1D calibration */
   pwZ,                                  /* the largest of pwS2 and 2.0*pwN */
   pwZ1,              /* the largest of pwS2 and 2.0*pwN for 1D experiments */

   pwNlvl = getval("pwNlvl"),                       /* power for N15 pulses */
   pwN = getval("pwN"),             /* N15 90 degree pulse length at pwNlvl */

   sw1 = getval("sw1"),
   swCb = getval("swCb"),
   swCa = getval("swCa"),
   swN  = getval("swN"),
   swTilt,                     /* This is the sweep width of the tilt vector */

   cos_N, cos_Ca, cos_Cb,
   angle_N, angle_Ca, angle_Cb,      /* angle_N is calculated automatically */
   gstab = getval("gstab"),
   gt1 = getval("gt1"),     gzlvl1 = getval("gzlvl1"),
                            gzlvl2 = getval("gzlvl2"),
   gt3 = getval("gt3"),     gzlvl3 = getval("gzlvl3"),
   gt4 = getval("gt4"),     gzlvl4 = getval("gzlvl4"),
   gt5 = getval("gt5"),     gzlvl5 = getval("gzlvl5"),
   gt6 = getval("gt6"),     gzlvl6 = getval("gzlvl6"),
   gt7 = getval("gt7"),     gzlvl7 = getval("gzlvl7"),
   gt8 = getval("gt8"),     gzlvl8 = getval("gzlvl8");
   angle_N=0.0;

/* Load variables */
   glypwrf = getval("glypwrf");
   glypwr = getval("glypwr");
   pwgly = getval("pwgly");
   tau1 = 0;    tau2 = 0;      tau3 = 0;
   cos_N = 0;   cos_Ca = 0;    cos_Cb = 0;
   getstr("autocal", autocal);
   getstr("glyshp", glyshp);
   getstr("sel_flg",sel_flg);

/* LOAD PHASE TABLE */
   settable(t2,1,phy);    settable(t3,2,phi3);   
   settable(t5,4,phi5);   settable(t6,8,phi6);

   settable(t8,1,phy);    settable(t9,1,phx);    settable(t10,1,phx);
   settable(t11,1,phx);   settable(t12,8,recT);

/*   INITIALIZE VARIABLES   */
   lambda = 2.4e-3;

   pwCa180=c13pulsepw("ca", "co", "square", 180.0);
   pwCO180=c13pulsepw("co", "ca", "sinc", 180.0);
   pwCab90=c13pulsepw("cab","co","square",90.0);
   pwCab180=c13pulsepw("cab","co","square",180.0);

   pwHs = 1.7e-3*500.0/sfrq;       /* length of H2O flipback, 1.7ms at 500 MHz*/
   widthHd = 2.861*(waltzB1/sfrq); /* bw of H1 WALTZ16 decoupling */
   pwHd = h1dec90pw("WALTZ16", widthHd, 0.0);     /* H1 90 length for WALTZ16 */
 
/* get calculated pulse lengths of shaped C13 pulses */
   pwS1 = c13pulsepw("cab", "co", "square", 90.0); 
   pwS2 = c13pulsepw("co", "cab", "sinc", 180.0); 
   pwS3 = c13pulsepw("cab", "co", "square", 180.0);

/* the 180 pulse on CO at the middle of t1 */
   if (pwS2 > 2.0*pwN) pwZ = pwS2; else pwZ = 2.0*pwN;
   if ((pwS==0.0) && (pwS2>2.0*pwN)) pwZ1=pwS2-2.0*pwN; else pwZ1=0.0;
   if ( ni > 1 )     pwS = 180.0;
   if ( pwS > 0 )   phshift = 140.0;
     else           phshift = 0.0;

/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
                                                psg_abort(1);}     
    if ( dpwr2 > 46 )
       { printf("dpwr2 too large! recheck value  ");               psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value ");                  psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value ");                  psg_abort(1);} 

 
/* PHASES AND INCREMENTED TIMES */

   /* Set up angles and phases */

   angle_Cb=getval("angle_Cb");  cos_Cb=cos(PI*angle_Cb/180.0);
   angle_Ca=getval("angle_Ca");  cos_Ca=cos(PI*angle_Ca/180.0);

   if ( (angle_Cb < 0) || (angle_Cb > 90) )
   {  printf ("angle_Cb must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( (angle_Ca < 0) || (angle_Ca > 90) )
   {  printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( 1.0 < (cos_Cb*cos_Cb + cos_Ca*cos_Ca) )
   {
       printf ("Impossible angles.\n"); psg_abort(1);
   }
   else
   {
           cos_N=sqrt(1.0- (cos_Cb*cos_Cb + cos_Ca*cos_Ca));
           angle_N = 180.0*acos(cos_N)/PI;
   }

   swTilt=swCb*cos_Cb + swCa*cos_Ca + swN*cos_N;

   if (ix ==1)
   {

      if ( 0.5*ni*(cos_N/swTilt) > timeTN - WFG3_START_DELAY)
      { printf(" ni is too big. Make ni equal to %d or less.\n",
        ((int)((timeTN - WFG3_START_DELAY)*2.0*swTilt/cos_N)));     psg_abort(1);}

      if ( (0.5*ni*cos_Ca/swTilt) > (tauCC - pwCO180 - pwCab180/2 - WFG2_START_DELAY -
           2.0*PWRF_DELAY - 2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6))
      { printf (" ni is too big. Make ni equal to %d or less. \n",
        (int) ((tauCC - pwCO180 - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY
           -2.0*POWER_DELAY - WFG2_STOP_DELAY -14.0e-6)/(0.5*cos_Ca/swTilt))); 
         psg_abort(1); }

      printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
      printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt);
      printf ("Angle_Cb:\t%6.2f\n", angle_Cb);
      printf ("Angle_Ca:\t%6.2f\n", angle_Ca);
      printf ("Angle_N :\t%6.2f\n", angle_N );
   }

/* Set up hyper complex */

   /* sw1 is used as symbolic index */
   if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); }

   if (ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if (t1_counter % 2)  { tsadd(t8,2,4); tsadd(t12,2,4); }

   if (phase1 == 1)  { ;}                                                  /* CC */
   else if (phase1 == 2)  { tsadd(t3,3,4); tsadd(t2,3,4);}                 /* SC */
   else if (phase1 == 3)  { tsadd(t5,1,4); }                               /* CS */
   else if (phase1 == 4)  { tsadd(t3,3,4); tsadd(t2,3,4); tsadd(t5,1,4); } /* SS */
   else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); }

   if (phase2 == 2)  { tsadd(t10,2,4); icosel = +1; }                      /* N  */
            else                       icosel = -1;

   tau1 = 1.0*t1_counter*cos_Cb/swTilt;
   tau2 = 1.0*t1_counter*cos_Ca/swTilt;
   tau3 = 1.0*t1_counter*cos_N/swTilt;

   tau1 = tau1/2.0;  tau2 = tau2/2.0;  tau3 = tau3/2.0;


/* BEGIN PULSE SEQUENCE */

status(A);
      delay(d1);
      if (dm3[B] == 'y') lk_hold();
      rcvroff();

      obsoffset(tof);          obspower(tpwr);       obspwrf(4095.0);
      set_c13offset("cab");    decpower(pwClvl);     decpwrf(4095.0);
      dec2power(pwNlvl);

      txphase(one);      delay(1.0e-5);
      shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 0.0);

      txphase(zero);  decphase(zero); dec2phase(zero); 
      delay(2.0e-6);

/*   xxxxxxxxxxxxxxxxxxxxxx HN to N to Ca TRANSFER xxxxxxxxxxxxxxxxxx    */

   rgpulse(pw, zero, 0.0, 0.0);                   /* 1H pulse excitation */
      dec2phase(zero);
      zgradpulse(gzlvl3, gt3);                                     /* G3 */
      delay(lambda - gt3);

   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
      if (sel_flg[A] == 'n') txphase(three);
          else txphase(one); 
      zgradpulse(gzlvl3, gt3);                                     /* G3 */
      delay(lambda - gt3);

if (sel_flg[A] == 'n') 
{
   rgpulse(pw, three, 0.0, 0.0);
                                            
      zgradpulse(gzlvl4, gt4);                       /* Crush gradient G4 */
      delay(gstab);
                                             /* Begin of N to Ca transfer */
   dec2rgpulse(pwN, zero, 0.0, 0.0);
      delay(timeTN - WFG3_START_DELAY);
}
else  /* active suppresion */
{
   rgpulse(pw,one,2.0e-6,0.0);
                                            
      initval(1.0,v6);   dec2stepsize(45.0);   dcplr2phase(v6);
      zgradpulse(gzlvl4, gt4);                       /* Crush gradient G4 */
      delay(gstab);
                                             /* Begin of N to Ca transfer */
   dec2rgpulse(pwN,zero,0.0,0.0);
      dcplr2phase(zero);                                    /* SAPS_DELAY */
      delay(1.34e-3 - SAPS_DELAY - 2.0*pw);

      rgpulse(pw,one,0.0,0.0);
      rgpulse(2.0*pw,zero,0.0,0.0);
      rgpulse(pw,one,0.0,0.0);

      delay(timeTN -1.34e-3 - 2.0*pw - WFG3_START_DELAY);
}

   sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                                zero, zero, zero, 2.0e-6, 2.0e-6);
      dec2phase(one);
      delay(timeTN);

   dec2rgpulse(pwN, one, 0.0, 0.0);
/*  xxxxxxxxxxxxxxxxxxxxxxxx END of N to CA TRANSFER xxxxxxxxxxxxxxxxxxxx */


      setautocal();
      set_c13offset("gly");
      if (autocal[A] == 'n')
      {
       decpower(glypwr);    
       decpwrf(4095.0);
       decphase(zero);
       decshaped_pulse(glyshp,pwgly,zero,2.0e-6,0.0);
      }
      else
      {
        if(FIRST_FID)
        {
         ppm = getval("dfrq"); bw=9*ppm;
         gly90 = pbox_make("gly90","eburp1",bw,0.0,compC*pwC,pwClvl);
                               /* Gly selective 90 with null at 50ppm */
        }
        pwgly=gly90.pw; glypwr=gly90.pwr; glypwrf=gly90.pwrf;
        decpwrf(glypwrf);
        decpower(glypwr);                           
        decshaped_pulse("gly90",pwgly,zero,2.0e-6,0.0);
      }
      zgradpulse(gzlvl5, gt5);                       /* Crush gradient G5 */
      set_c13offset("cab");
      decphase(t3);
      delay(gstab);

      if (dm3[B] == 'y')                      /*optional 2H decoupling on */
      {
         dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
         dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
      } 

/*   xxxxxxxxxxxxxxxxxxxxxx    13CA to 13CB TRANSFER   xxxxxxxxxxxxxxxxxx    */

     c13pulse("cab", "co", "square", 90.0, t3, 2.0e-6, 0.0);   
     decphase(zero);
     delay(tauCC);

     c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 0.0); 
     decphase(t2);
     delay(tauCC - POWER_DELAY - PWRF_DELAY - PRG_START_DELAY);

/*   xxxxxxxxxxxxxxxxxxxxxx       13CB EVOLUTION       xxxxxxxxxxxxxxxxxx    */

   c13pulse("cab", "co", "square", 90.0, t2, 2.0e-6, 0.0);      /*  pwS1  */
      decphase(zero);

      if ((ni>1.0) && (tau1>0.0))
      {
         if (tau1 - 2.0*pwCab90/PI - WFG_START_DELAY - pwN - 2.0e-6
                 - PWRF_DELAY - POWER_DELAY > 0.0)
         {
            delay(tau1 - 2.0*pwCab90/PI - pwN - 2.0e-6 );

            dec2rgpulse(2.0*pwN, zero, 2.0e-6, 0.0);
            delay(tau1 - 2.0*pwS1/PI  - pwN - WFG_START_DELAY
                                - 2.0e-6 - PWRF_DELAY - POWER_DELAY);
         }
         else
         {
            tsadd(t12,2,4);
            delay(2.0*tau1);
            delay(10.0e-6);                                    /* WFG_START_DELAY */
         sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, 
                     zero, zero, zero, 2.0e-6, 0.0);
            delay(10.0e-6);
         }
      }
      else
      {
         tsadd(t12,2,4);
         delay(10.0e-6);                                    /* WFG_START_DELAY */
         sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, 
                        zero, zero, zero, 2.0e-6, 0.0);
         delay(10.0e-6);
      }

   decphase(t6);
   c13pulse("cab", "co", "square", 90.0, t6, 2.0e-6, 0.0);      /*  pwS1  */
  
/* xxxxxxxxxxxx  13CB to 13CA BACK TRANSFER - CA EVOLUTION  xxxxxxxxxxxxxx  */

         decphase(zero);
         delay(tau2);

      sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,
                    zero, zero, zero, 2.0e-6, 0.0);
         decphase(zero);

         delay(tauCC- 2*pwN - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY -
               2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6 );
   c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 0.0);

         delay(tauCC - tau2 - pwCO180 - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY
               -2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6 );

      c13pulse("co", "ca", "sinc", 180.0, zero, 2.0e-6, 0.0);
         decphase(t5);

   c13pulse("cab", "co", "square", 90.0, t5, 2.0e-6, 0.0);      /*  pwS1  */
/* xxxxxxxxxxx  END of 13CB to 13CA BACK TRANSFER - CA EVOLUTION  xxxxxxxxxxxx */
                                               
      if (dm3[B] == 'y')                        /*optional 2H decoupling off */
      {
         dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank();
         setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank();
      }
      dec2phase(t8);

      zgradpulse(gzlvl6, gt6);                             /* Crush gradient G6 */
      delay(gstab);

/* xxxxxxxxxxxxxxxx  13CA to 15N BACK TRANSFER - 15N EVOLUTION  xxxxxxxxxxxxxx  */
                                             
   dec2rgpulse(pwN, t8, 2.0e-6, 2.0e-6);
      decphase(zero);
      dec2phase(t9);
      delay(timeTN - WFG3_START_DELAY - tau3);
                                                           /* WFG3_START_DELAY  */
   sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                                             zero, zero, t9, 2.0e-6, 2.0e-6);
      dec2phase(t10);
      delay (timeTN - pwCO180 - WFG_START_DELAY - 2.0*POWER_DELAY
        - 2.0*PWRF_DELAY - 2.0e-6 - gt1 - 2.0*GRADIENT_DELAY - gstab);

      zgradpulse(gzlvl1, gt1);                     /* 2.0*GRADIENT_DELAY */
      delay(gstab - POWER_DELAY - PWRF_DELAY);

      c13pulse("co", "ca", "sinc", 180.0, zero, 2.0e-6, 0.0);          /*pwCO180*/
      delay(tau3);

   sim3pulse(pw, 0.0, pwN, zero, zero, t10, 0.0, 0.0);  /* t4??*/
      zgradpulse(gzlvl7, gt7);                                            /* G7 */
      txphase(zero);
      dec2phase(zero);
      delay (lambda - 1.3*pwN - gt7);

   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
      zgradpulse(gzlvl7, gt7);                                            /* G7 */
      txphase(one); 
      dec2phase(one);
      delay (lambda - 1.3*pwN - gt7);                        

   sim3pulse(pw, 0.0, pwN, one, zero, one, 0.0, 0.0);
      zgradpulse(gzlvl8, gt8);                                            /* G8 */
      txphase(zero);
      dec2phase(zero);
      delay (lambda - 1.3*pwN - gt8);

   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
      zgradpulse(gzlvl8, gt8);                                            /* G8 */
      delay (lambda - 1.3*pwN - gt8);

   sim3pulse(pw, 0.0, pwN, zero, zero, zero, 0.0, 0.0);
      dec2power(dpwr2);   decpower(dpwr);
      delay ( (gt1/10.0) + 1.0e-4 + 2.0*GRADIENT_DELAY + POWER_DELAY);  

   rgpulse(2.0*pw, zero, 0.0, 0.0);
      zgradpulse(icosel*gzlvl2, gt1/10.0);           /* 2.0*GRADIENT_DELAY */

statusdelay(C, 1.0e-4);
   setreceiver(t12);
   if (dm3[B] == 'y') lk_sample();
}
Exemple #11
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

void        makeHHdec(), makeCdec(); 	                /* utility functions */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
	    C13refoc[MAXSTR],		/* C13 sech/tanh pulse in middle of t1*/
	    NH2only[MAXSTR],		       /* spectrum of only NH2 groups */
	    T1[MAXSTR],				/* insert T1 relaxation delay */
	    T1rho[MAXSTR],		     /* insert T1rho relaxation delay */
	    T2[MAXSTR],				/* insert T2 relaxation delay */
	    TROSY[MAXSTR],			    /* do TROSY on N15 and H1 */
	    Hdecflg[MAXSTR],                       /* HH-h**o decoupling flag */
	    Cdecflg[MAXSTR];                /* low power C-13 decoupling flag */
 
int         icosel,          			  /* used to get n and p type */
            ihh=1,       /* used in HH decouling to improve water suppression */
            t1_counter,  		        /* used for states tppi in t1 */
	    rTnum,			/* number of relaxation times, relaxT */
	    rTcounter;		    /* to obtain maximum relaxT, ie relaxTmax */

double      tau1,         				         /*  t1 delay */
	    lambda = 0.91/(4.0*getval("JNH")), 	   /* 1/4J H1 evolution delay */
	    tNH = 1.0/(4.0*getval("JNH")),	  /* 1/4J N15 evolution delay */
	    relaxT = getval("relaxT"),		     /* total relaxation time */
	    rTarray[1000], 	    /* to obtain maximum relaxT, ie relaxTmax */
            maxrelaxT = getval("maxrelaxT"),    /* maximum relaxT in all exps */
	    ncyc,			 /* number of pulsed cycles in relaxT */
            pwr_dly,                 /* power delay */
        
/* the sech/tanh pulse is automatically calculated by the macro "proteincal", */  
/* and is called directly from your shapelib.                  		      */
   pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
   pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
   rf0,            	          /* maximum fine power when using pwC pulses */
   rfst,	                           /* fine power for the stCall pulse */

   compH = getval("compH"),        /* adjustment for H1 amplifier compression */
   compN = getval("compN"),       /* adjustment for N15 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

	calH = getval("calH"), /* multiplier on a pw pulse for H1 calibration */
   	tpwrsf = getval("tpwrsf"),    /* fine power adustment for soft pulse  */
   	pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
   	pwHH = 0.0,                     /* pwHH = pwHs for HH h**o-decoupling */
   	tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */
	calN = getval("calN"),   /* multiplier on a pwN pulse for calibration */
	slNlvl,					   /* power for N15 spin lock */
        slNrf = 1500.0,        /* RF field in Hz for N15 spin lock at 600 MHz */

	sw1 = getval("sw1"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal = getval("gzcal"),               /* dac to G/cm conversion      */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),
        BPpwrlimits,                        /*  =0 for no limit, =1 for limit */

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5");

    P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1);

    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("C13refoc",C13refoc);
    getstr("NH2only",NH2only);
    getstr("T1",T1);
    getstr("T1rho",T1rho);
    getstr("T2",T2);
    getstr("TROSY",TROSY);
    getstr("Hdecflg", Hdecflg);
    getstr("Cdecflg", Cdecflg);

/*   LOAD PHASE TABLE    */
	
        settable(t3,2,phi3);
	settable(t4,1,phx);
   if (TROSY[A]=='y')
       {settable(t1,1,ph_x);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,2,recT);}
    else
       {settable(t1,1,phx);
	settable(t9,8,phi9);
 	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}



/*   INITIALIZE VARIABLES   */

/* maximum fine power for pwC pulses (and initialize rfst) */
	rf0 = 4095.0;    rfst=0.0;

/* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
     if (C13refoc[A]=='y')
       {rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
	rfst = (int) (rfst + 0.5);
	if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
           { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	    (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) ); psg_abort(1); }}

/* selective H20 one-lobe sinc pulse */
    if(pwHs > 1e-6)
      tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));  /* needs 1.69 times more */
    else                    	                    /* power than a square pulse */
      tpwrs = 0.0;
    tpwrs = (int) (tpwrs);    
    if (tpwrsf<4095.0) tpwrs = tpwrs + 6.0;
    if (tpwrsf < 4095.0) 
    {
      tpwrs = tpwrs + 6.0;   
      pwr_dly = POWER_DELAY + PWRF_DELAY;
    }
    else pwr_dly = POWER_DELAY;

/* power level for N15 spinlock (90 degree pulse length calculated first) */
	slNlvl = 1/(4.0*slNrf*sfrq/600.0) ;
	slNlvl = pwNlvl - 20.0*log10(slNlvl/(pwN*compN));
	slNlvl = (int) (slNlvl + 0.5);

/* use 1/8J times for relaxation measurements of NH2 groups */
  if ( (NH2only[A]=='y') && ((T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y')) )	
     {  tNH = tNH/2.0;  }

/* reset calH and calN for 2D if inadvertently left at 2.0 */
  if (ni>1.0) {calH=1.0; calN=1.0;}

/* make shapes and set up parameters for HH h**o-decoupling */
    if(Cdecflg[0] == 'y') makeCdec();
    if(Hdecflg[0] == 'y') makeHHdec();
    if(Hdecflg[0] != 'n')
    { 
      pwHH = pwHs; 
      pwHs = 0.0; 
    }


/* CHECK VALIDITY OF PARAMETER RANGES */

  if ((TROSY[A]=='y') && (gt1 < -2.0e-4 + pwHs + 1.0e-4 + 2.0*POWER_DELAY))
  { text_error( " gt1 is too small. Make gt1 equal to %f or more.\n",    
    (-2.0e-4 + pwHs + 1.0e-4 + 2.0*POWER_DELAY) ); psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
  { text_error("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y'))
  { text_error("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1); }

  if( dpwr2 > 50 )
  { text_error("don't fry the probe, DPWR2 too large!  ");   	    psg_abort(1); }

  if( pw > 50.0e-6 )
  { text_error("dont fry the probe, pw too high ! ");               psg_abort(1); } 
  
  if( pwN > 100.0e-6 )
  { text_error("dont fry the probe, pwN too high ! ");              psg_abort(1); }



/*  RELAXATION TIMES AND FLAGS */  

/* evaluate maximum relaxT, relaxTmax chosen by the user */
  rTnum = getarray("relaxT", rTarray);
  relaxTmax = rTarray[0];
  for (rTcounter=1; rTcounter<rTnum; rTcounter++)
      if (relaxTmax < rTarray[rTcounter]) relaxTmax = rTarray[rTcounter];


/* compare relaxTmax with maxrelaxT */
  if (maxrelaxT > relaxTmax)  relaxTmax = maxrelaxT; 


if ( ((T1rho[A]=='y') || (T2[A]=='y')) && (relaxTmax > d1) )
{ text_error("Maximum relaxation time, relaxT, is greater than d1 ! "); psg_abort(1);}

if ( ((T1[A]=='y') && (T1rho[A]=='y'))   ||   ((T1[A]=='y') && (T2[A]=='y')) ||
    ((T1rho[A]=='y') && (T2[A]=='y')) )
{ text_error("Choose only one relaxation measurement ! ");          psg_abort(1); } 


if ( ((T1[A]=='y') || (T1rho[A]=='y')) && 
       ((relaxT*100.0 - (int)(relaxT*100.0+1.0e-4)) > 1.0e-6) )
 { text_error("Relaxation time, relaxT, must be zero or multiple of 10msec"); psg_abort(1);}
 

 if ( (T2[A]=='y') && 
           (((relaxT+0.01)*50.0 - (int)((relaxT+0.01)*50.0+1.0e-4)) > 1.0e-6) )
{ text_error("Relaxation time, relaxT, must be odd multiple of 10msec"); psg_abort(1);}

if ( ((T1rho[A]=='y') || (T2[A]=='y'))  &&  (relaxTmax > 0.25) && (ix==1) ) 
{ printf("WARNING, sample heating will result for relaxT>0.25sec"); }

if ( ((T1rho[A]=='y') ||  (T2[A]=='y'))  &&  (relaxTmax > 0.5) ) 
{ text_error("relaxT greater than 0.5 seconds will heat sample"); psg_abort(1);}


if ( ((NH2only[A]=='y') || (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y'))
   &&  (TROSY[A]=='y') ) 
{ text_error("TROSY not implemented with NH2 spectrum, or relaxation exps."); psg_abort(1);} 


if ((TROSY[A]=='y') && (dm2[C] == 'y'))
{ text_error("Choose either TROSY='n' or dm2='n' ! ");              psg_abort(1); }
/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (TROSY[A]=='y')
	 {  if (phase1 == 2)   				      icosel = -1;
            else 	  {  tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = +1;  }
	 }
    else {  if (phase1 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }

    if(Hdecflg[0] != 'n') ihh = icosel;

/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }



/*  Correct inverted signals for NH2 only spectra  */

   if ((NH2only[A]=='y') && (T1[A]=='n')  &&  (T1rho[A]=='n')  && (T2[A]=='n'))
      { tsadd(t3,2,4); }



/* BEGIN PULSE SEQUENCE */

status(A);

	obspower(tpwr);
	decpower(pwClvl);
	decpwrf(rf0);
 	dec2power(pwNlvl);
	txphase(zero);
        decphase(zero);
        dec2phase(zero);
        if(Hdecflg[0] != 'n')
        {
          delay(5.0e-5);
          rgpulse(pw,zero,rof1,0.0);                 
          rgpulse(pw,one,0.0,rof1);                 
          zgradpulse(1.5*gzlvl0, 0.5e-3);
          delay(5.0e-4);
          rgpulse(pw,zero,rof1,0.0);                 
          rgpulse(pw,one,0.0,rof1);                 
          zgradpulse(-gzlvl0, 0.5e-3);
        }
        
	delay(d1);

 
/*  xxxxxxxxxxxxxxxxx  CONSTANT SAMPLE HEATING FROM N15 RF xxxxxxxxxxxxxxxxx  */

 if  (T1rho[A]=='y')
 	{dec2power(slNlvl);
         dec2rgpulse(relaxTmax-relaxT, zero, 0.0, 0.0);
    	 dec2power(pwNlvl);}
	
 if  (T2[A]=='y')      
 	{ncyc = 8.0*100.0*(relaxTmax - relaxT);
         if (BPpwrlimits > 0.5)
          {
           dec2power(pwNlvl-3.0);    /* reduce for probe protection */
           pwN=pwN*compN*1.4;
          }
    	 if (ncyc > 0)
       	    {initval(ncyc,v1);
             loop(v1,v2);
       	     delay(0.625e-3 - pwN);
      	     dec2rgpulse(2*pwN, zero, 0.0, 0.0);
      	     delay(0.625e-3 - pwN);
            endloop(v2);}
         if (BPpwrlimits > 0.5)
          {
           dec2power(pwNlvl);         /* restore normal value */
           pwN=getval("pwN");
          }
 	}
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
        rcvroff();
	if (TROSY[A]=='n')   
	dec2rgpulse(pwN, zero, 0.0, 0.0);   /*destroy N15 magnetization*/
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	if (TROSY[A]=='n')    dec2rgpulse(pwN, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	decpwrf(rfst);
	txphase(t1);
	delay(5.0e-4);

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          lk_hold();
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }

   	rgpulse(calH*pw,t1,0.0,0.0);                 /* 1H pulse excitation */

	txphase(zero);
   	dec2phase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0 - pwHH);
	
	if(Hdecflg[0] != 'n')
	{
	  obspower(tpwrs);
          if (tpwrsf<4095.0) obspwrf(tpwrsf); 
	  shaped_pulse("H2Osinc", pwHH, two, 5.0e-5, 0.0);
	  obspower(tpwr);
          if (tpwrsf<4095.0) obspwrf(4095.0);
   	  sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
   	  obspower(tpwrs);
          if (tpwrsf<4095.0) obspwrf(tpwrsf);
   	  shaped_pulse("H2Osinc", pwHH, two, 5.0e-5, 0.0);
   	  obspower(tpwr);
          if (tpwrsf<4095.0) obspwrf(4095.0); 
   	}
   	else 
   	  sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
   	
   	txphase(one);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0 - pwHH);        
 	rgpulse(pw, one, 0.0, 0.0);
	txphase(two);
        obspower(tpwrs);
        if (tpwrsf<4095.0) obspwrf(tpwrsf);
        shaped_pulse("H2Osinc", pwHs, two, 5.0e-5, 0.0);
	obspower(tpwr);
	if (tpwrsf<4095.0) obspwrf(4095.0);

        if (TROSY[A]=='y')
	  zgradpulse(ihh*gzlvl3, gt3);           
	else
	  zgradpulse(-ihh*gzlvl3, gt3);
	dec2phase(t3);
	delay(2.0e-4);
   	dec2rgpulse(calN*pwN, t3, 0.0, 0.0);
	txphase(zero);
	decphase(zero);

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 RELAXATION    xxxxxxxxxxxxxxxxxxxx  */

if ( (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y') )
   {
    dec2phase(one);
    zgradpulse(gzlvl4, gt4);				/* 2.0*GRADIENT_DELAY */
    delay(tNH - gt4 - 2.0*GRADIENT_DELAY);

    sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, one, 0.0, 0.0);

    zgradpulse(gzlvl4, gt4);				/* 2.0*GRADIENT_DELAY */
    delay(tNH - gt4 - 2.0*GRADIENT_DELAY);
   }

		/*   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx    */

if  (T1[A]=='y')
   {
    dec2rgpulse(pwN, one, 0.0, 0.0);
    dec2phase(three);

    zgradpulse(gzlvl0, gt0);				/* 2.0*GRADIENT_DELAY */
    delay(2.5e-3 - gt0 - 2.0*GRADIENT_DELAY - pw);
    rgpulse(2.0*pw, zero, 0.0, 0.0);
    delay(2.5e-3 - pw);

    ncyc = (100.0*relaxT);
    initval(ncyc,v4);
    if (ncyc > 0)
	{loop(v4,v5);

	 delay(2.5e-3 - pw);
    	 rgpulse(2.0*pw, two, 0.0, 0.0);
   	 delay(2.5e-3 - pw);

	 delay(2.5e-3 - pw);
    	 rgpulse(2.0*pw, zero, 0.0, 0.0);
   	 delay(2.5e-3 - pw);

	 endloop(v5);}

    dec2rgpulse(pwN, three, 0.0, 0.0);
   }

		/*   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx    */

			     /* Theory suggests 8.0 is better than 2PI as RF  */
			     /* field multiplier and experiment confirms this.*/
if  (T1rho[A]=='y')          /* Shift evolution of 2.0*pwN/PI for one pulse   */
   {		             /* at end left unrefocused as for normal sequence*/
    delay(1.0/(8.0*slNrf) - pwN);
    decrgpulse(pwN, zero, 0.0, 0.0);
    dec2power(slNlvl);
           				   /* minimum 5ms spinlock to dephase */
    dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);	         /*  spins not locked */
    sim3pulse(2.0*pw, 0.0, 2.0*pw, zero, zero, zero, 0.0, 0.0);
    dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);

    ncyc = 100.0*relaxT;
    initval(ncyc,v4);	    if (ncyc > 0)
	  {loop(v4,v5);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
   	   sim3pulse(2.0*pw, 0.0, 2.0*pw, two, zero, zero, 0.0, 0.0);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
   	   sim3pulse(2.0*pw, 0.0, 2.0*pw, zero, zero, zero, 0.0, 0.0);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
           endloop(v5);} 

    dec2power(pwNlvl);	
    decrgpulse(pwN, zero, 0.0, 0.0);
    delay(1.0/(8.0*slNrf) + 2.0*pwN/PI - pwN);
   }
		/*   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx    */

if  (T2[A]=='y')
   {
    dec2phase(zero);
    initval(0.0,v3);   initval(180.0,v4);
    if (BPpwrlimits > 0.5)
     {
      dec2power(pwNlvl-3.0);    /* reduce for probe protection */
      pwN=pwN*compN*1.4;
     }

    ncyc = 100.0*relaxT;
    initval(ncyc,v5);

    loop(v5,v6);

      initval(3.0,v7);
      loop(v7,v8);
       	delay(0.625e-3 - pwN);
      	dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      	delay(0.625e-3 - pwN);
      endloop(v8);

      delay(0.625e-3 - pwN - SAPS_DELAY);
      add(v4,v3,v3);  obsstepsize(1.0);  xmtrphase(v3);	   	/* SAPS_DELAY */
      dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      delay(0.625e-3 - pwN - pw);

      rgpulse(2*pw, zero, 0.0, 0.0);

      delay(0.625e-3 - pwN - pw );
      dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      xmtrphase(zero);						/* SAPS_DELAY */
      delay(0.625e-3 - pwN - SAPS_DELAY);
  
      initval(3.0,v9);
      loop(v9,v10);
      	delay(0.625e-3 - pwN);
      	dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      	delay(0.625e-3 - pwN);
      endloop(v10);

    endloop(v6);
    if (BPpwrlimits > 0.5)
     {
      dec2power(pwNlvl);    /* restore normal value */
      pwN=getval("pwN");
     }
   }

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */
	txphase(zero);
	dec2phase(t9);

if ( (NH2only[A]=='y') || (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y') )	
{      
    	delay(tau1);
         			  /* optional sech/tanh pulse in middle of t1 */
    	if (C13refoc[A]=='y') 				   /* WFG_START_DELAY */
           {decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0);
            delay(tNH - 1.0e-3 - WFG_START_DELAY - 2.0*pw);}
    	else
           {delay(tNH - 2.0*pw);}
    	rgpulse(2.0*pw, zero, 0.0, 0.0);
    	if (tNH < gt1 + 1.99e-4)  delay(gt1 + 1.99e-4 - tNH);

    	delay(tau1);

    	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl1, gt1);
        else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	txphase(t4);
    	dec2phase(t10);
   	if (tNH > gt1 + 1.99e-4)  delay(tNH - gt1 - 2.0*GRADIENT_DELAY);
   	else   delay(1.99e-4 - 2.0*GRADIENT_DELAY);
}

else if (TROSY[A]=='y')
{
  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0);
            delay(tau1 - 0.5e-3);}
	else    delay(2.0*tau1);

        if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl1, gt1);
        else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	delay(2.0e-4 - 2.0*GRADIENT_DELAY);

	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

	txphase(three);

        delay(gt1 + 2.0e-4 - pwHs - 1.0e-4 - 2.0*pwr_dly);
        obspower(tpwrs);
	if (tpwrsf<4095.0) obspwrf(tpwrsf);
        shaped_pulse("H2Osinc", pwHs, three, 5.0e-5, 0.0);
        obspower(tpwr);
	if (tpwrsf<4095.0) obspwrf(4095.0);

	txphase(t4);
	delay(5.0e-5);
}

else
{					  	    /* fully-coupled spectrum */
        if (dm2[C]=='n')  {rgpulse(2.0*pw, zero, 0.0, 0.0);  pw=0.0;}		

  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);
            delay(tau1 - 0.5e-3);
            delay(gt1 + 2.0e-4);}
	else
           {delay(tau1);
            rgpulse(2.0*pw, zero, 0.0, 0.0);
            delay(gt1 + 2.0e-4 - 2.0*pw);
            delay(tau1);} 
 
	pw=getval("pw");
	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl1, gt1);
        else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	txphase(t4);
	dec2phase(t10);
	delay(2.0e-4 - 2.0*GRADIENT_DELAY);
}

	if  (T1rho[A]=='y')   delay(POWER_DELAY); 


/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
	if (TROSY[A]=='y')  rgpulse(pw, t4, 0.0, 0.0);
	else                sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 0.65*(pw + pwN) - gt5);
	else   delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(t11);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(1.5*gzlvl5, gt5);
	delay(lambda - 1.3*pwN - gt5);

        sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	dec2phase(t10);
	zgradpulse(1.5*gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 1.6*pwN - gt5);
	else   delay(lambda - 0.65*pwN - gt5);

	if (TROSY[A]=='y')   dec2rgpulse(pwN, t10, 0.0, 0.0); 
	else    	     rgpulse(pw, zero, 0.0, 0.0); 

	delay((gt1/10.0) + 1.0e-4 +gstab - 0.65*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }

	rgpulse(2.0*pw, zero, 0.0, 0.0);

	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')	  magradpulse(icosel*gzcal*gzlvl2, 0.1*gt1);
        else   zgradpulse(icosel*gzlvl2, 0.1*gt1);		/* 2.0*GRADIENT_DELAY */
        

        if(Cdecflg[0] == 'y')
        {
          delay(gstab-2.0*POWER_DELAY-PRG_START_DELAY+rof2);
          rcvron();
                           
          statusdelay(C,1.0e-4);		

          if (dm3[B] == 'y') 
          {
            delay(1/dmf3); 
            lk_sample();
          }
	  setreceiver(t12);
          pbox_decon(&Cdseq);
          
          if(Hdecflg[0] == 'y')
            homodec(&HHdseq);  
        }
        else
        {
          delay(gstab+rof2);
          rcvron();
                             
          statusdelay(C,1.0e-4);		

          if (dm3[B] == 'y') 
          {
            delay(1/dmf3); 
            lk_sample();
          }
	  setreceiver(t12);

          if(Hdecflg[0] == 'y')
            homodec(&HHdseq);        
        }
}		 
Exemple #12
0
pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
	    ribose[MAXSTR],	 		    /* ribose CHn groups only */
	    AH2H8[MAXSTR],		         /* Adenine H2-H8 correlation */
	    H2Opurge[MAXSTR],
	    rna_stCdec[MAXSTR],	       /* calls STUD+ waveforms from shapelib */
	    STUD[MAXSTR];   /* apply automatically calculated STUD decoupling */
 
int         t1_counter,  		        /* used for states tppi in t1 */
            t2_counter;  	 	        /* used for states tppi in t2 */

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
            stdmf = getval("dmf80"),     /* dmf for 80 ppm of STUD decoupling */
            rf80 = getval("rf80"),       	  /* rf in Hz for 80ppm STUD+ */
	    taua = getval("taua"),   /* time delays for CH coupling evolution */
	    taub = getval("taub"),
	    tauc = getval("tauc"),

/* string parameter rna_stCdec calls stud decoupling waveform from your shapelib.*/
   studlvl,	                         /* coarse power for STUD+ decoupling */

	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rfC,            	  /* maximum fine power when using pwC pulses */
	dofa,	    /* dof shifted to 80 ppm for ribose and 145 ppm for AH2H8 */
	tofa,	    		    /* tof shifted to 7.5 ppm in t1 for AH2H8 */

/* p_d is used to calculate the isotropic mixing on the C-ribose region */
        p_d,                 	       /* 50 degree pulse for DIPSI-3 at rfdC */
        rfdC,               /* fine power for 7.5 kHz or 4.0 kHz rf at 500MHz */
	ncyc = getval("ncyc"), 			  /* no. of cycles of DIPSI-3 */

   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

 grecov = getval("grecov"),   /* Gradient recovery delay, typically 150-200us */

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gt7 = getval("gt7"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6"),
	gzlvl7 = getval("gzlvl7");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("ribose",ribose);
    getstr("AH2H8",AH2H8);
    getstr("H2Opurge",H2Opurge);
    getstr("STUD",STUD);

/*   LOAD PHASE TABLE    */

	settable(t3,2,phi3);
	settable(t5,4,phi5);
	settable(t9,8,phi9);
	settable(t11,8,rec);


/*   INITIALIZE VARIABLES   */

/* maximum fine power for pwC pulses */
	rfC = 4095.0;

  if (ribose[A] == 'y')
   {
/*  Center dof in RIBOSE region on 80ppm. */
	tofa = tof;
        dofa = dof - 30.0*dfrq;
		
/* dipsi-3 decoupling on C-ribose */	
 	p_d = (5.0)/(9.0*4.0*7000.0*(sfrq/800));  /* 35ppm DIPSI-3 */
     	rfdC = (compC*4095.0*pwC*5.0)/(p_d*9.0); 
	rfdC = (int) (rfdC + 0.5);
  	ncyc = (int) (ncyc + 0.5);
   }
  else
   {
/*  Center dof in adenine C2-C4-C6-C8-C5 region on 145 ppm. */
	tofa = tof + 2.5*sfrq;
        dofa = dof + 35.0*dfrq;

/* dipsi-3 decoupling on C-aromatic */
        p_d = (5.0)/(9.0*4.0*8000.0*(sfrq/800));  /* 40ppm DIPSI-3 */
        rfdC = (compC*4095.0*pwC*5.0)/(p_d*9.0);
        rfdC = (int) (rfdC + 0.5);
        ncyc = (int) (ncyc + 0.5);
   }

/* 80 ppm STUD+ decoupling */
        strcpy(rna_stCdec, "wurst80");
        studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80);
        studlvl = (int) (studlvl + 0.5);


/* CHECK VALIDITY OF PARAMETER RANGES */


    if((ribose[A] == 'y' && AH2H8[A] == 'y' ))
    { text_error("Choose either ribose='y' or AH2H8='y' !! ");
        psg_abort(1); }

    if((dm[A] == 'y' || dm[B] == 'y' ))
    { text_error("incorrect dec1 decoupler flags! Should be 'nny' or 'nnn' ");
        psg_abort(1); }

    if((dm2[A] == 'y' || dm2[B] == 'y'))
    { text_error("incorrect dec2 decoupler flags! Should be 'nny' or 'nnn' ");
        psg_abort(1); }

    if( (((dm[C] == 'y') && (dm2[C] == 'y')) && (STUD[A] == 'y')) )
    { text_error("incorrect dec2 decoupler flags! Should be 'nnn' if STUD='y'"); psg_abort(1); }

    if((dm3[A] == 'y' || dm3[C] == 'y' ))
    { text_error("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1); }

    if( dpwr > 50 )
    { text_error("don't fry the probe, DPWR too large!  "); psg_abort(1); }

    if( dpwr2 > 50 )
    { text_error("don't fry the probe, DPWR2 too large!  "); psg_abort(1); }

    if( (pw > 20.0e-6) && (tpwr > 56) )
    { text_error("don't fry the probe, pw too high ! "); psg_abort(1); }

    if( (pwC > 40.0e-6) && (pwClvl > 56) )
    { text_error("don't fry the probe, pwN too high ! "); psg_abort(1); }

    if( (pwN > 100.0e-6) && (pwNlvl > 56) )
    { text_error("don't fry the probe, pwN too high ! "); psg_abort(1); }
 
    if ((dm3[B] == 'y'  &&   dpwr3 > 44 ))
    { text_error ("Deuterium decoupling power too high ! "); psg_abort(1); }

    if ((ncyc > 1 ) && (ix == 1))
    { text_error("mixing time is %f ms.\n",(ncyc*97.8*4*p_d)); }


/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2) 
	 tsadd(t3,1,4);  
    if (phase2 == 2) 
	 tsadd(t5,1,4);

/*  C13 TIME INCREMENTATION and set up f1180  */

/*  Set up f1180  */
   
    tau1 = d2;

    if(f1180[A] == 'y') 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }

    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;

    if(f2180[A] == 'y') 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }

    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t11,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t5,2,4); tsadd(t11,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
        if (dm3[B] == 'y') lk_sample();
	delay(d1);
        if (dm3[B] == 'y') lk_hold();
	rcvroff();

	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rfC);
	obsoffset(tofa);
	decoffset(dofa);
	dec2offset(dof2);
	txphase(t3);
	delay(1.0e-5);

	decrgpulse(pwC, zero, 0.0, 0.0);	   /*destroy C13 magnetization*/
	zgradpulse(gzlvl0, 0.5e-3);
	delay(grecov/2);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

        if (dm3[B] == 'y')	  /*optional 2H decoupling on */
        {
          dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
         } 

	rgpulse(pw, t3, 0.0, 0.0);                    /* 1H pulse excitation */
	zgradpulse(gzlvl0, gt0);		/* 2.0*GRADIENT_DELAY */	
        decphase(zero);
	delay(taua + tau1 - gt0 - 2.0*GRADIENT_DELAY - 2.0*pwC);
        decrgpulse(2.0*pwC, zero, 0.0, 0.0);
        txphase(zero);
	delay(tau1);
	rgpulse(2.0*pw, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, gt0);
        txphase(one);
	decphase(t5);
	obsoffset(tof);
	delay(taua - gt0);
	rgpulse(pw, one, 0.0, 0.0);
	zgradpulse(gzlvl3, gt3);
	delay(grecov);
        decrgpulse(pwC, t5, 0.0, 0.0);
	delay(tau2);
	dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
	zgradpulse(gzlvl4, gt4);		        /* 2.0*GRADIENT_DELAY */
        decphase(zero);
	delay(taub - 2.0*pwN - gt4 - 2.0*GRADIENT_DELAY);
        txphase(zero);
	decpwrf(rfC);
	delay(taub - 2.0*pw);
	rgpulse(2.0*pw, zero, 0.0, 0.0);
	delay(tau2);
	decrgpulse(2.0*pwC, zero, 0.0, 0.0);
	delay(taub);
	zgradpulse(gzlvl4, gt4);	        /* 2.0*GRADIENT_DELAY */	
	decpwrf(rfdC);
	delay(taub - gt4 - 2.0*GRADIENT_DELAY);
	decrgpulse(1.0e-3, zero, 0.0, 0.0);
	initval(ncyc, v2);
	starthardloop(v2);
     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);
     decrgpulse(5.0*p_d,one,0.0,0.0);
     decrgpulse(5.5*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.6*p_d,three,0.0,0.0);
     decrgpulse(7.2*p_d,one,0.0,0.0);
     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.4*p_d,one,0.0,0.0);
     decrgpulse(6.8*p_d,three,0.0,0.0);
     decrgpulse(7.0*p_d,one,0.0,0.0);
     decrgpulse(5.2*p_d,three,0.0,0.0);
     decrgpulse(5.4*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.5*p_d,one,0.0,0.0);
     decrgpulse(7.3*p_d,three,0.0,0.0);
     decrgpulse(5.1*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);

     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);
     decrgpulse(5.0*p_d,three,0.0,0.0);
     decrgpulse(5.5*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.6*p_d,one,0.0,0.0);
     decrgpulse(7.2*p_d,three,0.0,0.0);
     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.4*p_d,three,0.0,0.0);
     decrgpulse(6.8*p_d,one,0.0,0.0);
     decrgpulse(7.0*p_d,three,0.0,0.0);
     decrgpulse(5.2*p_d,one,0.0,0.0);
     decrgpulse(5.4*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.5*p_d,three,0.0,0.0);
     decrgpulse(7.3*p_d,one,0.0,0.0);
     decrgpulse(5.1*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);

     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);
     decrgpulse(5.0*p_d,three,0.0,0.0);
     decrgpulse(5.5*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.6*p_d,one,0.0,0.0);
     decrgpulse(7.2*p_d,three,0.0,0.0);
     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.4*p_d,three,0.0,0.0);
     decrgpulse(6.8*p_d,one,0.0,0.0);
     decrgpulse(7.0*p_d,three,0.0,0.0);
     decrgpulse(5.2*p_d,one,0.0,0.0);
     decrgpulse(5.4*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.5*p_d,three,0.0,0.0);
     decrgpulse(7.3*p_d,one,0.0,0.0);
     decrgpulse(5.1*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);

     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);
     decrgpulse(5.0*p_d,one,0.0,0.0);
     decrgpulse(5.5*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.6*p_d,three,0.0,0.0);
     decrgpulse(7.2*p_d,one,0.0,0.0);
     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.4*p_d,one,0.0,0.0);
     decrgpulse(6.8*p_d,three,0.0,0.0);
     decrgpulse(7.0*p_d,one,0.0,0.0);
     decrgpulse(5.2*p_d,three,0.0,0.0);
     decrgpulse(5.4*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.5*p_d,one,0.0,0.0);
     decrgpulse(7.3*p_d,three,0.0,0.0);
     decrgpulse(5.1*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);

	endhardloop();
        decrgpulse(9.0*p_d/5.0, t9, 2.0e-6, 0.0);
     if( H2Opurge[A] == 'y' )
         {obspwrf(1000.0); rgpulse(900*pw, zero, 0.0, 0.0);
	   rgpulse(500*pw, one, 0.0, 0.0); obspwrf(4095.0); }
	zgradpulse(gzlvl7, gt7);
	decpwrf(rfC);
	delay(50.0e-6);
        rgpulse(pw,zero,0.0,0.0);
	zgradpulse(gzlvl7, gt7/1.6);
        decrgpulse(pwC, three, 100.0e-6, 0.0); 
	zgradpulse(gzlvl5, gt5);
	decphase(zero);
	delay(tauc - gt5);
	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);
	zgradpulse(gzlvl5, gt5);
	delay(tauc - gt5);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl3, gt3);
        if(dm3[B] == 'y')	         /*optional 2H decoupling off */
        {
         dec3rgpulse(1/dmf3, three, 0.0, 0.0);
         dec3blank();
         setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
         dec3blank();
        }
	delay(grecov);
	rgpulse(pw, zero, 0.0, 0.0);
	zgradpulse(gzlvl6, gt5);
	delay(taua - gt5);
	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);
	zgradpulse(gzlvl6, gt5);
  if (STUD[A]=='y') decpower(studlvl);

  else
   {
	decpower(dpwr);
	dec2power(dpwr2);
   }
	delay(taua - gt5);
	rgpulse(pw, zero, 0.0, rof2);
        rcvron();
        if (dm3[B] == 'y') lk_sample();
	setreceiver(t11);
  if ((STUD[A]=='y') && (dm[C] == 'y'))
       {
        decpower(studlvl);
        decunblank();
        decon();
        decprgon(rna_stCdec,1/stdmf, 1.0);
        startacq(alfa);
        acquire(np, 1.0/sw);
        decprgoff();
        decoff();
        decblank();
       }
   else	
	 status(C);
}		 
Exemple #13
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        abfilter[MAXSTR],  /* flag for selection of inner or outer pair of doublets */
            NH2[MAXSTR],      /* flag for selection of NH2 */
            f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
	    C13refoc[MAXSTR];		/* C13 sech/tanh pulse in middle of t1*/
	    
 
int         icosel,          			  /* used to get n and p type */
            t1_counter;  		        /* used for states tppi in t1 */
	    
double      tau1,         				         /*  t1 delay */
	    lambda = 0.91/(4.0*getval("JNH")), 	   /* 1/4J H1 evolution delay */
	            
   pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
   pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
   rf0,            	          /* maximum fine power when using pwC pulses */
   rfst,	                           /* fine power for the stCall pulse */

   compH = getval("compH"),        /* adjustment for H1 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

	calH = getval("calH"), /* multiplier on a pw pulse for H1 calibration */
   	pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
        tpwrsf_u = getval("tpwrsf_u"),/* fine power correction for flipback(up)*/
        tpwrsf_d = getval("tpwrsf_d"),/* fine power correction for flipback(down)*/
   	tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */
	calN = getval("calN"),   /* multiplier on a pwN pulse for calibration */

	sw1 = getval("sw1"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal = getval("gzcal"),               /* dac to G/cm conversion      */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gstab = getval("gstab"),			   /* field recovery  */
	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt5 = getval("gt5"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl5 = getval("gzlvl5");

    getstr("NH2",NH2);
    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("C13refoc",C13refoc);
    getstr("abfilter",abfilter);


/*   LOAD PHASE TABLE    */
	
        settable(t3,2,phi3);
	settable(t4,1,phx);
        settable(t1,1,phx);
	settable(t9,8,phi9);
 	settable(t10,1,phx);
        settable(t12,4,rec);


/*   INITIALIZE VARIABLES   */

/* maximum fine power for pwC pulses (and initialize rfst) */
	rf0 = 4095.0;    rfst=0.0;

/* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
     if (C13refoc[A]=='y')
       {rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
	rfst = (int) (rfst + 0.5);
	if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
           { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	    (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) ); psg_abort(1); }}

/* selective H20 one-lobe sinc pulse */
    tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));   /*needs 1.69 times more*/
    tpwrs = (int) (tpwrs);                   	  /*power than a square pulse */
    if (tpwrsf_d<4095.0) tpwrs=tpwrs+6;   /* nominal tpwrsf_d ~ 2048 */
         /* tpwrsf_d,tpwrsf_u can be used to correct for radiation damping  */

/* reset calH and calN for 2D if inadvertently left at 2.0 */
  if (ni>1.0) {calH=1.0; calN=1.0;}



/* CHECK VALIDITY OF PARAMETER RANGES */

  if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
  { text_error("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' ))
  { text_error("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); }

  if((NH2[A] != 'y') && (NH2[A] != 'n'))
  { text_error("NH2 should be 'y' or 'n'!"); psg_abort(1); }

  if((abfilter[A] != 'a') && (abfilter[A] != 'b'))
  { text_error("abfilter should be 'a' or 'b'!"); psg_abort(1); }

  if( dpwr2 > 46 )
  { text_error("don't fry the probe, DPWR2 too large!  "); psg_abort(1); }

  if( pw > 50.0e-6 )
  { text_error("dont fry the probe, pw too high ! "); psg_abort(1); } 
  
  if( pwN > 100.0e-6 )
  { text_error("dont fry the probe, pwN too high ! "); psg_abort(1); }



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */


    if (phase1 == 1)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }


/* BEGIN PULSE SEQUENCE */

status(A);

	obspower(tpwr);
	decpower(pwClvl);
	decpwrf(rf0);
 	dec2power(pwNlvl);
	txphase(zero);
        decphase(zero);
        dec2phase(zero);

	delay(d1);

 
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
        rcvroff();
	dec2rgpulse(pwN, zero, 0.0, 0.0);  
	decrgpulse(pwC, zero, 0.0, 0.0);   /*destroy N15 and C13 magnetization*/
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	decpwrf(rfst);
	txphase(t1);
	delay(5.0e-4);

   if(dm3[B] == 'y')				  /*optional 2H decoupling on */
         {lk_hold();
	  dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);} 

   	rgpulse(calH*pw,t1,0.0,0.0);                 /* 1H pulse excitation */

	txphase(zero);
   	dec2phase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

   	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

   	txphase(one);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

 	rgpulse(pw, one, 0.0, 0.0);
	txphase(two);
   	obspower(tpwrs); obspwrf(tpwrsf_d);
   	shaped_pulse("H2Osinc_d", pwHs, two, 5.0e-5, 0.0);
	obspower(tpwr); obspwrf(4095.0);
	zgradpulse(gzlvl3, gt3);
	dec2phase(t3);
	delay(gstab);
   	dec2rgpulse(calN*pwN, t3, 0.0, 0.0);
	txphase(zero);
	decphase(zero);

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

	txphase(zero);
	dec2phase(t9);

  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);
            decphase(zero);
            delay(tau1 - 0.5e-3);
            zgradpulse(-1*gzlvl1, 0.5*gt1);
            delay(gstab - 2.0*GRADIENT_DELAY);}
	else
           {delay(tau1);
            rgpulse(2.0*pw, zero, 0.0, 0.0);
            delay(tau1);
            zgradpulse(-1*gzlvl1, 0.5*gt1);
            delay(gstab - 2.0*GRADIENT_DELAY);
            }  

	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        zgradpulse(gzlvl1, 0.5*gt1);   	/* 2.0*GRADIENT_DELAY */
	txphase(t4);
	dec2phase(t10);
	delay(gstab - 2.0*GRADIENT_DELAY);

/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */

	sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

        obspower(tpwrs); obspwrf(tpwrsf_u);
   	shaped_pulse("H2Osinc_u", pwHs, two, 5.0e-5, 0.0);
	obspower(tpwr); obspwrf(4095.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	
	delay(lambda - 1.3*pwN - gt5 - pwHs - 5.0e-5 -2.0*POWER_DELAY);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	delay(lambda - 1.3*pwN - gt5);

if(abfilter[A] == 'a')
        {
         if (NH2[A] == 'n') 
          {
           dec2rgpulse(pwN,one,0.0,0.0);
          } 
         else
          {
           dec2rgpulse(pwN,zero,0.0,0.0);
          } 
        }
       else
        {
         if (NH2[A] == 'n') 
          {
           dec2rgpulse(pwN,three,0.0,0.0);
          } 
         else
          {
           dec2rgpulse(pwN,two,0.0,0.0);
          } 
        }

	delay(gt1/10.0 -pwN +gstab + 2.0*GRADIENT_DELAY + POWER_DELAY );

	rgpulse(2.0*pw, zero, 0.0, 0.0);

	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')	  magradpulse(gzcal*icosel*gzlvl2, 0.1*gt1);
        else   zgradpulse(icosel*gzlvl2, 0.1*gt1);		/* 2.0*GRADIENT_DELAY */
        delay(gstab);

  if (dm3[B] == 'y') {delay(1/dmf3); lk_sample();}

	setreceiver(t12);
}		 
Exemple #14
0
pulsesequence()
{
/* DECLARE VARIABLES */

 char       fscuba[MAXSTR],
            f1180[MAXSTR],    /* Flag to start t1 @ fulldwell             */
            f2180[MAXSTR],    /* Flag to start t2 @ halfdwell             */
            C_flg[MAXSTR],
            dtt_flg[MAXSTR];

 int         phase, phase2, ni, ni2, 
             t1_counter,   /* used for states tppi in t1           */ 
             t2_counter;   /* used for states tppi in t2           */ 

 double      tau1,         /*  t1 delay */
             tau2,         /*  t2 delay */
             taua,         /*  ~ 1/4JHC =  1.6 ms */
             taub,         /*    1/6JCH =   1.1 ms  */
             BigTC,        /* Carbon constant time period = 1/4Jcc = 7.0 ms */ 
             pwN,          /* PW90 for 15N pulse @ pwNlvl           */
             pwC,          /* PW90 for c nucleus @ pwClvl         */
             pwcrb180,      /* PW180 for C 180 reburp @ rfrb */
             pwClvl,        /* power level for 13C pulses on dec1  */
             compC, compH,  /* compression factors for H1 and C13 amps */
	     rfrb,       /* power level for 13C reburp pulse     */
             pwNlvl,       /* high dec2 pwr for 15N hard pulses    */
             sw1,          /* sweep width in f1                    */             
             sw2,          /* sweep width in f2                    */             
             bw, ofs, ppm,

	     gt0,
             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gstab,

             gzlvl0,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
        
             decstep1,
             decstep2,
             decstep3,

             tpwrs,
             pwHs, 
             dof_me, rfrb_cg, rfrb_co, pwrb_co, pwrb_cg,
             
             tof_dtt,

             rfca90,
             pwca90,
             rfca180,
             pwca180,
             pwco90,

             dofCO;
             
   
/* LOAD VARIABLES */

  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("fscuba",fscuba);

  getstr("C_flg",C_flg);
  getstr("dtt_flg",dtt_flg); 

  taua   = getval("taua"); 
  taub   = getval("taub"); 
  BigTC  = getval("BigTC");
  pwC = getval("pwC");
  pwcrb180 = getval("pwcrb180");
  pwN = getval("pwN");
  tpwr = getval("tpwr");
  pwClvl = getval("pwClvl");
  compC = getval("compC");
  compH = getval("compH");
  dpwr = getval("dpwr");
  pwNlvl = getval("pwNlvl");
  phase = (int) ( getval("phase") + 0.5);
  phase2 = (int) ( getval("phase2") + 0.5);
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  ni = getval("ni");
  ni2 = getval("ni2");

  gstab = getval("gstab");
  gt0 = getval("gt0");
  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
 
  gzlvl0 = getval("gzlvl0");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
 
  decstep1 = getval("decstep1");
  decstep2 = getval("decstep2");
  decstep3 = getval("decstep3");

  pwHs = getval("pwHs");
  dof_me = getval("dof_me");
  tof_dtt = getval("tof_dtt");

  dofCO = getval("dofCO");

  tpwrs = 0.0;
  setautocal();                      /* activate auto-calibration */   

  if(FIRST_FID)                                         /* make shapes */
  {
    ppm = getval("dfrq"); 
    bw = 80.0*ppm;  
    rb180 = pbox_make("rb180P", "reburp", bw, 0.0, compC*pwC, pwClvl);
    bw = 8.125*ppm;  ofs = -24.0*ppm;
    rb180_cg = pbox_make("rb180_cgP", "reburp", bw, ofs, compC*pwC, pwClvl);
    bw = 60*ppm;  ofs = 136.0*ppm;
    rb180_co = pbox_make("rb180_coP", "reburp", bw, ofs, compC*pwC, pwClvl);
    bw = 118.0*ppm; ofs = -118.0*ppm;
    ca180 = pbox_make("ca180P", "square180n", bw, ofs, compC*pwC, pwClvl);
    bw = 118.0*ppm; ofs = 18.0*ppm;
    ca90 = pbox_make("ca90P", "square90n", bw, ofs, compC*pwC, pwClvl);

  }
  pwcrb180 = rb180.pw;   rfrb = rb180.pwrf;             /* set up parameters */
  pwrb_cg = rb180_cg.pw; rfrb_cg = rb180_cg.pwrf;             /* set up parameters */
  pwrb_co = rb180_co.pw; rfrb_co = rb180_co.pwrf;             /* set up parameters */
  pwca90 = ca90.pw;      rfca90 = ca90.pwrf;             /* set up parameters */
  pwca180 = ca180.pw;    rfca180 = ca180.pwrf;             /* set up parameters */
  pwco90 = pwca90;
  tpwrs = tpwr - 20.0*log10(pwHs/((compH*pw)*1.69));   /* sinc=1.69xrect */
  tpwrs = (int) (tpwrs);              

/* LOAD PHASE TABLE */

  settable(t1,2,phi1);
  settable(t2,4,phi2);
  settable(t3,4,phi3);
  settable(t4,4,phi4);
  settable(t5,1,phi5);
  settable(t6,16,phi6);
  settable(t7,8,phi7);
  settable(t8,8,phi8);
  settable(t9,8,phi9);
  settable(t10,1,phi10);
  settable(t11,8,phi11);
  settable(t12,16,rec);

/* CHECK VALIDITY OF PARAMETER RANGES */

    if( BigTC - 0.5*(ni2-1)*1/(sw2) - WFG_STOP_DELAY - POWER_DELAY 
              - 4.0e-6
              < 0.2e-6 )
    {
        printf(" ni2 is too big\n");
        psg_abort(1);
    }


    if((dm[A] == 'y' || dm[B] == 'y' ))
    {
        printf("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y'))
    {
        printf("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }

    if( satpwr > 9 )
    {
        printf("SATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 48 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > -16 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 

    if( pwN > 200.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 

    if( pwC > 200.0e-6 )
    {
        printf("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( pwcrb180 > 500.0e-6 )
    {  
        printf("dont fry the probe, pwcrb180 too high ! ");
        psg_abort(1);
    } 

    if(dpwr3 > 51)
    {
       printf("dpwr3 is too high; < 52\n");
       psg_abort(1);
    }


   if(d1 < 1)
    {
       printf("d1 must be > 1\n");
       psg_abort(1);
    }

    if(  gt0 > 5.0e-3 || gt1 > 5.0e-3  || gt2 > 5.0e-3 ||
         gt3 > 5.0e-3 || gt4 > 5.0e-3 || gt5 > 5.0e-3 || gt6 > 5.0e-3  )
    {  printf(" all values of gti must be < 5.0e-3\n");
        psg_abort(1);
    }

/*  Phase incrementation for hypercomplex 2D data */

    if (phase == 2) {
      tsadd(t11,1,4);
    }

    if (phase2 == 2)
      tsadd(t10,1,4);

/*  Set up f1180  tau1 = t1               */
   
    tau1 = d2;
    tau1 = tau1 - 4.0/PI*pwco90 - POWER_DELAY - WFG_START_DELAY 
           - 4.0e-6 - pwca180 - WFG_STOP_DELAY - POWER_DELAY - 2.0*pwN;

    if(f1180[A] == 'y') {
        tau1 += ( 1.0 / (2.0*sw1) );
        if(tau1 < 0.4e-6) tau1 = 4.0e-7;
    }
        tau1 = tau1/2.0;

/*  Set up f2180  tau2 = t2               */

    tau2 = d3;
    if(f2180[A] == 'y') {
        tau2 += ( 1.0 / (2.0*sw2) ); 
        if(tau2 < 0.4e-6) tau2 = 4.0e-7;
    }
        tau2 = tau2/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
      tsadd(t11,2,4);     
      tsadd(t12,2,4);    
    }

   if( ix == 1) d3_init = d3 ;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) {
      tsadd(t10,2,4);  
      tsadd(t12,2,4);    
    }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obspower(satpwr);      /* Set transmitter power for 1H presaturation */
   decpower(pwClvl);        /* Set Dec1 power for hard 13C pulses         */
   dec2power(pwNlvl);      /* Set Dec2 to high power       */

/* Presaturation Period */

   if (satmode[A] == 'y')
   {
	delay(2.0e-5);
        rgpulse(d1,zero,2.0e-6,2.0e-6);  /* presat with transmitter */
   	obspower(tpwr);      /* Set transmitter power for hard 1H pulses */
	delay(2.0e-5);
	if(fscuba[0] == 'y')
	{
		delay(2.2e-2);
		rgpulse(pw,zero,2.0e-6,0.0);
		rgpulse(2.0*pw,one,2.0e-6,0.0);
		rgpulse(pw,zero,2.0e-6,0.0);
		delay(2.2e-2);
	}
   }
   else
   {
    delay(d1);
   }
   obspower(tpwr);           /* Set transmitter power for hard 1H pulses */
   txphase(t1);
   decphase(zero);
   dec2phase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(B);

   decoffset(dof_me);

   lk_hold(); lk_sampling_off();

   rcvroff();
   delay(20.0e-6);

/* ensure that magnetization originates on 1H and not 13C */

   if(dtt_flg[A] == 'y') {
     obsoffset(tof_dtt);

     obspower(tpwrs);
     shaped_pulse("H2Osinc",pwHs,zero,10.0e-6,0.0);
     obspower(tpwr);
     obsoffset(tof); 
   }
 
   decrgpulse(pwC,zero,0.0,0.0);
 
   delay(2.0e-6);
   zgradpulse(gzlvl0,gt0);
   delay(gstab);

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(2.0e-6);
   zgradpulse(gzlvl1,gt1);
   delay(gstab);

   delay(taua - gt1  -gstab -2.0e-6 ); 

   simpulse(2.0*pw,2.0*pwC,zero,zero,0.0,0.0);
   txphase(one);

   delay(taua - gt1 - gstab -2.0e-6); 
   	
   delay(2.0e-6);
   zgradpulse(gzlvl1,gt1);
   delay(gstab);

   rgpulse(pw,one,0.0,0.0);

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   decoffset(dof);  /* jump 13C to 40 ppm */

   delay(2.0e-6);
   zgradpulse(gzlvl2,gt2);
   delay(gstab);

   decrgpulse(pwC,t1,4.0e-6,0.0); decphase(zero); 

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);
   delay(BigTC - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t2);

   decpwrf(4095.0);
   delay(BigTC - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t2,0.0,0.0);
   decphase(zero);

   /* turn on 2H decoupling */
   dec3phase(one);
   dec3power(dpwr3);
   dec3rgpulse(1/dmf3,one,4.0e-6,0.0); 
   dec3phase(zero);
   dec3unblank();
   dec3prgon(dseq3,1/dmf3,dres3);
   dec3on();
   /* turn on 2H decoupling */

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);

   delay(BigTC - POWER_DELAY - 4.0e-6 - 1/dmf3
         - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t3);

   decpwrf(4095.0);
   delay(BigTC - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t3,0.0,0.0);
   decpwrf(rfrb_cg); decphase(zero);

   delay(BigTC/2.0 - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg);
   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(rfrb);

   delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY
         - 2.0e-6 - WFG_START_DELAY);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0);
   dcplrphase(zero);

   decpwrf(rfrb_cg); decphase(zero);

   delay(BigTC/2.0 - WFG_STOP_DELAY - SAPS_DELAY 
                  - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg);

   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(4095.0); decphase(t4);

   delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t4,0.0,0.0);

   decpwrf(rfrb_co); decphase(zero);
   decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0);  /* BS */
   decpwrf(rfrb); 
   delay(taub - (2.0/PI)*pwC - POWER_DELAY - 4.0e-6 - WFG_START_DELAY
         - pwrb_co - WFG_STOP_DELAY - 2.0e-6
         - WFG_START_DELAY);

   initval(1.0,v3);
   decstepsize(decstep2);
   dcplrphase(v3);

   decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0);
   dcplrphase(zero); decpwrf(rfrb_co); 
   decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0);
   decphase(t5);
   decpwrf(rfca90); 

   delay(taub - WFG_STOP_DELAY - 4.0e-6 - WFG_START_DELAY
         - pwcrb180 - WFG_STOP_DELAY - POWER_DELAY 
         - WFG_START_DELAY - (2.0/PI)*pwca90);

   decshaped_pulse(ca90.name,pwca90,t5,0.0,0.0);

   decoffset(dofCO);

   /* 2H decoupling off */
   dec3off();
   dec3prgoff();
   dec3blank();
   dec3rgpulse(1/dmf3,three,4.0e-6,0.0);
   /* 2H decoupling off */

   delay(2.0e-6); 
   zgradpulse(gzlvl5,gt5);
   delay(gstab);

   decrgpulse(pwco90,t11,4.0e-6,0.0);

   if(C_flg[A] == 'n') {

   decpwrf(rfca180);  

   delay(tau1);
   decshaped_pulse(ca180.name,pwca180,zero,4.0e-6,0.0);
   decpwrf(rfca90); decphase(zero);
   dec2rgpulse(2.0*pwN,zero,0.0,0.0);
   delay(tau1);

   }

   else 
     decrgpulse(2.0*pwco90,zero,4.0e-6,4.0e-6);
   decrgpulse(pwco90,zero,0.0,0.0);

   delay(2.0e-6);
   zgradpulse(gzlvl6,gt6);
   delay(gstab);

   /* turn on 2H decoupling */
   dec3phase(one);
   dec3rgpulse(1/dmf3,one,4.0e-6,0.0); 
   dec3phase(zero);
   dec3unblank();
   dec3prgon(dseq3,1/dmf3,dres3);
   dec3on();
   /* turn on 2H decoupling */

   decoffset(dof);

   decpwrf(rfca90);

   decshaped_pulse(ca90.name,pwca90,t6,4.0e-6,0.0);

   decpwrf(rfrb_co); decphase(zero);

   delay(taub - WFG_STOP_DELAY - (2.0/PI)*pwca90 - POWER_DELAY - WFG_START_DELAY
         - pwrb_co - WFG_STOP_DELAY - 2.0e-6
         - WFG_START_DELAY);

   decshaped_pulse(rb180_co.name,pwrb_co,zero,0.0,0.0);
   decpwrf(rfrb); 
   initval(1.0,v3);
   decstepsize(decstep3);
   dcplrphase(v3);

   decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0);
   dcplrphase(zero);
   decpwrf(rfrb_co); 
   delay(taub - WFG_STOP_DELAY - 4.0e-6 - WFG_START_DELAY
         - pwcrb180 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 
         - (2.0/PI)*pwC);
  
   decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0);  /* BS */

   decpwrf(4095.0); 
   decrgpulse(pwC,t7,4.0e-6,0.0);

   decpwrf(rfrb_cg); decphase(zero);

   delay(BigTC/2.0 - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg);
   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(rfrb);

   delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY
         - 2.0e-6 - WFG_START_DELAY);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0);
   dcplrphase(zero);

   decpwrf(rfrb_cg); decphase(zero);

   delay(BigTC/2.0 - WFG_STOP_DELAY - SAPS_DELAY 
                  - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg);

   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(4095.0); decphase(t8);

   delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t8,0.0,0.0);
   decphase(zero);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);
   delay(BigTC - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t9);

   decpwrf(4095.0);
   delay(BigTC - WFG_STOP_DELAY - POWER_DELAY
          - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - 1/dmf3);

   /* 2H decoupling off */
   dec3off();
   dec3prgoff();
   dec3blank();
   dec3rgpulse(1/dmf3,three,4.0e-6,0.0);
   lk_autotrig();
   /* 2H decoupling off */

   decrgpulse(pwC,t9,0.0,0.0);
   decphase(zero);

   delay(tau2);
   rgpulse(2.0*pw,zero,0.0,0.0);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);
   delay(BigTC - 2.0*pw - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t10);
   decpwrf(4095.0);

   delay(BigTC - tau2 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6);

   decrgpulse(pwC,t10,4.0e-6,0.0);


   decoffset(dof_me);

   delay(2.0e-6);
   zgradpulse(gzlvl3,gt3);
   delay(gstab);

   lk_sample();

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   rgpulse(pw,zero,4.0e-6,0.0);

   delay(2.0e-6);
   zgradpulse(gzlvl4,gt4);
   delay(gstab);

   delay(taua - gt4 - gstab -2.0e-6
         - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
         - pwHs - WFG_STOP_DELAY - POWER_DELAY - 2.0e-6);

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   simpulse(2.0*pw,2.0*pwC,zero,zero,2.0e-6,0.0);

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   delay(2.0e-6);
   zgradpulse(gzlvl4,gt4);
   delay(gstab);
 
   delay(taua 
         - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
         - pwHs - WFG_STOP_DELAY - POWER_DELAY 
         - gt4 - gstab -2.0e-6 - 2.0*POWER_DELAY);

   decpower(dpwr);  /* Set power for decoupling */
   dec2power(dpwr2);


/* BEGIN ACQUISITION */
   lk_sample();

status(C);
   setreceiver(t12);

}
Exemple #15
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */
int         t1_counter, t2_counter;	/* used for states tppi in t1 & t2*/

char	    IPAP[MAXSTR], Hstart[MAXSTR],
            f1180[MAXSTR],H2dec[MAXSTR],
            shCACB_90[MAXSTR],shCACB_90r[MAXSTR],
	    shCACB_180[MAXSTR], shCB_180[MAXSTR], decCB[MAXSTR],
            shCACB_180off[MAXSTR],
            shCBIP[MAXSTR],
	    shCO_90[MAXSTR],            
	    shCO_180[MAXSTR],
            shCO_180off[MAXSTR];

double
	    tau1,			/*  t1 delay */
               x,
            TCH = getval("TCH"), 
	    TC = getval("TC"), 		/* delay 1/(2JCACB) ~  7.0ms in Ref. */ 
            del = getval("del"),	/* delay del = 1/(2JC'C) ~ 9.0ms in Ref. */         
            pwClvl = getval("pwClvl"), 	/* coarse power for C13 pulse */
            pwC = getval("pwC"),        /* C13 90 degree pulse length at pwClvl */
            compC = getval("compC"),    /* adjustment for C13 amplifier compression */
	    pwClvlF=getval("pwClvlF"),   /* maximum fine power when using pwC pulses */

	     pwHlvl = getval("pwHlvl"),
             pwH = getval("pwH"),
	    

        pwCBIP  =  getval("pwCBIP"),	
  /* 90 degree pulse at CO (174ppm)    */
      
        pwCO_90  =  getval("pwCO_90"),			/* 90 degree pulse length on C13  */
        pwCO_90phase_roll  =  getval("pwCO_90phase_roll") , /* fraction of CACB pulse to compensate for phase roll */
        pwrCO_90 =  getval("pwrCO_90"),		       	/*power  */
        pwrfCO_90 = getval("pwrfCO_90"),
        
/* 180 degree pulse at CO (174ppm)  */

        pwCO_180   =  getval("pwCO_180"),			/* 180 degree pulse length on C13  */
        pwrCO_180  =  getval("pwrCO_180"),		       	/*power  */
        pwrfCO_180 =  getval("pwrfCO_180"),

/* 90 degree pulse at CAB (57.7ppm)  */

        tofCACB    =  getval("tofCACB"), 
        pwCACB_90  =  getval("pwCACB_90"),
        pwCACB_90phase_roll  =  getval("pwCACB_90phase_roll") , /* fraction of CACB pulse to compensate for phase roll */

			/* 90 degree pulse length on C13  */
        pwrCACB_90 =  getval("pwrCACB_90"),		       	/*power  */
        pwrfCACB_90 = getval("pwrfCACB_90"),

/* 180 degree pulse at CA (57.7ppm)  */
        pwCACB_180   =  getval("pwCACB_180"),			/* 180 degree pulse length on C13  */
        pwrCACB_180  =  getval("pwrCACB_180"),		       	/*power  */
        pwrfCACB_180 =  getval("pwrfCACB_180"),

        pwCB_180   =  getval("pwCB_180"),			/* 180 degree pulse length on C13  */
        pwrCB_180  =  getval("pwrCB_180"),
 

	sw1 = getval("sw1"),
        sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		     
	gzlvl1 = getval("gzlvl1"),

	gt2 = getval("gt2"),				   
	gzlvl2 = getval("gzlvl2"),
        gt3 = getval("gt3"),
        gzlvl3 = getval("gzlvl3"),
        gstab = getval("gstab");
        getstr("IPAP",IPAP); 
        getstr("H2dec",H2dec); 

         getstr("shCBIP",shCBIP);
         getstr("f1180",f1180);
	 getstr("shCACB_90",shCACB_90); getstr("shCACB_90r",shCACB_90r);
         getstr("shCACB_180",shCACB_180); getstr("shCACB_180off",shCACB_180off);
         getstr("shCB_180",shCB_180); getstr("decCB",decCB);
	 getstr("shCO_90",shCO_90);
         getstr("shCO_180",shCO_180);    getstr("shCO_180off",shCO_180off);

	getstr("Hstart",Hstart);

/*   LOAD PHASE TABLE    */
	settable(t1,4,phi1);
        settable(t2,4,phi2);
	settable(t3,4,phi3);
	settable(t4,4,phi4);
        settable(t5,4,phi5);
	settable(t12,4,rec);
        

         

	 

/*   INITIALIZE VARIABLES   */
if( (IPAP[A] != 'i') &&  (IPAP[A] != 'a')&&  (IPAP[A] != 't'))
  { text_error("IPAP flag either i or a, exiting "); psg_abort(1); }

if( (Hstart[A]=='y') && ((dmm[A]!='c' || dm[A]=='y')) ) 
{ 
 text_error("Incorrect combination of dm, dmm and Hstart.  "); 
                         psg_abort(1);};


x=0.0;
if(decCB[A]=='y'){x=1.0;}
if(ni/sw1 > TC-2.0*pwCB_180*x) { 

 text_error("too many increments in CAB t1 evolution %d\n",(int)( (TC-2.0*pwCB_180*x)*sw1 +0.5)); 
                         psg_abort(1);};


/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)    tsadd(t1,1,4);  
    
    tau1 = d2;
    if(f1180[A]=='y') {tau1+=0.5/sw1;}
    tau1 = tau1/2.0;

    
/* Calculate modifications to phases for States-TPPI acquisition          */
if(IPAP[A]=='a'){tsadd(t4,1,4);};




   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t1,2,4); tsadd(t12,2,4); }

/* BEGIN PULSE SEQUENCE */

status(A);
   	 delay(10.0e-6);
        obspower(pwClvl);
        obspwrf(4095.0);
        dec2power(dpwr2); dec2pwrf(4095.0);
   	obsoffset(tofCACB);
        delay(d1);


/* option to start from H magnetization */
if(Hstart[A]=='y') 
     {
	decpower(pwHlvl); decpwrf(4095.0);

	   decrgpulse(pwH, zero, 0.0, 0.0);
	   delay(TCH);
	   simpulse(2.0*pwC,2.0*pwH, zero,zero, 0.0, 0.0);
	   delay(TCH);
	   decrgpulse(pwH, one, 0.0, 0.0);

	   zgradpulse(gzlvl2,gt2);
	   delay(gstab);

 	   rgpulse(pwC, two, 0.0, 0.0);
 	    delay(TCH);
 	    simpulse(2.0*pwC,2.0*pwH, zero,zero, 0.0, 0.0);
 	    delay(TCH);
  	    rgpulse(pwC, one, 0.0, 0.0);

	    zgradpulse(gzlvl3,gt3);
	     delay(gstab*2.0);

	decpower(dpwr); decpwrf(4095.0);
}


if (H2dec[A] == 'y') lk_hold();
status(B);
 /* CACO experiment */     

/************optional deuterium decoupling**************************/
	if(H2dec[A] == 'y'){  dec3unblank();
                             if(1.0/dmf3>900.0e-6) {
						     dec3power(dpwr3+6.0);
						     dec3rgpulse(0.5/dmf3, one, 1.0e-6, 0.0e-6);
						     dec3power(dpwr3);
						     }
			   else dec3rgpulse(1.0/dmf3, one, 1.0e-6,0.0e-6);
  			   dec3phase(zero);       setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
	                    }	

/**************************************/

	/* begin CA   evolution and transfer to CO */


        obspwrf(pwrfCACB_90);  obspower(pwrCACB_90);
	shapedpulse(shCACB_90,pwCACB_90,t1,0.0,0.0);


        obspwrf(4095.0);  obspower(pwClvl);

 
        delay(10.0e-6);
        shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0);
        delay(10.0e-6);

        if(decCB[A]=='y') {
                delay( (TC/2.0-tau1 + 2.0*pwCACB_90phase_roll*pwCACB_90)*0.5 -pwCB_180*0.5);
         	obspower(pwrCB_180);
	 	shapedpulse(shCB_180,pwCB_180,zero,0.0,0.0);
                delay( (TC/2.0-tau1 + 2.0*pwCACB_90phase_roll*pwCACB_90)*0.5 -pwCB_180*0.5);
		}

        else	delay(TC/2.0-tau1 + 2.0*pwCACB_90phase_roll*pwCACB_90);
        
        obspower(pwClvl);
        shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0);
   
       if(decCB[A]=='y') {
			delay((TC/2.0+tau1)*0.5 -pwCB_180*0.5);
         		obspower(pwrCB_180);
	 		shapedpulse(shCB_180,pwCB_180,zero,0.0,0.0);
			delay((TC/2.0+tau1)*0.5 -pwCB_180*0.5);
           }
        else delay(TC/2.0+tau1);

        obspower(pwrCACB_90);
	shapedpulse(shCACB_90r,pwCACB_90,one,0.0,0.0);

/*************************************************************/
 	if(H2dec[A] == 'y')  {                     
	                    setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
                             

                             if(1.0/dmf3>900.0e-6) {
						     dec3power(dpwr3+6.0);
						     dec3rgpulse(0.5/dmf3, three, 1.0e-6, 0.0e-6);
						     dec3power(dpwr3);
						     }

	                    else dec3rgpulse(1.0/dmf3, three, 1.0e-6, 0.0e-6);	    dec3blank();  
			   }
/*************************************************************/

    /* CAzCOz */

 
         delay(10e-6);
         obsoffset(tof);
         delay(10e-6);
	zgradpulse(gzlvl1,gt1);
	delay(gstab);
status(C);
     /* CAzCOz ->  CO or CACO */

        obspwrf(pwrfCO_90);  obspower(pwrCO_90);
	shapedpulse(shCO_90,pwCO_90,t4,0.0,0.0);

        /* ghost 180 on CA*/
     
  if(IPAP[A]=='i')   {

       obspwrf(pwClvlF);  obspower(pwClvl);
        delay(10.0e-6);
        shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0);
        delay(10.0e-6);

         
       delay(del/2.0 + pwCO_90phase_roll*pwCO_90);

 	obspwrf(pwrfCACB_180); obspower(pwrCACB_180);
 	delay(10.0e-6);
 	shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0);
  	obspwrf(pwClvlF);  obspower(pwClvl);
 	delay(10.0e-6);

       shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0);

	obspwrf(pwrfCACB_180); obspower(pwrCACB_180);
 	delay(10.0e-6);
 	shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0);
  
 	delay(10.0e-6);


       delay(del/2.0 );
  }


/***>>>>>>>>>>>**TEST*********/
  if(IPAP[A]=='t')   {
         obspwrf(pwrfCACB_180); obspower(pwrCACB_180);
        delay(10.0e-6);
        shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0);
        delay(10.0e-6);
        obspwrf(pwrfCO_180); obspower(pwrCO_180);
	delay(del/2.0);
   

     shapedpulse(shCO_180,pwCO_180,zero,0.0,0.0);

        
        obspwrf(pwrfCACB_180); obspower(pwrCACB_180);
        delay(10.0e-6);
         shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0);
        delay(10.0e-6);

        obspwrf(pwrfCO_90);  obspower(pwrCO_90);
        delay(del/2.0);
  }

/********<<<<<<<<<<<<<**TEST*********/

  if(IPAP[A]=='a')   {

       obspwrf(pwClvlF);  obspower(pwClvl);
          
        delay(10.0e-6);
        shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0);
        delay(10.0e-6);

         
        delay(del/4.0 + pwCO_90phase_roll*pwCO_90);

 	obspwrf(pwrfCACB_180); obspower(pwrCACB_180);
 	delay(10.0e-6);
 	shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0);
  	obspwrf(pwClvlF);  obspower(pwClvl);

 	delay(10.0e-6);
        delay(del/4.0 );

       shapedpulse(shCBIP,pwCBIP,zero,0.0,0.0);

        delay(del/4.0);

	obspwrf(pwrfCACB_180); obspower(pwrCACB_180);
 	delay(10.0e-6);
 	shapedpulse(shCACB_180off,pwCACB_180,zero,0.0,0.0);
  
 	delay(10.0e-6);

       delay(del/4.0 );
  }

 if (H2dec[A]=='y') lk_sample();

status(D);
	setreceiver(t12);
	
}
pulsesequence()
{

char        sel_flg[MAXSTR],
            autocal[MAXSTR],
            glyshp[MAXSTR];

int         icosel, t1_counter, ni = getval("ni");

double
   d2_init=0.0, 
   tau1, tau2, 
   tau3,  
   glypwr,glypwrf,                    /* Power levels for Cgly selective 90 */
   pwgly,                              /* Pulse width for Cgly selective 90 */

   waltzB1  = getval("waltzB1"),     /* 1H decoupling strength (in Hz) */
   timeTN  = getval("timeTN"),     /* constant time for 15N evolution */
   tauCaCb = getval("tauCaCb"),    
   tauNCa  = getval("tauNCa"),
   tauNCo  = getval("tauNCo"),
   tauCaCo = getval("tauCaCo"),
            
   compH = getval("compH"),        /* adjustment for H1 amplifier compression */
   tpwrs,                        /* power for the pwHs ("H2Osinc") pulse */
   bw,ppm,

   pwClvl = getval("pwClvl"),              /* coarse power for C13 pulse */
   compC = getval("compC"),      /* amplifier compression for C13 pulse */
   pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */

   pwNlvl = getval("pwNlvl"),                   /* power for N15 pulses */
   pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */
   dpwr2 = getval("dpwr2"),            /* power for N15 decoupling */

   pwCa90,                          /* length of square 90 on Ca */
   pwCa180,
   pwCab90,
   pwCab180,
   phshift,        /*  phase shift induced on Ca by 180 on CO in middle of t1 */
   pwCO180,                                /* length of 180 on CO */
   pwS = getval("pwS"), /* used to change 180 on CO in t1 for 1D calibrations */
   pwZ,                            /* the largest of pwCO180 and 2.0*pwN */
   pwZ1,             /* the largest of pwCO180 and 2.0*pwN for 1D experiments */

   sw1 = getval("sw1"),   
   swCb = getval("swCb"),
   swCa = getval("swCa"),
   swN  = getval("swN"),
   swTilt,                     /* This is the sweep width of the tilt vector */

   cos_N, cos_Ca, cos_Cb,
   angle_N, angle_Ca, angle_Cb,      /* angle_N is calculated automatically */

  gstab = getval("gstab"),
   gt0 = getval("gt0"),             gzlvl0 = getval("gzlvl0"),
   gt1 = getval("gt1"),             gzlvl1 = getval("gzlvl1"),
                                    gzlvl2 = getval("gzlvl2"),
   gt3 = getval("gt3"),             gzlvl3 = getval("gzlvl3"),
   gt4 = getval("gt4"),             gzlvl4 = getval("gzlvl4"),
   gt5 = getval("gt5"),             gzlvl5 = getval("gzlvl5"),
   gt6 = getval("gt6"),             gzlvl6 = getval("gzlvl6"),
   gt7 = getval("gt7"),             gzlvl7 = getval("gzlvl7"),
   gt10= getval("gt10"),            gzlvl10= getval("gzlvl10"),
   gt11= getval("gt11"),            gzlvl11= getval("gzlvl11"),
   gt12= getval("gt12"),            gzlvl12= getval("gzlvl12");

   angle_N = 0;
   glypwr = getval("glypwr");
   pwgly = getval("pwgly");
   tau1 = 0;
   tau2 = 0;
   tau3 = 0;
   cos_N = 0;
   cos_Cb = 0;
   cos_Ca = 0;
   getstr("autocal", autocal);
   getstr("glyshp", glyshp);
   getstr("sel_flg",sel_flg);

   pwHs = getval("pwHs");          /* H1 90 degree pulse length at tpwrs */
 
/*   LOAD PHASE TABLE    */

   settable(t2,1,phy);
   settable(t3,2,phi3);     settable(t4,1,phx);     settable(t5,4,phi5);
   settable(t8,1,phy);      settable(t9,8,phi9);    settable(t10,1,phx);
   settable(t11,1,phy);     settable(t12,4,rec);

/*   INITIALIZE VARIABLES   */

   kappa = 5.4e-3;     lambda = 2.4e-3;

/* selective H20 one-lobe sinc pulse */

   
   tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));   /*needs 1.69 times more*/
   tpwrs = (int) (tpwrs);                        /*power than a square pulse */

   pwHs = 1.7e-3*500.0/sfrq;
   widthHd = 2.861*(waltzB1/sfrq);   /* bandwidth of H1 WALTZ16 decoupling in ppm */
   pwHd = h1dec90pw("WALTZ16", widthHd, 0.0);     /* H1 90 length for WALTZ16 */
 
/* get calculated pulse lengths of shaped C13 pulses */
   pwCa90  = c13pulsepw("ca", "co", "square", 90.0); 
   pwCa180 = c13pulsepw("ca", "co", "square", 180.0);
   pwCO180 = c13pulsepw("co", "cab", "sinc", 180.0); 
   pwCab90 = c13pulsepw("cab","co", "square", 90.0);
   pwCab180= c13pulsepw("cab","co", "square", 180.0);

/* the 180 pulse on CO at the middle of t1 */
   if (pwCO180 > 2.0*pwN) pwZ = pwCO180; else pwZ = 2.0*pwN;
   if ((pwS==0.0) && (pwCO180>2.0*pwN)) pwZ1=pwCO180-2.0*pwN; else pwZ1=0.0;
   if ( ni > 1 )     pwS = 180.0;
   if ( pwS > 0 )   phshift = 320.0;
     else             phshift = 0.0;

/* CHECK VALIDITY OF PARAMETER RANGES */

   if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
      { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

   if ( dm2[A] == 'y' || dm2[B] == 'y' )
      { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

   if ( dm3[A] == 'y' || dm3[C] == 'y' )
      { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
                                                psg_abort(1);}     
   if ( dpwr2 > 46 )
      { printf("dpwr2 too large! recheck value  ");               psg_abort(1);}

   if ( pw > 20.0e-6 )
      { printf(" pw too long ! recheck value ");                  psg_abort(1);} 
  
   if ( pwN > 100.0e-6 )
      { printf(" pwN too long! recheck value ");                  psg_abort(1);} 


/* PHASES AND INCREMENTED TIMES */

   /* Set up angles and phases */

   angle_Cb=getval("angle_Cb");  cos_Cb=cos(PI*angle_Cb/180.0);
   angle_Ca=getval("angle_Ca");  cos_Ca=cos(PI*angle_Ca/180.0);

   if ( (angle_Cb < 0) || (angle_Cb > 90) )
   {  printf ("angle_Cb must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( (angle_Ca < 0) || (angle_Ca > 90) )
   {  printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( 1.0 < (cos_Cb*cos_Cb + cos_Ca*cos_Ca) )
   {
       printf ("Impossible angles.\n"); psg_abort(1);
   }
   else
   {
           cos_N=sqrt(1.0- (cos_Cb*cos_Cb + cos_Ca*cos_Ca));
           angle_N = 180.0*acos(cos_N)/PI;
   }

   swTilt=swCb*cos_Cb + swCa*cos_Ca + swN*cos_N;

   if (ix ==1)
   {
      printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
      printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt);
      printf ("Angle_Cb:\t%6.2f\n", angle_Cb);
      printf ("Angle_Ca:\t%6.2f\n", angle_Ca);
      printf ("Angle_N :\t%6.2f\n", angle_N );
   }

/* Set up hyper complex */

   /* sw1 is used as symbolic index */
   if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); }

   if (ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if (t1_counter % 2)  { tsadd(t8,2,4); tsadd(t12,2,4); }

   if (phase1 == 1)  { ;}                                                  /* CC */
   else if (phase1 == 2)  { tsadd(t3,3,4); tsadd(t2,3,4);}                 /* SC */
   else if (phase1 == 3)  { tsadd(t5,1,4); }                               /* CS */
   else if (phase1 == 4)  { tsadd(t3,3,4); tsadd(t2,3,4); tsadd(t5,1,4);}  /* SS */
   else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); }

   if (phase2 == 2)  { tsadd(t10,2,4); icosel = +1; }                      /* N  */
            else                       icosel = -1;

   tau1 = 1.0*t1_counter*cos_Cb/swTilt;
   tau2 = 1.0*t1_counter*cos_Ca/swTilt;
   tau3 = 1.0*t1_counter*cos_N/swTilt;

   tau1 = tau1/2.0;  tau2 = tau2/2.0;  tau3 = tau3/2.0;


/* CHECK VALIDITY OF PARAMETER RANGES */

    if (0.5*ni*(cos_N/swTilt) > timeTN - WFG3_START_DELAY)
       { printf(" ni is too big. Make ni equal to %d or less.\n",
         ((int)((timeTN - WFG3_START_DELAY)*2.0*swTilt/cos_N)));       psg_abort(1);}


/* BEGIN PULSE SEQUENCE */

status(A);
      delay(d1);
      if ( dm3[B] == 'y' ) lk_hold();  

      rcvroff();
      obsoffset(tof);          obspower(tpwr);        obspwrf(4095.0);
      set_c13offset("cab");     decpower(pwClvl);      decpwrf(4095.0);
      dec2power(pwNlvl);

      txphase(zero);           delay(1.0e-5);

      decrgpulse(pwC, zero, 0.0, 0.0);
      zgradpulse(gzlvl0, gt0);
      delay(gstab);

      decrgpulse(pwC, one, 0.0, 0.0);
      zgradpulse(0.7*gzlvl0, gt0);
      delay(gstab);


      txphase(one);      delay(1.0e-5);
      shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 0.0);

      txphase(zero);  decphase(zero); dec2phase(zero);
      delay(2.0e-6);

/* pulse sequence starts */


   rgpulse(pw,zero,0.0,0.0);                      /* 1H pulse excitation */
      dec2phase(zero);
      zgradpulse(gzlvl3, gt3);
      delay(lambda - gt3);

   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
      if (sel_flg[A] == 'n') txphase(three);
          else txphase(one);

      zgradpulse(gzlvl3, gt3);
      delay(lambda - gt3);

if (sel_flg[A] == 'n')
{
   rgpulse(pw, three, 0.0, 0.0);
      txphase(zero);
      zgradpulse(gzlvl4, gt4);                       /* Crush gradient G4 */
      delay(gstab);
                                             /* Begin of N to Ca transfer */
     dec2rgpulse(pwN, one, 0.0, 0.0);
     decphase(zero);      dec2phase(zero);
     delay(tauNCo - pwCO180/2 - 2.0e-6 - WFG3_START_DELAY);
}
else  /* active suppresion */
{
   rgpulse(pw,one,2.0e-6,0.0);

      initval(1.0,v6);   dec2stepsize(45.0);   dcplr2phase(v6);
      zgradpulse(gzlvl4, gt4);                       /* Crush gradient G4 */
      delay(gstab);
                                             /* Begin of N to Ca transfer */
   dec2rgpulse(pwN,one,0.0,0.0);
      dcplr2phase(zero);                                    /* SAPS_DELAY */
      delay(1.34e-3 - SAPS_DELAY - 2.0*pw);

      rgpulse(pw,one,0.0,0.0);
      rgpulse(2.0*pw,zero,0.0,0.0);
      rgpulse(pw,one,0.0,0.0);

      delay(tauNCo - pwCO180/2 - 1.34e-3 - 2.0*pw - WFG3_START_DELAY);
}

/* Begin transfer from HzNz to N(i)zC'(i-1)zCa(i)zCa(i-1)z */

      c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0);
      delay(tauNCa - tauNCo - pwCO180/2 - WFG3_START_DELAY -
            WFG3_STOP_DELAY - 2.0e-6);

                                     /* WFG3_START_DELAY */
   sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 2.0e-6, 2.0e-6);
      delay(tauNCa - 2.0e-6 - WFG3_STOP_DELAY);

   dec2rgpulse(pwN, zero, 0.0, 0.0);

/* End transfer from HzNz to N(i)zC'(i-1)zCa(i)zCa(i-1)z */

      zgradpulse(gzlvl5, gt5);
      delay(gstab);

/* Begin removal of Ca(i-1) */

   c13pulse("co", "cab", "sinc", 90.0, zero, 2.0e-6, 2.0e-6);
      zgradpulse(gzlvl6, gt6);
      delay(tauCaCo - gt6 - pwCab180 - pwCO180/2 - 6.0e-6);

      c13pulse("cab","co", "square", 180.0, zero, 2.0e-6, 2.0e-6);
   c13pulse("co","cab", "sinc", 180.0, zero, 2.0e-6, 2.0e-6);

      zgradpulse(gzlvl6, gt6);
      delay(tauCaCo - gt6 - pwCab180 - pwCO180/2 - 6.0e-6);

      c13pulse("cab","co", "square", 180.0, zero, 2.0e-6, 2.0e-6);
   c13pulse("co", "cab", "sinc", 90.0, one, 2.0e-6, 2.0e-6);

/* End removal of Ca(i-1) */

      /* xx Selective glycine pulse xx */
      set_c13offset("gly");
      setautocal();
      if (autocal[A] == 'y')
      {
        if(FIRST_FID)
        {
         ppm = getval("dfrq"); bw=9*ppm;
         gly90 = pbox_make("gly90","eburp1",bw,0.0,compC*pwC,pwClvl);
                               /* Gly selective 90 with null at 50ppm */
        }
        pwgly=gly90.pw; glypwr=gly90.pwr; glypwrf=gly90.pwrf;
        decpwrf(glypwrf);
        decpower(glypwr);                           
        decshaped_pulse("gly90",pwgly,zero,2.0e-6,0.0);
      }
      else
      {
       decpwrf(4095.0);
       decpower(glypwr);                           
       decshaped_pulse(glyshp,pwgly,zero,2.0e-6,0.0);
      }
      /* xx End of glycine selecton xx */

      zgradpulse(gzlvl7, gt7);
      set_c13offset("cab");
      delay(gstab);
      decphase(t3);

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
      {
         dec3unblank();
         dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
         dec3unblank();
         dec3phase(zero);
         delay(2.0e-6);
         setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
      }


/* ========== Ca to Cb transfer =========== */

   c13pulse("cab", "co", "square", 90.0, t3, 2.0e-6, 2.0e-6);
      decphase(zero);
      delay(tauCaCb - 4.0e-6);

   c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 2.0e-6);
      decphase(t2);
      delay(tauCaCb - 4.0e-6 );

/*   xxxxxxxxxxxxxxxxxxxxxx   13Cb EVOLUTION        xxxxxxxxxxxxxxxxxx    */

     c13pulse("cab", "co", "square", 90.0, t2, 2.0e-6, 0.0);      /*  pwCa90  */
     decphase(zero);

     if ((ni>1.0) && (tau1>0.0))
      {
         if (tau1 - 2.0*pwCab90/PI - WFG_START_DELAY - pwN - 2.0e-6
                 - PWRF_DELAY - POWER_DELAY > 0.0)
         {
            delay(tau1 - 2.0*pwCab90/PI - pwN - 2.0e-6 );

            dec2rgpulse(2.0*pwN, zero, 2.0e-6, 0.0);
            delay(tau1 - 2.0*pwCab90/PI  - pwN - WFG_START_DELAY
                                - 2.0e-6 - PWRF_DELAY - POWER_DELAY);
         }
         else
         {
            tsadd(t12,2,4);
            delay(2.0*tau1);
            delay(10.0e-6);                                    /* WFG_START_DELAY */
         sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                     zero, zero, zero, 2.0e-6, 0.0);
            delay(10.0e-6);
         }
      }
      else
      {
         tsadd(t12,2,4);
         delay(10.0e-6);                                    /* WFG_START_DELAY */
         sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                        zero, zero, zero, 2.0e-6, 0.0);
         delay(10.0e-6);
      }

   decphase(one);
   c13pulse("cab", "co", "square", 90.0, one, 2.0e-6, 0.0);      /*  pwCa90  */

/*   xxxxxxxxxxx End of 13Cb EVOLUTION - Start 13Ca EVOLUTION   xxxxxxxxxxxx    */

        decphase(zero);
        delay(tau2);

        sim3_c13pulse("", "co", "cab", "sinc", "", 0.0, 180.0, 2.0*pwN,
                    zero, zero, zero, 2.0e-6, 0.0);
        decphase(zero);

        delay(tauCaCb - 2*pwN - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY -
              2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6 );
   c13pulse("cab", "co", "square", 180.0, zero, 2.0e-6, 0.0);

        delay(tauCaCb- tau2 - pwCO180 - pwCab180/2 - WFG2_START_DELAY - 2.0*PWRF_DELAY
              -2.0*POWER_DELAY - WFG2_STOP_DELAY - 4.0e-6);

        c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0);
        decphase(t5);

   c13pulse("cab", "co", "square", 90.0, t5, 2.0e-6, 0.0);

/*   xxxxxxxxxxxxxxxxxxx End of 13Ca EVOLUTION        xxxxxxxxxxxxxxxxxx    */


      if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
      {
          dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
          dec3blank();
          setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
          dec3blank();
      }
/*  xxxxxxxxxxxxxxxxxxxx  N15 EVOLUTION & SE TRAIN   xxxxxxxxxxxxxxxxxxxxxxx  */     

      dcplrphase(zero);     dec2phase(t8);
      zgradpulse(gzlvl10, gt10);
      delay(gstab);

   dec2rgpulse(pwN, t8, 2.0e-6, 0.0);
      c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0); /*pwCO180*/
      decphase(zero);     dec2phase(t9);
      delay(timeTN - pwCO180 - WFG3_START_DELAY - tau3 - 4.0e-6);
                                    /* WFG3_START_DELAY  */
   sim3_c13pulse("", "cab", "co", "square", "", 0.0, 180.0, 2.0*pwN, 
                              zero, zero, t9, 2.0e-6, 2.0e-6);
     c13pulse("co", "cab", "sinc", 180.0, zero, 2.0e-6, 0.0); /*pwCO180*/

      dec2phase(t10);
      txphase(t4);

      delay(timeTN - pwCO180 + tau3 - 500.0e-6 - gt1 - 2.0*GRADIENT_DELAY-
             WFG_START_DELAY - WFG_STOP_DELAY );

      delay(0.2e-6);
      zgradpulse(gzlvl1, gt1);
      delay(gstab);

   sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);
      txphase(zero);     dec2phase(zero);
      zgradpulse(gzlvl11, gt11);
      delay(lambda - 1.3*pwN - gt11);

   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
      zgradpulse(gzlvl11, gt11);     txphase(one);
      dec2phase(t11);
      delay(lambda - 1.3*pwN - gt11);

   sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);
      txphase(zero);     dec2phase(zero);
      zgradpulse(gzlvl12, gt12);
      delay(lambda - 1.3*pwN - gt12);

   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
      dec2phase(zero);
      zgradpulse(gzlvl12, gt12);
      delay(lambda - 1.3*pwN - gt12);

   sim3pulse(pw, 0.0, pwN, zero, zero, zero, 0.0, 0.0);
      delay((gt1/10.0) + 1.0e-4 + 2.0*GRADIENT_DELAY + POWER_DELAY);

   rgpulse(2.0*pw, zero, 0.0, 0.0);
      dec2power(dpwr2);                           /* POWER_DELAY */
      zgradpulse(icosel*gzlvl2, gt1/10.0);            /* 2.0*GRADIENT_DELAY */

statusdelay(C, 1.0e-4 );
   setreceiver(t12);
   if (dm3[B]=='y') lk_sample();
}
Exemple #17
0
pulsesequence()
{
/* DECLARE VARIABLES */

 char       fsat[MAXSTR],
            fscuba[MAXSTR],
            f1180[MAXSTR],    /* Flag to start t1 @ halfdwell             */
            codecseq[MAXSTR],
            ddseq[MAXSTR], 
            shca180[MAXSTR],
            shca90[MAXSTR];

 int         phase,  ni, 
             t1_counter,   /* used for states tppi in t1           */ 
             tau2;

 double      tau1,         /*  t1 delay */
             taua,         /*  ~ 1/4JCH =  1.7 ms */
             taub,         /* ~ 1/2JCH for AX spin systems */
             taud,         /* ~ 1/4JCD 12.5 ms for AX spin system */
             TC,           /* carbon constant time period 1/2JCC */
             pwc,          /* 90 c pulse at dhpwr            */
             tsatpwr,      /* low level 1H trans.power for presat  */
             dhpwr,        /* power level for high power 13C pulses on dec1 */
             sw1,          /* sweep width in f1                    */ 
             time_T2,      /*  total relaxation time for T2 measurement */
             pwcodec,      /* pw90 for C' decoupling */
             dressed,      /* = 2 for seduce-1 decoupling */
             dpwrsed,
             pwd,          /* pulse width for D decoupling at dpwr3_D  */
             dresD,
             dpwr3_D,
             lk_wait,      /* delay for lk receiver recovery  */

             pwd1,         /* pulse width for D +/- pulses at dpwr3  */

             d_ca180,
             pwca180,

             pwca90,       /* ca selective pulse at 57.5 ppm */
             d_ca90,       /* power level for pwca90   */

             dpwr3_sl,     /* D power level for spin locking */
             pwd_sl,       /* pw for D at dpwr3_sl    */

             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gstab=getval("gstab"),

             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7,
             gzlvl8;

/*  variables commented out are already defined by the system      */


/* LOAD VARIABLES */

  getstr("fsat",fsat);
  getstr("f1180",f1180);
  getstr("fscuba",fscuba);
  getstr("codecseq",codecseq);
  getstr("ddseq",ddseq);
  getstr("shca180",shca180);
  getstr("shca90",shca90);

  taua   = getval("taua"); 
  taub   = getval("taub"); 
  taud   = getval("taud"); 
  TC = getval("TC");
  pwc = getval("pwc");
  tpwr = getval("tpwr");
  tsatpwr = getval("tsatpwr");
  dhpwr = getval("dhpwr");
  dpwr = getval("dpwr");
  phase = (int) ( getval("phase") + 0.5);
  sw1 = getval("sw1");
  ni = getval("ni");
  pwcodec = getval("pwcodec");
  dressed = getval("dressed");
  dpwrsed = getval("dpwrsed");
  pwd = getval("pwd");
  dresD = getval("dresD");
  dpwr3_D = getval("dpwr3_D");
  lk_wait = getval("lk_wait");

  pwd1 = getval("pwd1");

  d_ca180 = getval("d_ca180");
  pwca180 = getval("pwca180");

  pwca90 = getval("pwca90");
  d_ca90 = getval("d_ca90");

  dpwr3_sl = getval("dpwr3_sl"); 
  pwd_sl = getval("pwd_sl");

  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");

  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");

/* LOAD PHASE TABLE */

  settable(t1,16,phi1);
  settable(t2,2,phi2);
  settable(t3,16,phi3);
  settable(t4,4,phi4);
  settable(t6,4,phi6);
  settable(t7,8,phi7);
  settable(t5,16,rec_d);

/* CHECK VALIDITY OF PARAMETER RANGES */

    if( TC - 0.50*(ni-1)*1/(sw1) - WFG_STOP_DELAY 
             - gt6 - 102e-6 - POWER_DELAY 
             - PRG_START_DELAY - POWER_DELAY
             - 4.0e-6 - pwd1 - POWER_DELAY
             - PRG_START_DELAY - PRG_STOP_DELAY
             - 2.0e-6 - POWER_DELAY - 2.0e-6
             < 0.2e-6 ) 
    {
        printf(" ni is too big\n");
        psg_abort(1);
    }


    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    {
        printf("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y'))
    {
        printf("incorrect dec2 decoupler flags!  ");
        psg_abort(1);
    }

    if( tsatpwr > 6 )
    {
        printf("TSATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 48 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 49 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( dhpwr > 63 )
    {
        printf("don't fry the probe, DHPWR too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 

    if(gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || 
        gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 || gt7 > 15e-3
        || gt8 > 15e-3)
    {
        printf("gradients on for too long. Must be < 15e-3 \n");
        psg_abort(1);
    }

   if(dpwr3_D > 54)
   {
       printf("D decoupling power is too high\n");
       psg_abort(1);
   }

   if(lk_wait > .015 )
   {
       printf("lk_wait delay may be too long\n");
       psg_abort(1);
   }
/* change back to 48 */
   if(dpwr3_sl > 53) {
       printf("dpwr3_sl is too large; must be less than 53\n");
       psg_abort(1);
   }
/* change back to 250 */
   if(pwd_sl < 170.0e-6) {
       printf("pwd_sl is too large; Must be larger than 170 us\n");
       psg_abort(1);
   }


/* Calculation of IzCzDz relaxation delay */

   tau2 = (int) (d3+0.1);
   time_T2 = z_array[tau2];

   if(time_T2 > 0.030) {
       printf("time_T2 is too long; Must be less than 30 ms\n");
       psg_abort(1);
   }

/*  Phase incrementation for hypercomplex 2D data */

    if (phase == 2) {
      tsadd(t7,1,4);  
    }

/*  Set up f1180  tau1 = t1               */
   
    tau1 = d2;
    if(f1180[A] == 'y') {
        tau1 += ( 1.0 / (2.0*sw1) );
        if(tau1 < 0.4e-6) tau1 = 0.4e-6;
    }
        tau1 = tau1/2.0;


/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
      tsadd(t7,2,4);     
      tsadd(t5,2,4);    
    }


/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   decoffset(dof);
   obspower(tsatpwr);     /* Set transmitter power for 1H presaturation */
   decpower(dhpwr);       /* Set Dec1 power for hard 13C pulses         */
   dec2power(dpwr2);      /* Set Dec2 power for 15N decoupling       */

/* Presaturation Period */

status(B);


   if (fsat[0] == 'y')
   {
        rgpulse(d1,zero,2.0e-6,2.0e-6); /* presat */
        obspower(tpwr);    /* Set transmitter power for hard 1H pulses */
        delay(2.0e-5);
        if(fscuba[0] == 'y')
        {
                delay(2.2e-2);
                rgpulse(pw,zero,2.0e-6,0.0);
                rgpulse(2*pw,one,2.0e-6,0.0);
                rgpulse(pw,zero,2.0e-6,0.0);
                delay(2.2e-2);
        }
   }
   else
   {
    delay(d1);
   }

   obspower(tpwr);          /* Set transmitter power for hard 1H pulses */
   txphase(zero);
   dec2phase(zero);
   decphase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(C);

/* Prepare for signs of gradients 0 1 0 1 0 1   */

   mod2(ct,v1);

   rcvroff();
   lk_hold();
   delay(20.0e-6);

/* first ensure that magnetization does infact start on H and not C */

   decrgpulse(pwc,zero,2.0e-6,2.0e-6);

   delay(2.0e-6);
   zgradpulse(gzlvl1,gt1);
   delay(gstab);


/* this is the real start */

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(2.0e-6);
   zgradpulse(gzlvl2,gt2);
   delay(2.0e-6);

   delay(taua - gt2 - 4.0e-6);                 /* taua <= 1/4JCH */                          

   simpulse(2*pw,2*pwc,zero,zero,0.0,0.0);

   txphase(one); decphase(t1);

   delay(2.0e-6);
   zgradpulse(gzlvl2,gt2);
   delay(2.0e-6);

   delay(taua - gt2 - 4.0e-6); 

   rgpulse(pw,one,0.0,0.0);
   txphase(zero);

   delay(2.0e-6);
   zgradpulse(gzlvl3,gt3);
   delay(gstab);

   /* 2D decoupling on */
   dec3phase(one);
   dec3power(dpwr3);
   dec3rgpulse(pwd1,one,4.0e-6,0.0);
   dec3phase(zero);
   dec3unblank();
   dec3power(dpwr3_D);                    /* keep power down */
   dec3prgon(ddseq,pwd,dresD);
   dec3on();
   /* 2D decoupling on */

   decrgpulse(pwc,t1,2.0e-6,0.0); 

   decphase(zero);

   delay(taub - 2.0*pw - 2.0e-6);

   rgpulse(pw,zero,0.0,0.0);
   rgpulse(pw,t2,2.0e-6,0.0);

   delay(TC - taub 
           - gt4 - 102e-6
           - PRG_STOP_DELAY - POWER_DELAY - pwd1
           - 4.0e-6 - POWER_DELAY - 4.0e-6 - WFG_START_DELAY);

   /* 2D decoupling off */
   dec3off();
   dec3prgoff();
   dec3blank();
   dec3phase(three);
   dec3power(dpwr3);
   dec3rgpulse(pwd1,three,4.0e-6,0.0);
   /* 2D decoupling off */

   ifzero(v1);

   delay(2.0e-6);
   zgradpulse(gzlvl4,gt4);
   delay(gstab);

   elsenz(v1);

   delay(2.0e-6);
   zgradpulse(-1.0*gzlvl4,gt4);
   delay(gstab);

  endif(v1);

   initval(1.0,v3);
   decstepsize(353.0);
   dcplrphase(v3); 

   decpower(d_ca180);
   decshaped_pulse(shca180,pwca180,zero,4.0e-6,0.0);
   dcplrphase(zero); 

   ifzero(v1);

   delay(2.0e-6);
   zgradpulse(gzlvl4,gt4);
   delay(gstab);

   elsenz(v1);

   delay(2.0e-6);
   zgradpulse(-1.0*gzlvl4,gt4);
   delay(gstab);

  endif(v1);

   /* 2D decoupling on */  
   dec3phase(one);
   dec3power(dpwr3);
   dec3rgpulse(pwd1,one,4.0e-6,0.0);
   dec3phase(zero);
   dec3unblank();
   dec3power(dpwr3_D);   /* keep power down */ 
   dec3prgon(ddseq,pwd,dresD);
   dec3on();
   /* 2D decoupling on */

    delay(TC - taud - WFG_STOP_DELAY - gt4 - 102e-6
            - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY 
            - PRG_START_DELAY); 

   /* 2D decoupling off */
   dec3off();
   dec3prgoff();
   dec3blank();
   decphase(three);
   dec3power(dpwr3);
   dec3rgpulse(pwd1,three,4.0e-6,0.0);
   /* 2D decoupling off */

   delay(taud - PRG_STOP_DELAY -POWER_DELAY - pwd1 - 4.0e-6 
         - POWER_DELAY
         - WFG_START_DELAY - pwca90 - 4.0e-6
         - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6);

   decpower(d_ca90);
   decshaped_pulse(shca90,pwca90,t3,4.0e-6,0.0);
   decpower(dhpwr);

   decrgpulse(pwc,one,4.0e-6,0.0);

   /* T2 period */

   dec3power(dpwr3);   

      dec3rgpulse(pwd1,t4,2.0e-6,0.0);

      dec3phase(one);
      dec3power(dpwr3_sl);
      dec3rgpulse(time_T2,one,2.0e-6,2.0e-7);
      dec3phase(zero);

      dec3power(dpwr3);
      dec3rgpulse(pwd1,zero,2.0e-6,0.0);

       
      ifzero(v1);

      delay(2.0e-6);
      zgradpulse(gzlvl5,gt5);
      delay(gstab);

      elsenz(v1);

      delay(2.0e-6);
      zgradpulse(-1.0*gzlvl5,gt5);
      delay(gstab);

      endif(v1);

   decphase(zero);

   decrgpulse(pwc,t7,4.0e-6,0.0);

   /* C' decoupling on */
   decpower(dpwrsed);
   decprgon(codecseq,pwcodec,dressed);
   decon();
   /* C' decoupling on */

  if(taud + 3.0*POWER_DELAY + 2.0*PRG_START_DELAY + pwd1 + 4.0e-6 >= tau1) {
        
        delay(tau1);
        rgpulse(2.0*pw,zero,0.0,0.0);
        delay(taud + 3.0*POWER_DELAY + 2.0*PRG_START_DELAY + pwd1 + 4.0e-6
              - tau1);

        /* 2D decoupling on */  
        dec3phase(t6);
        dec3power(dpwr3);
        dec3rgpulse(pwd1,t6,4.0e-6,0.0);
        dec3phase(zero);
        dec3unblank();
        dec3power(dpwr3_D);   /* keep power down */ 
        dec3prgon(ddseq,pwd,dresD);
        dec3on();
        /* 2D decoupling on */

        delay(TC - taud + tau1 - POWER_DELAY 
              - PRG_START_DELAY - 2.0*pw
              - POWER_DELAY - pwd1 - 4.0e-6 - POWER_DELAY - PRG_START_DELAY
              - 3.0*POWER_DELAY - 2.0*PRG_START_DELAY - pwd1 - 4.0e-6 
              - PRG_STOP_DELAY - POWER_DELAY - pwd1 - 4.0e-6 
              - PRG_STOP_DELAY
              - POWER_DELAY - gt6 - 102e-6
              - WFG_START_DELAY);

        /* 2D decoupling off */  
        dec3off();
        dec3prgoff();
        dec3blank();
        dec3power(dpwr3);
        dec3rgpulse(pwd1,three,4.0e-6,0.0);
        /*  2D decoupler off */

        /* C' decoupling off */
        decoff();
        decprgoff();
        decpower(d_ca180);  /* set power for reburp  */
        /* C' decoupling off */

     }

     else {

        delay(taud);

        /* 2D decoupling on */  
        dec3phase(t6);
        dec3power(dpwr3);
        dec3rgpulse(pwd1,t6,4.0e-6,0.0);
        dec3phase(zero);
        dec3unblank();
        dec3power(dpwr3_D);   /* keep power down */ 
        dec3prgon(ddseq,pwd,dresD);
        dec3on();
        /* 2D decoupling on */

        delay(tau1 - taud - POWER_DELAY - PRG_START_DELAY
              - POWER_DELAY - pwd1 - 4.0e-6 
              - POWER_DELAY - PRG_START_DELAY);

        rgpulse(2.0*pw,zero,0.0,0.0);

        delay(TC 
              - 2.0*pw - PRG_STOP_DELAY - POWER_DELAY - pwd1 - 4.0e-6 
              - POWER_DELAY
              - PRG_STOP_DELAY - gt6 - 102e-6
              - WFG_START_DELAY);

        /* 2D decoupling off */  
        dec3off();
        dec3prgoff();
        dec3blank();
        dec3phase(three);
        dec3power(dpwr3);
        dec3rgpulse(pwd1,three,4.0e-6,0.0);
        /*  2D decoupler off */

        /* C' decoupling off */
        decoff();
        decprgoff();
        decpower(d_ca180);  /* set power for reburp  */
        /* C' decoupling off */

     }

   initval(1.0,v4);
   decstepsize(353.0);
   dcplrphase(v4); 

   ifzero(v1);

   delay(2.0e-6);
   zgradpulse(gzlvl6,gt6);
   delay(gstab);

   elsenz(v1);

   delay(2.0e-6);
   zgradpulse(-1.0*gzlvl6,gt6);
   delay(gstab);

   endif(v1);

   decshaped_pulse(shca180,pwca180,zero,0.0,0.0);
   dcplrphase(zero); 

   ifzero(v1);

   delay(2.0e-6);
   zgradpulse(gzlvl6,gt6);
   delay(gstab);

   elsenz(v1);

   delay(2.0e-6);
   zgradpulse(-1.0*gzlvl6,gt6);
   delay(gstab);

   endif(v1);

   /* C' decoupling on */
   decpower(dpwrsed);
   decprgon(codecseq,pwcodec,dressed);
   decon();
   /* C' decoupling on */

   /* 2D decoupling on */  
   dec3phase(one);
   dec3power(dpwr3);
   dec3rgpulse(pwd1,one,4.0e-6,0.0);
   dec3phase(zero);
   dec3unblank();
   dec3power(dpwr3_D);   /* keep power down */ 
   dec3prgon(ddseq,pwd,dresD);
   dec3on();
   /* 2D decoupling on */

   delay(TC - tau1 - WFG_STOP_DELAY - gt6
           - 102e-6 - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - pwd1
           - 4.0e-6 - POWER_DELAY - PRG_START_DELAY - PRG_STOP_DELAY
           - POWER_DELAY - 4.0e-6);

   /* C' decoupling off */
   decoff();
   decprgoff();
   decpower(dhpwr);
   /* C' decoupling off */

   decrgpulse(pwc,one,4.0e-6,0.0);

   /* 2D decoupling off */  
   dec3off();
   dec3prgoff();
   dec3blank();
   dec3phase(three);
   dec3power(dpwr3);
   dec3rgpulse(pwd1,three,4.0e-6,0.0);
   /*  2D decoupler off */

  ifzero(v1);

   delay(2.0e-6);
   zgradpulse(gzlvl7,gt7);
   delay(gstab);

  elsenz(v1);

   delay(2.0e-6);
   zgradpulse(-1.0*gzlvl7,gt7);
   delay(gstab);

  endif(v1);
  
   delay(lk_wait);   /* delay for lk receiver recovery */

   rgpulse(pw,zero,0.0,0.0);

   delay(2.0e-6);
   zgradpulse(gzlvl8,gt8);

  decphase(zero);

  delay(taua - gt8 - 4.0e-6);

  simpulse(2*pw,2*pwc,zero,zero,0.0,0.0);

   delay(2.0e-6);
   zgradpulse(gzlvl8,gt8);
   delay(2.0e-6);

   delay(taua - 2*POWER_DELAY - gt8 - 4.0e-6);

   decpower(dpwr);  /* Set power for decoupling */
   dec2power(dpwr2);  /* Set power for decoupling */

   rgpulse(pw,zero,0.0,rof2);

  lk_sample();

/*   rcvron();  */          /* Turn on receiver to warm up before acq */ 

/* BEGIN ACQUISITION */

status(D);
   setreceiver(t5);

}
Exemple #18
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
 	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */

 
int         icosel,          			  /* used to get n and p type */
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni = getval("ni"),
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
            t1a,                       /* time increments for first dimension */
            t1b,
            t1c,
	    tauCH = getval("tauCH"), 		         /* 1/4J delay for CH */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
            timeAB = getval("timeAB"),	   /* set timeAB=1.9e-3 to get only Ha */
            				  /* set timeAB=3.3e-3 to maximize Hb */
            				  /* set timeAB=2.8e-3 for both Ha/Hb */
	    zeta = 3.0e-3,
	    eta = 4.6e-3,
	    theta = 14.0e-3,
	    kappa = 5.4e-3,
	    lambda = 2.4e-3,
            sheila,  /* to transfer J evolution time hyperbolically into tau1 */
            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* 90 degree pulse at Cab(46ppm), first off-resonance null at CO (174ppm)     */
        pwC1,		              /* 90 degree pulse length on C13 at rf1 */
        rf1,		       /* fine power for 5.1 kHz rf for 600MHz magnet */

/* 180 degree pulse at Cab(46ppm), first off-resonance null at CO(174ppm)     */
        pwC2,		                    /* 180 degree pulse length at rf2 */
        rf2,		      /* fine power for 11.4 kHz rf for 600MHz magnet */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "proteincal".  SLP pulse shapes, "offC4" etc are called       */
/* directly from your shapelib.                    			      */
   pwC4 = getval("pwC4"),  /*180 degree pulse at Ca(56ppm) null at CO(174ppm) */
   pwC5 = getval("pwC5"),     /* 90 degree selective sinc pulse on CO(174ppm) */
   pwC7 = getval("pwC7"),    /* 180 degree selective sinc pulse on CO(174ppm) */
   rf4,	                           /* fine power for the pwC4 ("offC4") pulse */
   rf5,	                           /* fine power for the pwC5 ("offC5") pulse */
   rf7,	                           /* fine power for the pwC7 ("offC7") pulse */

   compH = getval("compH"),       /* adjustment for C13 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */
   phi7cal = getval("phi7cal"),  /* phase in degrees of the last C13 90 pulse */

   	pwH,	    		        /* H1 90 degree pulse length at tpwr1 */
   	tpwr1,	  	                            /* 7.3 kHz rf for DIPSI-2 */
   	DIPSI2time,     	        /* total length of DIPSI-2 decoupling */
        ncyc_dec,
        waltzB1=getval("waltzB1"),     /* RF strength for 1H decoupling      */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal  = getval("gzcal"),            /* g/cm to DAC conversion factor */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("mag_flg",mag_flg);
    getstr("TROSY",TROSY);



/*   LOAD PHASE TABLE    */

	settable(t3,1,phx);
	settable(t4,1,phx);
	settable(t5,2,phi5);
	settable(t6,2,phi6);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,2,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}




/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

    if( pwC > 24.0e-6*600.0/sfrq )
	{ printf("increase pwClvl so that pwC < 24*600/sfrq");
	  psg_abort(1); }

    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

    /* 90 degree pulse on Cab, null at CO 128ppm away */
	pwC1 = sqrt(15.0)/(4.0*128.0*dfrq);
        rf1 = (compC*4095.0*pwC)/pwC1;
	rf1 = (int) (rf1 + 0.5);
	
    /* 180 degree pulse on Cab, null at CO 128ppm away */
        pwC2 = sqrt(3.0)/(2.0*128.0*dfrq);
	rf2 = (4095.0*compC*pwC*2.0)/pwC2;
	rf2 = (int) (rf2 + 0.5);	
	
    /* 180 degree pulse on Ca, null at CO 118ppm away */
	rf4 = (compC*4095.0*pwC*2.0)/pwC4;
	rf4 = (int) (rf4 + 0.5);

    /* 90 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
	rf5 = (compC*4095.0*pwC*1.69)/pwC5;	/* needs 1.69 times more     */
	rf5 = (int) (rf5 + 0.5);		/* power than a square pulse */

    /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
	rf7 = (compC*4095.0*pwC*2.0*1.65)/pwC7;	/* needs 1.65 times more     */
	rf7 = (int) (rf7 + 0.5);		/* power than a square pulse */
	

    /* power level and pulse times for DIPSI 1H decoupling */
	DIPSI2time = 2.0*3.0e-3 + 2.0*14.0e-3 + 2.0*timeTN - 5.4e-3 + 0.5*pwC1 + 2.0*pwC5 + 5.0*pwN + 2.0*gt3 + 1.0e-4 + 4.0*GRADIENT_DELAY + 2.0*POWER_DELAY + 8.0*PRG_START_DELAY;
        pwH = 1.0/(4.0*waltzB1);
	ncyc_dec = (DIPSI2time*90.0)/(pwH*2590.0*4.0);
        ncyc_dec = (int) (ncyc_dec+0.5);
	pwH = (DIPSI2time*90.0)/(ncyc_dec*2590.0*4.0); /*fine correction of pwH */
	tpwr1 = 4095.0*(compH*pw/pwH);
	tpwr1 = (int) (2.0*tpwr1 + 0.5);   /* x2 because obs atten will be reduced by 6dB */
 


if (ix == 1)
      {
        fprintf(stdout, "\nNo of DIPSI-2 cycles = %4.1f\n",ncyc_dec);
        fprintf(stdout, "\nfine power for DIPSI-2 pulse =%6.1f\n",tpwr1);
      }


/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY)
       { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", 
  	 ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}
    if ( dpwr2 > 50 )
       { printf("dpwr2 too large! recheck value  "); psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value "); psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value "); psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y' )
       { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);}



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)   tsadd(t3,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }



/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;



/*  Hyperbolic sheila seems superior to original zeta approach  */

                                  /* subtract unavoidable delays from tauCH */
    tauCH = tauCH - gt0 - 2.0*GRADIENT_DELAY - 5.0e-5;

 if ((ni-1)/(2.0*sw1) > 2.0*tauCH)
    {
      if (tau1 > 2.0*tauCH) sheila = tauCH;
      else if (tau1 > 0) sheila = 1.0/(1.0/tau1+1.0/tauCH-1.0/(2.0*tauCH));
      else          sheila = 0.0;
    }
 else
    {
      if (tau1 > 0) sheila = 1.0/(1.0/tau1 + 1.0/tauCH - 2.0*sw1/((double)(ni-1)));
      else          sheila = 0.0;
    }
    t1a = tau1 + tauCH;
    t1b = tau1 - sheila;
    t1c = tauCH - sheila;



/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }


/* For ni<2 (calibration) set timeAB=1.5ms to get avoid signal cancellation between Ha and Hb */
   if (ni < 2.0) timeAB=1.5e-3;



/* BEGIN PULSE SEQUENCE */


status(A);
        delay(d1);
        if ( dm3[B] == 'y' )
           lk_sample();  /*freezes z0 correction, stops lock pulsing*/

        if ((ni/sw1-d2)>0)
         delay(ni/sw1-d2);       /*decreases as t1 increases for const.heating*/
        if ((ni2/sw2-d3)>0)
         delay(ni2/sw2-d3);      /*decreases as t2 increases for const.heating*/
        if ( dm3[B] == 'y' )
          { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/

        rcvroff();
        obspower(tpwr);
        decpower(pwClvl);
        dec2power(pwNlvl);
        decpwrf(rf0);
        obsoffset(tof);
        txphase(one);
        delay(1.0e-5);
        if (TROSY[A] == 'n')
        dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
        decrgpulse(pwC, zero, 0.0, 0.0);
        zgradpulse(gzlvl0, 0.5e-3);
        delay(1.0e-4);
        if (TROSY[A] == 'n')
        dec2rgpulse(pwN, one, 0.0, 0.0);
        decrgpulse(pwC, zero, 0.0, 0.0);
        zgradpulse(0.7*gzlvl0, 0.5e-3);
        delay(5.0e-4);

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          gzlvl0=0.0; gzlvl3=0.0; gzlvl4=0.0;   /* no gradients during 2H decoupling */
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }

        rgpulse(pw, one, 0.0, 0.0);                    /* 1H pulse excitation */
                                                                /* point a */
        txphase(zero);
        decphase(zero);
        zgradpulse(gzlvl0, gt0);                        /* 2.0*GRADIENT_DELAY */
        delay(5.0e-5);
        if((t1a -2.0*pwC) > 0.0) delay(t1a - 2.0*pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        delay(t1b);

        rgpulse(2.0*pw, zero, 0.0, 0.0);

        zgradpulse(gzlvl0, gt0);                        /* 2.0*GRADIENT_DELAY */
        txphase(t3);
        delay(5.0e-5);
        delay(t1c);
                                                                /* point b */
        rgpulse(pw, t3, 0.0, 0.0);
        zgradpulse(gzlvl3, gt3);
        delay(2.0e-4);
        decrgpulse(pwC, zero, 0.0, 0.0);
                                                                /* point c */
        zgradpulse(gzlvl4, gt4);
        decpwrf(rf2);
        delay(timeAB - gt4);

        simpulse(2*pw, pwC2, zero, zero, 0.0, 0.0);

        zgradpulse(gzlvl4, gt4);
        delay(timeAB - gt4);
                                                                /* point d */

/* ghc_co_nh STOPS HERE */
/* gcbca_co_nh STARTS HERE */


	decpwrf(rf1);                                         	/* point b */
   	decrgpulse(pwC1, zero, 2.0e-6, 0.0);
	obspwrf(tpwr1); obspower(tpwr-6);				      /* POWER_DELAY */
	obsprgon("dipsi2", pwH, 5.0);		          /* PRG_START_DELAY */
	xmtron();
                    						/* point c */
	decpwrf(rf0);
	decphase(t5);
	delay(zeta - 2.0*POWER_DELAY - PRG_START_DELAY - 0.5*10.933*pwC);

	decrgpulse(pwC*158.0/90.0, t5, 0.0, 0.0);
	decrgpulse(pwC*171.2/90.0, t6, 0.0, 0.0);
	decrgpulse(pwC*342.8/90.0, t5, 0.0, 0.0);	/* Shaka composite   */
	decrgpulse(pwC*145.5/90.0, t6, 0.0, 0.0);
	decrgpulse(pwC*81.2/90.0, t5, 0.0, 0.0);
	decrgpulse(pwC*85.3/90.0, t6, 0.0, 0.0);

	decpwrf(rf1);
	decphase(zero);
	delay(zeta - 0.5*10.933*pwC - 0.5*pwC1);
                     						/* point d */
   	decrgpulse(pwC1, zero, 0.0, 0.0);
	decphase(t5);
	decpwrf(rf5);
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }
	zgradpulse(gzlvl3, gt3);
	delay(2.0e-4);
	decshaped_pulse("offC5", pwC5, t5, 0.0, 0.0);
					      			/* point e */
	decpwrf(rf4);
 	decphase(zero);
	delay(eta);

	decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0);

	decpwrf(rf7);		
	dec2phase(zero);
	delay(theta - eta - pwC4 - WFG3_START_DELAY);
							 /* WFG3_START_DELAY */
	sim3shaped_pulse("", "offC7", "", 0.0, pwC7, 2.0*pwN, zero, zero, zero, 
								     0.0, 0.0);

	decpwrf(rf5);
	decpwrf(rf5);
	initval(phi7cal, v7);
	decstepsize(1.0);
	dcplrphase(v7);					       /* SAPS_DELAY */
	dec2phase(t8);
	delay(theta - SAPS_DELAY);
                           					/* point f */
	decshaped_pulse("offC5", pwC5, zero, 0.0, 0.0);

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

	zgradpulse(gzlvl3, gt3);
        if (TROSY[A]=='y') { xmtroff(); obsprgoff(); }
     	delay(2.0e-4);
	dcplrphase(zero);
	dec2rgpulse(pwN, t8, 0.0, 0.0);

	decpwrf(rf7);
	decphase(zero);
	dec2phase(t9);
	delay(timeTN - WFG3_START_DELAY - tau2);
							 /* WFG3_START_DELAY  */
	sim3shaped_pulse("", "offC7", "", 0.0, pwC7, 2.0*pwN, zero, zero, t9, 
								    0.0, 0.0);

	dec2phase(t10);
        decpwrf(rf4);

if (TROSY[A]=='y')
{
    if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4)
	{
	  txphase(t4);
          delay(timeTN - pwC4 - WFG_START_DELAY);          /* WFG_START_DELAY */
          decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')  magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else
	{
	  txphase(t4);
          delay(timeTN -pwC4 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);                    /* WFG_START_DELAY */
          decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0);
          delay(tau2);
	}
}
else
{
    if (tau2 > kappa)
	{
          delay(timeTN - pwC4 - WFG_START_DELAY);     	   /* WFG_START_DELAY */
          decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0);
          delay(tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);
          delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else if (tau2 > (kappa - pwC4 - WFG_START_DELAY))
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);                                  /* WFG_START_DELAY */
          decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0);
          delay(kappa -pwC4 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4)
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);
          delay(kappa - tau2 - pwC4 - WFG_START_DELAY);   /* WFG_START_DELAY */
          decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
	  obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);
    	  delay(kappa-tau2-pwC4-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);                    /* WFG_START_DELAY */
          decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0);
          delay(tau2);
	}
}                                                            	/* point g */
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
	if (TROSY[A]=='y')  rgpulse(pw, t4, 0.0, 0.0);
	else                sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 0.65*(pw + pwN) - gt5);
	else   delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(t11);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl6, gt5);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	dec2phase(t10);
	zgradpulse(gzlvl6, gt5);
	if (TROSY[A]=='y')   delay(lambda - 1.6*pwN - gt5);
	else   delay(lambda - 0.65*pwN - gt5);

	if (TROSY[A]=='y')   dec2rgpulse(pwN, t10, 0.0, 0.0); 
	else    	     rgpulse(pw, zero, 0.0, 0.0); 

	delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

	rgpulse(2.0*pw, zero, 0.0, rof1);
	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')    magradpulse(icosel*gzcal*gzlvl2, gt1/10.0);
        else   zgradpulse(icosel*gzlvl2, gt1/10.0);            /* 2.0*GRADIENT_DELAY */
        delay(gstab);
        rcvron();
statusdelay(C,1.0e-4 - rof1);
   if (dm3[B]=='y') lk_sample();

	setreceiver(t12);
}		 
pulsesequence()
{
/* DECLARE VARIABLES */
  char        fsat[MAXSTR],
              fscuba[MAXSTR],
              f1180[MAXSTR],      /* Flag to start t1 @ halfdwell           */
              sh_reb[MAXSTR],
              codec[MAXSTR],
              MQ_flg[MAXSTR],
              filter_flg[MAXSTR];
  int          phase,
               t1_counter;    /* used for states tppi in t1          */
  double       tau1,          /* t1 delay */
               taua,          /* set to exactly 1/4JCH */
               tsatpwr,       /* low level 1H trans.power for presat */
               sw1,           /* sweep width in f1                   */
               tpwr_cp,       /* power level for 1H CPMG     */
               pw_cp,         /* 1H pw for CPMG      */
               ncyc_cp,       /* number of CPMG cycles */
               time_T2,       /* total time for CPMG trains   */
               tau_cpmg,
               dhpwr,
               pwc,
               dmf_co,
               dpwr_co,
               dresco,
              gt0,
              gt1,
              gt2,
              gt3,
              gt4,
              gt5,
              gt6,
              gzlvl0,
              gzlvl1,
              gzlvl2,
              gzlvl3,
              gzlvl4,
              gzlvl5,
              gzlvl6,
              tpwr,
              pw,
              d_reb,
              pwc_reb,
              dpwr3_D,
              pwd,
              pwd1,
              tau_eq,
              pwn,
              dhpwr2;
/* LOAD VARIABLES */
  getstr("fsat",fsat);
  getstr("f1180",f1180);
  getstr("fscuba",fscuba);
  getstr("sh_reb",sh_reb);
  getstr("codec",codec);
  getstr("MQ_flg",MQ_flg);
  getstr("filter_flg",filter_flg);
  taua    = getval("taua");
  tpwr = getval("tpwr");
  tsatpwr = getval("tsatpwr");
  dpwr = getval("dpwr");
  phase = (int) ( getval("phase") + 0.5);
  sw1 = getval("sw1");
  tpwr_cp  = getval("tpwr_cp");
  pw_cp =  getval("pw_cp");
  ncyc_cp  = getval("ncyc_cp");
  time_T2  = getval("time_T2");
  dhpwr = getval("dhpwr");
  pwc = getval("pwc");
  pwn = getval("pwn");
  dhpwr2 = getval("dhpwr2");
  dmf_co = getval("dmf_co");
  dpwr_co = getval("dpwr_co");
  dresco = getval("dresco");
  gt0  = getval("gt0");
  gt1  = getval("gt1");
  gt2  = getval("gt2");
  gt3  = getval("gt3");
  gt4  = getval("gt4");
  gt5  = getval("gt5");
  gt6 = getval("gt6");
  gzlvl0  = getval("gzlvl0");
  gzlvl1  = getval("gzlvl1");
  gzlvl2  = getval("gzlvl2");
  gzlvl3  = getval("gzlvl3");
  gzlvl4  = getval("gzlvl4");
  gzlvl5  = getval("gzlvl5");
  gzlvl6  = getval("gzlvl6");
  tpwr = getval("tpwr");
  pw = getval("pw");
  d_reb = getval("d_reb");
  pwc_reb = getval("pwc_reb");
  dpwr3_D = getval("dpwr3_D");
  pwd = getval("pwd");
  pwd1 = getval("pwd1");
  tau_eq = getval("tau_eq");
/* LOAD PHASE TABLE */
  settable(t1,4,phi1);
  settable(t2,2,phi2);
  settable(t4,8,phi4);
  settable(t5,4,rec);
/* CHECK VALIDITY OF PARAMETER RANGES */
    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    {
         printf("incorrect dec1 decoupler flags! ");
         abort(1);
    }
    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y'))
    {
         printf("incorrect dec2 decoupler flags! ");
         abort(1);
    }
    if( tsatpwr > 6 )
    {
         printf("TSATPWR too large !!!  ");
         abort(1);
    }
    if( dpwr > 48 )
    {
         printf("don't fry the probe, DPWR too large!  ");
         abort(1);
    }
    if(tpwr_cp > 62)
    {
         printf("don't fry the probe, tpwr_cp too large: < 62! ");
         abort(1);
    }
    if(pw_cp < 9.5e-6) {
         printf("pw_cp is too low; > 9.5us\n");
         abort(1);
    }
    if( dpwr2 > -16 )
    {
         printf("don't fry the probe, DPWR2 too large!  ");
         abort(1);
    }
      if( pw > 20.0e-6 )
      {
            printf("dont fry the probe, pw too high ! ");
            abort(1);
      }
      if(gt1 > 3e-3 || gt2 > 3e-3 || gt3 > 3e-3 || gt4 > 3e-3
             || gt5 > 3e-3 || gt6 > 3e-3)
      {
            printf("gradients on for too long. Must be < 3e-3 \n");
            abort(1);
      }
      if(ncyc_cp > 80) {
            printf("ncyc_cp is too large; must be less than 81\n");
            abort(1);
      }
      if(time_T2 > .080) {
            printf("time_T2 is too large; must be less than 80 ms\n");
            abort(1);
      }
      if(ncyc_cp > 0) {
            tau_cpmg = time_T2/(4.0*ncyc_cp) - pw_cp;
            if(ix==1)
              printf("nuCPMG for curent experiment is (Hz): %5.3f\n",1/(4.0*(tau_cpmg+pw_cp)));
        }
        else {
            tau_cpmg = time_T2/(4.0) - pw_cp;
            if(ix==1)
              printf("nuCPMG for curent experiment is (Hz): not applicable");
        }
      if(tau_cpmg + pw_cp < 125e-6) {
           printf("tau_cpmg is too small; decrease ncyc_cp\n");
           abort(1);
      }
      if(dpwr_co > 42) {
           printf("dpwr_co is too high; < 42\n");
           abort(1);
    }
      if(dpwr3_D > 51) {
           printf("dpwr3_D is too high; < 52\n");
           abort(1);
      }
      if(dpwr3 > 59) {
           printf("dpwr3 is too high; < 60\n");
           abort(1);
    }
    if(ix==1)
        printf("If at 800 turn dpwr3=-16, pwd1=0\n");
/*    Phase incrementation for hypercomplex 2D data */
      if (phase == 2)
          tsadd(t1,1,4);
/*    Set up f1180    tau1 = t1               */
      tau1 = d2;
   if(MQ_flg[A] == 'n')
      tau1 = tau1 - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY
                - 2.0*pw - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY
                - 4.0e-6;
    else
      tau1 = tau1 - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY
              - 2.0*pw - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY
              - 4.0e-6;
     if(f1180[A] == 'y') {
          tau1 += ( 1.0 / (2.0*sw1));
          if(tau1 < 0.4e-6) tau1 = 0.4e-6;
     }
     if(tau1 < 0.4e-6)
          tau1 = 0.4e-6;
       tau1 = tau1/2.0;
/* Calculate modifications to phases for States-TPPI acquisition              */
   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
        tsadd(t1,2,4);
        tsadd(t5,2,4);
     }
/* BEGIN ACTUAL PULSE SEQUENCE */
status(A);
   rlpower(tsatpwr,TODEV);       /* Set transmitter power for 1H presaturation */
   rlpower(dhpwr,DODEV);         /* Set Dec1 power for 13C pulses          */
   rlpower(dhpwr2,DO2DEV);       /* Set Dec2 power for 15N pulses       */
   obsoffset(tof);
/* Presaturation Period */
status(B);
   if (fsat[0] == 'y')
   {
          delay(2.0e-5);
          rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */
          rlpower(tpwr,TODEV);    /* Set transmitter power for hard 1H pulses */
          delay(2.0e-5);
          if(fscuba[0] == 'y')
          {
                  delay(2.2e-2);
                  rgpulse(pw,zero,2.0e-6,0.0);
                  rgpulse(2*pw,one,2.0e-6,0.0);
                  rgpulse(pw,zero,2.0e-6,0.0);
                  delay(2.2e-2);
          }
   }
   else
   {
     delay(d1);
   }
   rlpower(tpwr,TODEV);               /* Set transmitter power for 1H CPMG pulses */
   txphase(zero);
   dec2phase(zero);
   decphase(zero);
   delay(1.0e-5);
/* Begin Pulses */
status(C);
   rcvroff();
   delay(20.0e-6);
   decrgpulse(pwc,zero,4.0e-6,0.0);
delay(2.0e-6);
rgradient('z',gzlvl1);
delay(gt1);
rgradient('z',0.0);
delay(250.0e-6);
rgpulse(pw,zero,0.0,0.0);
decpower(d_reb);
delay(2.0e-6);
rgradient('z',gzlvl2);
delay(gt2);
rgradient('z',0.0);
delay(150.0e-6);
if(filter_flg[A] == 'y')
   delay(taua - POWER_DELAY - gt2 - 152e-6
     - WFG2_START_DELAY - 0.5*pwc_reb - 4.0/PI*pw);
else
   delay(taua - POWER_DELAY - gt2 - 152e-6
     - WFG2_START_DELAY - 0.5*pwc_reb);
simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0);
txphase(one);
decpower(dhpwr);
decphase(t4);
delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - POWER_DELAY - gt2 - 152e-6 );
delay(2.0e-6);
rgradient('z',gzlvl2);
delay(gt2);
rgradient('z',0.0);
delay(150.0e-6);
if(filter_flg[A] == 'n')
  rgpulse(pw,one,0.0,0.0);
if(filter_flg[A] == 'y') {
decrgpulse(pwc,t4,0.,0.);
decpower(d_reb);
decphase(zero);
delay(2.0e-6);
rgradient('z',gzlvl0);
delay(gt0);
rgradient('z',0.0);
delay(150.0e-6);
delay(taua - POWER_DELAY - gt0 - 152e-6
     - WFG2_START_DELAY - 0.5*pwc_reb);
simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0);
txphase(one);
decpower(dhpwr);
decphase(t4);
delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - POWER_DELAY - gt0 - 152e-6 );
delay(2.0e-6);
rgradient('z',gzlvl0);
delay(gt0);
rgradient('z',0.0);
delay(150.0e-6);
decrgpulse(pwc,t4,0.0,0.0);
rgpulse(pw,one,0.0,0.0);
}
  decphase(t1);
  delay(2.0e-6);
  rgradient('z',gzlvl3);
  delay(gt3);
  rgradient('z',0.0);
  delay(250.0e-6);
  /* turn on 2H decoupling */
  dec3phase(one);
  dec3power(dpwr3);
  dec3rgpulse(pwd1,one,4.0e-6,0.0);
  dec3phase(zero);
  dec3unblank();
  dec3power(dpwr3_D);
  dec3prgon(dseq3,pwd,dres3);
  dec3on();
  /* turn on 2H decoupling */
  if(MQ_flg[A] == 'y') {
     rgpulse(pw,zero,2.0e-6,0.0);
     delay(2.0*pwn - PRG_START_DELAY - PRG_STOP_DELAY);
  }
  decrgpulse(pwc,t1,4.0e-6,0.0);
  decphase(zero);
  /* 13CO decoupling on */
  decpower(dpwr_co);
  decprgon(codec,1.0/dmf_co,dresco);
  decon();
  /* 13CO decoupling on */
  delay(tau1);
  rgpulse(2.0*pw,zero,0.0,0.0);
  dec2rgpulse(2.0*pwn,zero,0.0,0.0);
  delay(tau1);
  /* 13CO decoupling off */
  decoff();
  decprgoff();
  /* 13CO decoupling off */
  decpower(dhpwr);
  decrgpulse(pwc,zero,4.0e-6,0.0);
  if(MQ_flg[A] == 'y')
    rgpulse(pw,zero,0.0,0.0);
  /* turn off decoupling */
  dec3off();
  dec3prgoff();
  dec3blank();
  dec3phase(three);
  dec3power(dpwr3);
  dec3rgpulse(pwd1,three,4.0e-6,0.0);
  /* turn off decoupling */
  obspower(tpwr_cp);
  if(MQ_flg[A] == 'n') {
    delay(2.0e-6);
    rgradient('z',gzlvl4);
    delay(gt4);
    rgradient('z',0.0);
    delay(250.0e-6);
  }
  else {
    delay(2.0e-6);
    rgradient('z',-1.0*gzlvl4);
    delay(gt4);
    rgradient('z',0.0);
    delay(250.0e-6);
}
    /* now include a delay to allow the spin system to equilibrate */
    delay(tau_eq);
    rgpulse(pw_cp,t2,4.0e-6,0.0);
    txphase(one);
    /* start of the CPMG period 1    */
    if(ncyc_cp == 1) {
        delay(tau_cpmg - (2.0/PI)*pw_cp);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
    }
    if(ncyc_cp == 2) {
        delay(tau_cpmg - (2.0/PI)*pw_cp);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
        delay(tau_cpmg);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
    }
    if(ncyc_cp > 2) {
        delay(tau_cpmg - (2.0/PI)*pw_cp);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
        initval(ncyc_cp-2,v4);
        loop(v4,v5);
          delay(tau_cpmg);
          rgpulse(2.0*pw_cp,one,0.0,0.0);
          delay(tau_cpmg);
         endloop(v5);
        delay(tau_cpmg);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
      }
    txphase(t4); decphase(zero);
    rgpulse(2.0*pw_cp,t4,2.0e-6,2.0e-6);
    txphase(one);
    if(ncyc_cp == 1) {
        delay(tau_cpmg);
        rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one);
        delay(tau_cpmg - 2.0/PI*pw_cp);
    }
    if(ncyc_cp == 2) {
        delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0);
       delay(tau_cpmg);
       delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one);
       delay(tau_cpmg - 2.0/PI*pw_cp);
   }
   if(ncyc_cp > 2) {
       delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0);
       delay(tau_cpmg);
       initval(ncyc_cp-2,v4);
       loop(v4,v5);
         delay(tau_cpmg);
         rgpulse(2.0*pw_cp,one,0.0,0.0);
         delay(tau_cpmg);
        endloop(v5);
       delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one);
       delay(tau_cpmg - 2.0/PI*pw_cp);
     }
     rgpulse(pw_cp,zero,0.0,0.0);
     delay(2.0e-6);
     rgradient('z',gzlvl5);
     delay(gt5);
     rgradient('z',0.0);
     delay(250.0e-6);
     obspower(tpwr);
     rgpulse(pw,zero,4.0e-6,0.0);
     decpower(d_reb);
   delay(2.0e-6);
   rgradient('z',gzlvl6);
   delay(gt6);
   rgradient('z',0.0);
   delay(150.0e-6);
   delay(taua - POWER_DELAY - gt6 - 152e-6
          - WFG2_START_DELAY - 0.5*pwc_reb);
   simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0);
   delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - 2.0*POWER_DELAY - gt6 - 152e-6);
     rlpower(dpwr,DODEV); /* Set power for decoupling */
     rlpower(dpwr2,DO2DEV); /* Set power for decoupling */
     delay(2.0e-6);
     rgradient('z',gzlvl6);
     delay(gt6);
     rgradient('z',0.0);
     delay(150.0e-6);
     rgpulse(pw,zero,0.0,0.0);
/*     rcvron();  */          /* Turn on receiver to warm up before acq */
/* BEGIN ACQUISITION */
status(D);
     setreceiver(t5);
}
Exemple #20
0
pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */


 
int         t1_counter;  		        /* used for states tppi in t1 */


double      tau1,         				         /*  t1 delay */
	    TC = getval("TC"), 		   /* Constant delay 1/(JCC) ~ 13.5 ms */
            mix = getval("mix"),	   /* TOCSY mixing time */
            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* 90 degree pulse at Cab (46ppm), first off-resonance null at CO (174ppm)    */
        pwC1,		              /* 90 degree pulse length on C13 at rf1 */
        rf1,		       /* fine power for 5.1 kHz rf for 600MHz magnet */

/* 180 degree pulse at Ca (46ppm), first off-resonance null at CO(174ppm)     */
        pwC2,		                    /* 180 degree pulse length at rf2 */
        rf2,		      /* fine power for 11.4 kHz rf for 600MHz magnet */


   compC = getval("compC"),       /* adjustment for C13 amplifier compression */




	sw1 = getval("sw1"),

	gt1 = getval("gt1"),  		     
	gzlvl1 = getval("gzlvl1"),

	gt2 = getval("gt2"),				   
	gzlvl2 = getval("gzlvl2"),
        gstab = getval("gstab"),
        ppm,
        co_ofs = getval("co_ofs"),	/* offset for C' */
        co_bw = getval("co_bw"),	/* bandwidth for C' */
        copwr = getval("copwr"),	/* power for C' decoupling. Get from CO_dec.DEC*/
	codmf = getval("codmf"),	/* dmf for C' decoupling. Get from CO_dec.DEC  */
        codres = getval("codres"), 	/* dres for C' decoupling. Get from CO_dec.DEC */
        mixbw,                          /* band width for mixing shape */
        mixpwr = getval("mixpwr"),   	/* power for CC mixing. Get from ccmix.DEC*/
        mixdmf= getval("mixdmf"),  	/* dmf for CC decoupling. Get from ccmix.DEC  */
        mixdres = getval("mixdres"); 	/* dres for CC decoupling. Get from ccmix.DEC */ 



/*   LOAD PHASE TABLE    */

	settable(t1,2,phi1);
        settable(t2,1,phi2);
	settable(t3,1,phi3);
	settable(t12,2,rec);

        setautocal();           /* activate auto-calibration */

/*   INITIALIZE VARIABLES   */



    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

    /* 90 degree pulse on Cab, null at CO 128ppm away */
	pwC1 = sqrt(15.0)/(4.0*128.0*sfrq);
        rf1 = (compC*4095.0*pwC)/pwC1;
	rf1 = (int) (rf1 + 0.5);
	
    /* 180 degree pulse on Cab, null at CO 128ppm away */
        pwC2 = sqrt(3.0)/(2.0*128.0*sfrq);
	rf2 = (4095.0*compC*pwC*2.0)/pwC2;
	rf2 = (int) (rf2 + 0.5);	
	if( rf2 > 4295 )
         { printf("increase pwClvl"); psg_abort(1);}
	if(( rf2 > 4095 ) && (rf2 <4296)) rf2=4095; 



/* CHECK VALIDITY OF PARAMETER RANGES */


      if ( 0.5*ni*1/(sw1) > TC)
       { printf(" ni is too big. Make ni equal to %d or less.\n", 
         ((int)((TC)*2.0*sw1))); psg_abort(1);}


/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)    tsadd(t1,1,4);  
   
    tau1 = d2;
    tau1 = tau1/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t1,2,4); tsadd(t12,2,4); }


	if (autocal[0] == 'y')
        {
         if(FIRST_FID)
         {
          ppm = getval("sfrq");
          ofs_check(C13ofs);
          co_ofs = (C13ofs+118.0)*ppm; co_bw = 20*ppm; 
          CO_dec = pbox_Dsh("CO_dec", "SEDUCE1", co_bw, co_ofs, pwC*compC, pwClvl); 
          copwr = CO_dec.pwr; codmf = CO_dec.dmf; codres = CO_dec.dres;
          mixbw = sw1;
          mix_seq = pbox_Dsh("mix_seq", "FLOPSY8", mixbw, 0.0, pwC*compC, pwClvl);
          mixpwr = mix_seq.pwr; mixdmf = mix_seq.dmf; mixdres = mix_seq.dres; 
         }
        }
/* BEGIN PULSE SEQUENCE */

status(A);
   	delay(d1);
        if ( dm3[B] == 'y' )
          { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/

	rcvroff();
	obspower(pwClvl);
	decpower(tpwr);
 	dec2power(dpwr2);
        dec3power(dpwr3);
	obspwrf(rf1);			/*fine power for Cab 90 degree pulse */
	obsoffset(tof);			/*13C carrier at 46 ppm */
	txphase(zero);
   	delay(1.0e-5);

status(B);        
        rgpulse(pwC1, t1, 0.0,0.0);


/*   xxxxxxxxxxxxxxxxxxxxxx   13Cab Constant Time Evolution       xxxxxxxxxxxxxxxxxx    */

       obspower(copwr); obspwrf(rf0); txphase(zero);
       obsunblank();
       xmtron();
       obsprgon("CO_dec",1.0/codmf,codres);

       if ( dm3[B] == 'y' )   /* turns on 2H decoupling  */
            {
            dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
            dec3unblank();
            dec3phase(zero);
            delay(2.0e-6);
            setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
            delay(TC - tau1 - pwC2/2 - 1/dmf3);
            }
       else
       delay(TC - tau1 - pwC2/2);
       obsprgoff();
       xmtroff();
       obsblank();
       obspower(pwClvl); obspwrf(rf2);
       rgpulse(pwC2, zero, 0.0, 0.0);
       obspower(copwr); obspwrf(rf0); txphase(zero);
       obsunblank();
       xmtron();
       obsprgon("CO_dec",1.0/codmf,codres);

       if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           delay(TC + tau1 - pwC2/2 - 1/dmf3);
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }
       else
       delay(TC + tau1 - pwC2/2);

       obsprgoff();
       xmtroff();
       obsblank();
       obspower(pwClvl); obspwrf(rf1);

       rgpulse(pwC1,t2,0.0,0.0);
       status(C);
       zgradpulse(gzlvl1, gt1);
       delay(gstab);
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxx  FLOPSY 8 Spin lock for mixing xxxxxxxxxxxxxxxxxxxx	*/
       obspower(mixpwr); obspwrf(rf0); txphase(zero);
       obsunblank();
       xmtron();
       obsprgon("mix_seq",1.0/mixdmf,mixdres);
       delay(mix-gt1-gt2);
       obsprgoff();
       xmtroff();
       obsblank();
       obspower(pwClvl); obspwrf(rf1);
       zgradpulse(gzlvl2,gt2);
       delay(gstab);
       rgpulse(pwC1,t3,0.0,rof2);
       getelem(t3,ct,v3);
       add(v3,one,v3);
       obspower(pwClvl); obspwrf(rf0);
       delay(350e-6-rof2);
       rgpulse(pwC*2.0,v3,0.0,0.0);
       delay(350e-6);
       
       status(D);
       setreceiver(t12); 
       
}		 
Exemple #21
0
pulsesequence()
{
/* DECLARE VARIABLES */

 char       fsat[MAXSTR],
	    fscuba[MAXSTR],
            f1180[MAXSTR],    /* Flag to start t1 @ halfdwell             */
            f2180[MAXSTR],    /* Flag to start t2 @ halfdwell             */
            C_flg[MAXSTR],
            dtt_flg[MAXSTR];

 int         phase, phase2, ni, ni2, 
             t1_counter,   /* used for states tppi in t1           */ 
             t2_counter;   /* used for states tppi in t2           */ 

 double      tau1,         /*  t1 delay */
             tau2,         /*  t2 delay */
             taua,         /*  ~ 1/4JHC =  1.6 ms */
             taub,         /*    1/6JCH =   1.1 ms  */
             BigTC,        /* Carbon constant time period = 1/4Jcc = 7.0 ms */ 
             BigTC1,       /* Carbon constant time period2 < 1/4Jcc to account for relaxation */ 
             pwN,          /* PW90 for 15N pulse @ pwNlvl           */
             pwC,          /* PW90 for c nucleus @ pwClvl         */
             pwcrb180,      /* PW180 for C 180 reburp @ rfrb */
             pwClvl,        /* power level for 13C pulses on dec1  */
             compC, compH,  /* compression factors for H1 and C13 amps */
	     rfrb,       /* power level for 13C reburp pulse     */
             pwNlvl,       /* high dec2 pwr for 15N hard pulses    */
             sw1,          /* sweep width in f1                    */             
             sw2,          /* sweep width in f2                    */             
             tofps,        /* tof for presat                       */ 

	     gt0,
             gt1,
             gt2,
             gt3,
             gt4,

             gstab,
             gzlvl0,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
        
             decstep1,
             bw, ofs, ppm,

             pwd1,
             dpwr3_D,
             pwd,
             tpwrs,
             pwHs, 
             dof_me,
             
             tof_dtt,
             tpwrs1,
             pwHs1,

             dpwrsed,
             pwsed,
             dressed,
              
             rfrb_cg,
             pwrb_cg; 
             
   
/* LOAD VARIABLES */

  getstr("fsat",fsat);
  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("fscuba",fscuba);

  getstr("C_flg",C_flg);
  getstr("dtt_flg",dtt_flg); 

  tofps  = getval("tofps");
  taua   = getval("taua"); 
  taub   = getval("taub"); 
  BigTC  = getval("BigTC");
  BigTC1 = getval("BigTC1");
  pwC = getval("pwC");
  pwcrb180 = getval("pwcrb180");
  pwN = getval("pwN");
  tpwr = getval("tpwr");
  pwClvl = getval("pwClvl");
  compC = getval("compC");
  compH = getval("compH");
  dpwr = getval("dpwr");
  pwNlvl = getval("pwNlvl");
  phase = (int) ( getval("phase") + 0.5);
  phase2 = (int) ( getval("phase2") + 0.5);
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  ni = getval("ni");
  ni2 = getval("ni2");

  gt0 = getval("gt0");
  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
 
  gstab = getval("gstab");
  gzlvl0 = getval("gzlvl0");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
 
  decstep1 = getval("decstep1");

  pwd1 = getval("pwd1");
  dpwr3_D = getval("dpwr3_D");
  pwd = getval("pwd");
  pwHs = getval("pwHs");
  dof_me = getval("dof_me");

  pwHs1 = pwHs; 
  tpwrs=-16.0; tpwrs1=tpwrs;
  tof_dtt = getval("tof_dtt");

  dpwrsed = -16;
  pwsed = 1000.0;
  dressed = 90.0;
  pwrb_cg = 0.0;  
  setautocal();                      /* activate auto-calibration */   

  if(FIRST_FID)                                         /* make shapes */
  {
    ppm = getval("dfrq"); 
    bw = 80.0*ppm;  
    rb180 = pbox_make("rb180P", "reburp", bw, 0.0, compC*pwC, pwClvl);
    bw = 8.125*ppm;  ofs = -24.0*ppm;
    rb180_cg = pbox_make("rb180_cgP", "reburp", bw, ofs, compC*pwC, pwClvl);
    bw = 20.0*ppm;  ofs = 136.0*ppm;
    cosed = pbox("COsedP", CODEC, CODECps, dfrq, compC*pwC, pwClvl);
    if(taua < (gt4+106e-6+pwHs)) printf("gt4 or pwHs may be too long! ");
    if(taub < rb180_cg.pw) printf("rb180_cgP pulse may be too long! ");
  }
  pwcrb180 = rb180.pw;   rfrb = rb180.pwrf;             /* set up parameters */
  pwrb_cg = rb180_cg.pw; rfrb_cg = rb180_cg.pwrf;       /* set up parameters */
  tpwrs = tpwr - 20.0*log10(pwHs/((compH*pw)*1.69));    /* sinc=1.69xrect */
  tpwrs = (int) (tpwrs); tpwrs1=tpwrs;              
  dpwrsed = cosed.pwr; pwsed = 1.0/cosed.dmf; dressed = cosed.dres;

/* LOAD PHASE TABLE */

  settable(t1,2,phi1);
  settable(t2,4,phi2);
  settable(t3,4,phi3);
  settable(t4,4,phi4);
  settable(t5,8,phi5);
  settable(t6,8,phi6);
  settable(t7,8,phi7);
  settable(t8,1,phi8);
  settable(t9,2,rec);

/* CHECK VALIDITY OF PARAMETER RANGES */

    if( BigTC - 0.5*(ni2-1)*1/(sw2) - WFG_STOP_DELAY - POWER_DELAY 
              - 4.0e-6
              < 0.2e-6 )
    {
        printf(" ni2 is too big\n");
        psg_abort(1);
    }


    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    {
        printf("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y'))
    {
        printf("incorrect dec2 decoupler flags! Should be 'nnnn' ");
        psg_abort(1);
    }

    if( satpwr > 6 )
    {
        printf("SATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 48 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > -16 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 

    if( pwN > 200.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 

    if( pwC > 200.0e-6 )
    {
        printf("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( pwcrb180 > 500.0e-6 )
    {  
        printf("dont fry the probe, pwcrb180 too high ! ");
        psg_abort(1);
    } 

    if(dpwr3 > 51)
    {
       printf("dpwr3 is too high; < 52\n");
       psg_abort(1);
    }

    if(dpwr3_D > 49)
    {
       printf("dpwr3_D is too high; < 50\n");
       psg_abort(1);
    }

   if(d1 < 1)
    {
       printf("d1 must be > 1\n");
       psg_abort(1);
    }

   if(dpwrsed > 48)
   {
       printf("dpwrsed must be less than 49\n");
       psg_abort(1);
   }

    if(  gt0 > 5.0e-3 || gt1 > 5.0e-3  || gt2 > 5.0e-3 ||
         gt3 > 5.0e-3 || gt4 > 5.0e-3  )
    {  printf(" all values of gti must be < 5.0e-3\n");
        psg_abort(1);
    }

   if(ix==1) {
     printf("make sure that BigTC1 is set properly for your application\n");
     printf("7 ms, neglecting relaxation \n");
   }

/*  Phase incrementation for hypercomplex 2D data */

    if (phase == 2) {
      tsadd(t1,1,4);
      tsadd(t2,1,4);
      tsadd(t3,1,4);
      tsadd(t4,1,4);
    }

    if (phase2 == 2)
      tsadd(t8,1,4);

/*  Set up f1180  tau1 = t1               */
   
    tau1 = d2;
    tau1 = tau1 - 2.0*pw - 4.0/PI*pwC - POWER_DELAY - 2.0e-6 - PRG_START_DELAY
           - PRG_STOP_DELAY - POWER_DELAY - 2.0e-6;

    if(f1180[A] == 'y') {
        tau1 += ( 1.0 / (2.0*sw1) );
        if(tau1 < 0.4e-6) tau1 = 4.0e-7;
    }
        tau1 = tau1/2.0;

/*  Set up f2180  tau2 = t2               */

    tau2 = d3;
    if(f2180[A] == 'y') {
        tau2 += ( 1.0 / (2.0*sw2) ); 
        if(tau2 < 0.4e-6) tau2 = 4.0e-7;
    }
        tau2 = tau2/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
      tsadd(t1,2,4);     
      tsadd(t9,2,4);    
    }

   if( ix == 1) d3_init = d3 ;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) {
      tsadd(t8,2,4);  
      tsadd(t9,2,4);    
    }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obspower(satpwr);      /* Set transmitter power for 1H presaturation */
   decpower(pwClvl);        /* Set Dec1 power for hard 13C pulses         */
   dec2power(pwNlvl);      /* Set Dec2 to low power       */

/* Presaturation Period */

status(B);
   if (fsat[0] == 'y')
   {
        obsoffset(tofps);
	delay(2.0e-5);
        rgpulse(d1,zero,2.0e-6,2.0e-6);  /* presat with transmitter */
   	obspower(tpwr);      /* Set transmitter power for hard 1H pulses */
	delay(2.0e-5);
	if(fscuba[0] == 'y')
	{
		delay(2.2e-2);
		rgpulse(pw,zero,2.0e-6,0.0);
		rgpulse(2.0*pw,one,2.0e-6,0.0);
		rgpulse(pw,zero,2.0e-6,0.0);
		delay(2.2e-2);
	}
   }
   else
   {
    delay(d1);
   }
   obspower(tpwr);           /* Set transmitter power for hard 1H pulses */
   obsoffset(tof);
   txphase(t1);
   decphase(zero);
   dec2phase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(C);

   decoffset(dof_me);

   lk_hold();

   rcvroff();
   delay(20.0e-6);

/* ensure that magnetization originates on 1H and not 13C */

   if(dtt_flg[A] == 'y') {
     obsoffset(tof_dtt);
     obspower(tpwrs1);
     shaped_pulse("H2Osinc",pwHs1,zero,10.0e-6,0.0);
     obspower(tpwr);

     obsoffset(tof); 
   }
 
   decrgpulse(pwC,zero,0.0,0.0);
 
   zgradpulse(gzlvl0,gt0);
   delay(gstab);

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   zgradpulse(gzlvl1,gt1);
   delay(gstab);

   delay(taua - gt1 -gstab); 

   simpulse(2.0*pw,2.0*pwC,zero,zero,0.0,0.0);
   txphase(one);

   delay(taua - gt1 - gstab); 
   	
   zgradpulse(gzlvl1,gt1);
   delay(gstab);


   rgpulse(pw,one,0.0,0.0);

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   decoffset(dof);  /* jump 13C to 40 ppm */

   zgradpulse(gzlvl2,gt2);
   delay(gstab);

   decrgpulse(pwC,t1,4.0e-6,0.0); decphase(zero); 

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);
   delay(BigTC - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t2);

   decpwrf(4095.0);
   delay(BigTC - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t2,0.0,0.0);
   decphase(zero);

   /* turn on 2H decoupling */
   dec3phase(one);
   dec3power(dpwr3); 
   dec3rgpulse(pwd1,one,4.0e-6,0.0); 
   dec3phase(zero);
   dec3unblank();
   dec3power(dpwr3_D);
   dec3prgon(dseq3,pwd,dres3);
   dec3on();
   /* turn on 2H decoupling */

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);

   delay(BigTC1 - POWER_DELAY - 4.0e-6 - pwd1
         - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t3);

   decpwrf(4095.0);
   delay(BigTC1 - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t3,0.0,0.0);
   decpwrf(rfrb_cg); decphase(zero);

   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - POWER_DELAY - WFG_START_DELAY);
   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(rfrb);
   
   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY
         - 2.0e-6 - WFG_START_DELAY);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0);
   dcplrphase(zero);

   decpwrf(rfrb_cg); decphase(zero);

   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - SAPS_DELAY 
                  - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(4095.0); decphase(t4);

   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t4,0.0,0.0);

   if(C_flg[A] == 'n') {

   decpower(dpwrsed); decunblank(); decphase(zero); delay(2.0e-6);
   decprgon(cosed.name,pwsed,dressed);
   decon();
  
   delay(tau1);
   rgpulse(2.0*pw,zero,0.0,0.0);
   delay(tau1);

   decoff();
   decprgoff();
   decblank();
   decpower(pwClvl);
   }

   else 
    simpulse(2.0*pw,2.0*pwC,zero,zero,4.0e-6,4.0e-6);

   decrgpulse(pwC,t5,2.0e-6,0.0);
   decpwrf(rfrb_cg); decphase(zero);

   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - POWER_DELAY - WFG_START_DELAY);
   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(rfrb);

   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY
         - 2.0e-6 - WFG_START_DELAY);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0);
   dcplrphase(zero);

   decpwrf(rfrb_cg); decphase(zero);

   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - SAPS_DELAY 
                  - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0);
   decpwrf(4095.0); decphase(t6);

   if(taub > pwrb_cg)
     delay(taub/2.0 - pwrb_cg/2.0 - WFG_STOP_DELAY - POWER_DELAY);

   decrgpulse(pwC,t6,0.0,0.0);
   decphase(zero);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);
   delay(BigTC1 - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t7);

   decpwrf(4095.0);
   delay(BigTC1 - WFG_STOP_DELAY - POWER_DELAY
          - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1);

   /* 2H decoupling off */
   dec3off();
   dec3prgoff();
   dec3blank();
   dec3power(dpwr3);
   dec3rgpulse(pwd1,three,4.0e-6,0.0);
   /* 2H decoupling off */

   decrgpulse(pwC,t7,0.0,0.0);
   decphase(zero);

   delay(tau2);
   rgpulse(2.0*pw,zero,0.0,0.0);

   initval(1.0,v3);
   decstepsize(decstep1);
   dcplrphase(v3);

   decpwrf(rfrb);
   delay(BigTC - 2.0*pw - POWER_DELAY - WFG_START_DELAY);

   decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0);
   dcplrphase(zero);
   decphase(t8);
   decpwrf(4095.0);

   delay(BigTC - tau2 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6);

   decrgpulse(pwC,t8,4.0e-6,0.0);


   decoffset(dof_me);

   zgradpulse(gzlvl3,gt3);
   delay(gstab);

   lk_sample();

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   rgpulse(pw,zero,4.0e-6,0.0);

   zgradpulse(gzlvl4,gt4);
   delay(gstab);

   delay(taua - gt4 -gstab 
         - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
         - pwHs - WFG_STOP_DELAY - POWER_DELAY - 2.0e-6);

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   simpulse(2.0*pw,2.0*pwC,zero,zero,2.0e-6,0.0);

   /* shaped_pulse */
   obspower(tpwrs);
   shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0);
   obspower(tpwr);
   /* shaped_pulse */

   zgradpulse(gzlvl4,gt4);
   delay(gstab);
 
   delay(taua - POWER_DELAY - WFG_START_DELAY
         - pwHs - WFG_STOP_DELAY - POWER_DELAY 
         - gt4 - gstab - 2.0*POWER_DELAY);

   decpower(dpwr);  /* Set power for decoupling */
   dec2power(dpwr2);

/*   rcvron();  */          /* Turn on receiver to warm up before acq */ 

/* BEGIN ACQUISITION */

status(D);
   setreceiver(t9);

}
Exemple #22
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */
/* sequence are declared and initialized as 0.0 in bionmr.h, and       */
/* reinitialized below  */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            COrefoc[MAXSTR],
 	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */
 
int         t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni2 = getval("ni2");

double      d2_init=0.0,  		        /* used for states tppi in t1 */
	    d3_init=0.0,  	 	        /* used for states tppi in t2 */
	    tau1,         				         /*  t1 delay */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
            timeNCA = getval("timeNCA"),
            timeC = getval("timeC"),
            lambda = 1.0/(4.0*getval("JNH")),
            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */

   pwS1,					 /* length of square 90 on Ca */
   phshift,        /*  phase shift induced on Ca by 180 on CO in middle of t1 */
   pwS2,					       /* length of 180 on CO */
   pwS = getval("pwS"), /* used to change 180 on CO in t1 for 1D calibrations */
   pwZ,					   /* the largest of pwS2 and 2.0*pwN */
   pwZ1,	        /* the largest of pwS2 and 2.0*pwN for 1D experiments */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("COrefoc",COrefoc);
    getstr("TROSY",TROSY);


/*   LOAD PHASE TABLE    */

	settable(t3,2,phi3);
	settable(t4,1,phx);
	settable(t5,4,phi5);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,4,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}




/*   INITIALIZE VARIABLES   */

 	kappa = 5.4e-3;

   pwHs = 1.7e-3*500.0/sfrq;       /* length of H2O flipback, 1.7ms at 500 MHz*/
   widthHd = 34.0;  /* bandwidth of H1 WALTZ16 decoupling, 7.3 kHz at 600 MHz */
   pwHd = h1dec90pw("WALTZ16", widthHd, 0.0);     /* H1 90 length for WALTZ16 */
 
    /* get calculated pulse lengths of shaped C13 pulses */
        pwS1 = c13pulsepw("co", "ca", "sinc", 90.0); 
        pwS2 = c13pulsepw("ca", "co", "square", 180.0);

    /* get calculated pulse lengths of shaped C13 pulses
	pwS1 = c13pulsepw("ca", "co", "square", 90.0); 
	pwS2 = c13pulsepw("co", "ca", "sinc", 180.0); */

    /* the 180 pulse on CO at the middle of t1 */
	if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0;
        if (pwS2 > 2.0*pwN) pwZ = pwS2; else pwZ = 2.0*pwN;
        if ((pwS==0.0) && (pwS2>2.0*pwN)) pwZ1=pwS2-2.0*pwN; else pwZ1=0.0;
	if ( ni > 1 )     pwS = 180.0;
	if ( pwS > 0 )   phshift = 130.0;
	else             phshift = 130.0;



/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY)
       { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", 
  	 ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); 	     psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}	
    if ( dpwr2 > 46 )
       { printf("dpwr2 too large! recheck value  ");		     psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value ");	             psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value ");	             psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y')
       { text_error("Choose either TROSY='n' or dm2='n' ! ");        psg_abort(1);}



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)   tsadd(t3,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }



/* BEGIN PULSE SEQUENCE */

status(A);
   	delay(d1);
 	if (dm3[B]=='y') lk_hold();

	rcvroff();
        set_c13offset("co");
	obsoffset(tof);
	obspower(tpwr);
 	obspwrf(4095.0);
	decpower(pwClvl);
	decpwrf(4095.0);
 	dec2power(pwNlvl);
	txphase(zero);
   	delay(1.0e-5);

	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

   	rgpulse(pw,zero,0.0,0.0);                      /* 1H pulse excitation */

   	dec2phase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

   	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

   	txphase(one);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

 	rgpulse(pw, one, 0.0, 0.0);

if (TROSY[A]=='y')
   {txphase(two);
    shiftedpulse("sinc", pwHs, 90.0, 0.0, two, 2.0e-6, 0.0);
    zgradpulse(gzlvl3, gt3);
    delay(2.0e-4);
    dec2rgpulse(pwN, zero, 0.0, 0.0);

    delay(0.5*kappa - 2.0*pw);

    rgpulse(2.0*pw, two, 0.0, 0.0);

    decphase(zero);
    dec2phase(zero);
    delay(timeTN - 0.5*kappa - WFG3_START_DELAY);
   }
else
   {txphase(zero);
    shiftedpulse("sinc", pwHs, 90.0, 0.0, zero, 2.0e-6, 0.0);
    zgradpulse(gzlvl3, gt3);
    delay(2.0e-4);
    dec2rgpulse(pwN, zero, 0.0, 0.0);

    delay(kappa - POWER_DELAY - PWRF_DELAY - pwHd - 4.0e-6 - PRG_START_DELAY);
					   /* delays for h1waltzon subtracted */
    h1waltzon("WALTZ16", widthHd, 0.0);
    decphase(zero);
    dec2phase(zero);
    delay(timeTN - kappa - WFG3_START_DELAY);
   }

        c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);      /*  pwS2  */

        delay(timeNCA - timeTN - timeC);

        dec2rgpulse(2.0*pwN,zero,0.0,0.0);

	c13pulse("ca", "co", "sinc", 180.0, zero, 0.0, 0.0);
	decphase(zero);
	delay(timeNCA - timeC + 1.3*pwN);

        c13pulse("co", "ca", "sinc", 90.0, zero, 0.0, 0.0);      /*  pwS1  */
        delay(timeC);

        c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 2.0e-6);
        sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); /*  pwS2  */
       
        delay(timeC);

        c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 2.0e-6);
        c13pulse("co", "ca", "sinc", 90.0, one, 0.0, 0.0);      /*  pwS1  */        
	dec2rgpulse(pwN, zero, 0.0, 0.0);

	if (TROSY[A]=='n')   h1waltzoff("WALTZ16", widthHd, 0.0);
	zgradpulse(gzlvl3, gt3);
 	delay(2.0e-4);
        if(dm3[B] == 'y')			  /*optional 2H decoupling on */
         {dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);} 
    	h1waltzon("WALTZ16", widthHd, 0.0);

/*   xxxxxxxxxxxxxxxxxxxxxx       13Ca EVOLUTION        xxxxxxxxxxxxxxxxxx    */

        set_c13offset("ca");
	c13pulse("ca", "co", "square", 90.0, t3, 2.0e-6, 0.0);      /*  pwS1  */
	decphase(zero);

if ((ni>1.0) && (tau1>0.0))          /* total 13C evolution equals d2 exactly */
   {           

   /*  2.0*pwS1/PI compensates for evolution at 64% rate during 90 */
     if (tau1 - 2.0*pwS1/PI - WFG3_START_DELAY - 0.5*pwZ - 2.0e-6
			 	- 2.0*PWRF_DELAY - 2.0*POWER_DELAY > 0.0)
	{
	delay(tau1 - 2.0*pwS1/PI - WFG3_START_DELAY - 0.5*pwZ - 2.0e-6 - 2.0*PWRF_DELAY - 2.0*POWER_DELAY);
							 
	sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,zero, zero, zero, 2.0e-6, 0.0);
	initval(phshift, v3);
	decstepsize(1.0);
	dcplrphase(v3);  				         
	delay(tau1 - 2.0*pwS1/PI  - SAPS_DELAY - 0.5*pwZ - WFG_START_DELAY - 2.0e-6 - 2.0*PWRF_DELAY - 2.0*POWER_DELAY);
         }
      else
	 {
	initval(180.0, v3);
	decstepsize(1.0);
	dcplrphase(v3);  				        
	delay(2.0*tau1 - 4.0*pwS1/PI - SAPS_DELAY - WFG_START_DELAY - 2.0e-6 - PWRF_DELAY - POWER_DELAY);
	  } 

     /*  delay(tau1);
       sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,zero, zero, zero, 2.0e-6, 0.0);
       delay(tau1);
       c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0);
       sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,zero, zero, zero, 2.0e-6, 0.0);*/ 
   }

else if (ni==1.0) 
   {
        delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1 + WFG_START_DELAY);
	sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, pwS, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0);
	initval(phshift, v3);
	decstepsize(1.0);
	dcplrphase(v3); 
	delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1);
   }

else	 	  
   {
        delay(10.0e-6);					  	
        c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0);
	delay(10.0e-6); 

     /*  delay(tau1);
       sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,zero, zero, zero, 2.0e-6, 0.0);
       delay(tau1);
       c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0);
       sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,zero, zero, zero, 2.0e-6, 0.0); */

   }
        decphase(t5);
	c13pulse("ca", "co", "square", 90.0, t5, 2.0e-6, 0.0);      /*  pwS1  */

	h1waltzoff("WALTZ16", widthHd, 0.0);
        if(dm3[B] == 'y')		         /*optional 2H decoupling off */
         {dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank();
          setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank();}

        set_c13offset("co");
/*  xxxxxxxxxxxxxxxxxxxx  N15 EVOLUTION & SE TRAIN   xxxxxxxxxxxxxxxxxxxxxxx  */	
	ihn_evol_se_train("co", "ca"); /* common part of sequence in bionmr.h  */

if (dm3[B] == 'y')  lk_sample();

}
Exemple #23
0
pulsesequence() {

// Define Variables and Objects and Get Parameter Values

   DSEQ dec = getdseq("H");
   strncpy(dec.t.ch,"dec",3);
   putCmd("chHtppm='dec'\n");
   strncpy(dec.s.ch,"dec",3);
   putCmd("chHspinal='dec'\n");

   DSEQ dec2 = getdseq("Y");
   strncpy(dec2.t.ch,"dec2",3);
   putCmd("chYtppm='dec2'\n");
   strncpy(dec2.s.ch,"dec2",3);
   putCmd("chYspinal='dec2'\n");

//--------------------------------------
// Copy Current Parameters to Processed
//-------------------------------------

   putCmd("groupcopy('current','processed','acquisition')");

// Dutycycle Protection

   DUTY d = init_dutycycle();
   d.dutyon = getval("pwX90");
   d.dutyoff = d1 + 4.0e-6;
   d.c1 = d.c1 + (!strcmp(dec.seq,"tppm"));
   d.c1 = d.c1 + ((!strcmp(dec.seq,"tppm")) && (dec.t.a > 0.0));
   d.t1 = getval("rd") + getval("ad") + at;
   d.c2 = d.c2 + (!strcmp(dec.seq,"spinal"));
   d.c2 = d.c2 + ((!strcmp(dec.seq,"spinal")) && (dec.s.a > 0.0));
   d.t2 = getval("rd") + getval("ad") + at;
   if ((d.c1 == -1) && (d.c2 == -1)) { 
      d.c1 = ((!strcmp(dec2.seq,"tppm")) && (dec2.t.a == 0.0));
      d.t1 = getval("rd") + getval("ad") + at;
      d.c2 = ((!strcmp(dec2.seq,"spinal")) && (dec2.s.a == 0.0));
      d.t2 = getval("rd") + getval("ad") + at;
   } 
   d = update_dutycycle(d);
   abort_dutycycle(d,10.0);

// Set Phase Tables

   settable(phX90,4,table1);
   settable(phRec,4,table2);
   setreceiver(phRec);

// Begin Sequence

   txphase(phX90); decphase(zero); dec2phase(zero);
   obspwrf(getval("aX90"));
   obsunblank(); decunblank(); _unblank34();
   delay(d1);
   sp1on(); delay(2.0e-6); sp1off(); delay(2.0e-6);

// X Direct Polarization

   rgpulse(getval("pwX90"),phX90,0.0,0.0);

// Begin Acquisition

   _dseqon(dec);   
   if (NUMch > 2) _dseqon(dec2);
   if (NUMch > 3) dec3blank();
   obsblank();
   delay(getval("rd"));
   startacq(getval("ad"));
   acquire(np, 1/sw);
   endacq();
   _dseqoff(dec);   
   if (NUMch > 2) _dseqoff(dec2);
   if (NUMch > 3) dec3unblank();
   obsunblank(); decunblank();
}
Exemple #24
0
void pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
 	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */
 
int         icosel,          			  /* used to get n and p type */
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
            PRexp,                          /* projection-reconstruction flag */
	    ni = getval("ni"),
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    tauCH = getval("tauCH"), 		         /* 1/4J delay for CH */
	    zeta = getval("zeta"),   /* zeta delay, 0.006 for 1D, 0.011 for 2D*/
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
	    timeCH = 1.1e-3,				      /* other delays */
	    timeAB = 3.3e-3,
	    kappa = 5.4e-3,
	    lambda = 2.4e-3,
            csa, sna,
            pra = M_PI*getval("pra")/180.0,
        bw, ofs, ppm,                            /* temporary Pbox parameters */            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* 90 degree pulse at Cab(46ppm), first off-resonance null at CO (174ppm)     */
        pwC1,		              /* 90 degree pulse length on C13 at rf1 */
        rf1,		       /* fine power for 5.1 kHz rf for 600MHz magnet */

/* 180 degree pulse at Cab(46ppm), first off-resonance null at CO(174ppm)     */
        pwC2,		                    /* 180 degree pulse length at rf2 */
        rf2,		      /* fine power for 11.4 kHz rf for 600MHz magnet */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "biocal".  SLP pulse shapes, "offC7" etc are called       */
/* directly from your shapelib.                    			      */
   pwC7,                     /* 180 degree selective sinc pulse on CO(174ppm) */
   rf7,	                           /* fine power for the pwC7 ("offC7") pulse */

   compH = getval("compH"),       /* adjustment for C13 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

   	pwH,	    		        /* H1 90 degree pulse length at tpwr1 */
   	tpwr1,	  	                     /* 9.2 kHz rf magnet for DIPSI-2 */
   	DIPSI2time,     	        /* total length of DIPSI-2 decoupling */
        ncyc_dec,
        waltzB1=getval("waltzB1"),

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal  = getval("gzcal"),            /* g/cm to DAC conversion factor */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("mag_flg",mag_flg);
    getstr("TROSY",TROSY);
 
    csa = cos(pra);
    sna = sin(pra);


/*   LOAD PHASE TABLE    */

	settable(t3,1,phx);
	settable(t4,1,phx);
   if (TROSY[A]=='y')
       {settable(t8,2,phi8T);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,2,recT);}
    else
       {settable(t8,2,phi8);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}




/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }
 
    /* set zeta to 6ms for 1D spectral check, otherwise it will be the    */
    /* value in the dg2 parameter set (about 11ms) for 2D/13C and 3D work */
        if (ni>1)  zeta = zeta;
	else  zeta = 0.006;
	
    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

      setautocal(); /* activate auto-calibration flags */ 

      if (autocal[0] == 'n') 
      {
    /* 90 degree pulse on Cab, null at CO 128ppm away */
	pwC1 = sqrt(15.0)/(4.0*128.0*dfrq);
        rf1 = 4095.0*(compC*pwC/pwC1);
	rf1 = (int) (rf1 + 0.5);
	
    /* 180 degree pulse on Cab, null at CO 128ppm away */
        pwC2 = sqrt(3.0)/(2.0*128.0*dfrq);
	rf2 = (4095.0*compC*pwC*2.0)/pwC2;
	rf2 = (int) (rf2 + 0.5);	
	if( rf2 > 4295 )
       { printf("increase pwClvl"); psg_abort(1);}
	if(( rf2 < 4296 ) && (rf2>4095)) rf2=4095;
	
    /* 180 degree one-lobe sinc pulse on CO, null at Ca 118m away */
        pwC7 = getval("pwC7");
	rf7 = (compC*4095.0*pwC*2.0*1.65)/pwC7;	/* needs 1.65 times more     */
	rf7 = (int) (rf7 + 0.5);		/* power than a square pulse */
	}
      else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
      {  
        if(FIRST_FID)                                            /* call Pbox */
        {          
          ppm = getval("dfrq"); 
          bw = 128.0*ppm; ofs = bw;           
          offC1 = pbox_Rcal("square90n", bw, compC*pwC, pwClvl);
          offC2 = pbox_Rcal("square180n", bw, compC*pwC, pwClvl); 
          bw = 118.0*ppm; 
          offC7 = pbox_make("offC7", "sinc180n", bw, ofs, compC*pwC, pwClvl);
          if (dm3[B] == 'y') H2ofs = 3.2;     
          ofs_check(H1ofs, C13ofs, N15ofs, H2ofs); 
        }
        pwC1 = offC1.pw; rf1 = offC1.pwrf;
        pwC2 = offC2.pw; rf2 = offC2.pwrf;
        pwC7 = offC7.pw; rf7 = offC7.pwrf;  

   /* Example of semi-automatic calibration - use parameters, if they exist : 

        if ((autocal[0] == 's') || (autocal[1] == 's'))       
        { 
          if (find("pwC1") > 0) pwC1 = getval("pwC1");
          if (find("rf1") > 0) rf1 = getval("rf1");
        }
   */
      }	
	
    /* power level and pulse times for DIPSI 1H decoupling */
	DIPSI2time = 2.0*zeta + 2.0*timeTN - 5.4e-3 + pwC1 + 5.0*pwN + gt3 + 5.0e-5 + 2.0*GRADIENT_DELAY + 3.0*POWER_DELAY;
        pwH=1.0/(4.0*waltzB1);

	ncyc_dec = (DIPSI2time*90.0)/(pwH*2590.0*4.0);
        ncyc_dec = (int) (ncyc_dec +0.5);

	pwH = (DIPSI2time*90.0)/(ncyc_dec*2590.0*4.0);   /* adjust pwH  */
	tpwr1 = 4095.0*(compH*pw/pwH);
	tpwr1 = (int) (2.0*tpwr1 + 0.5);  /* x2 because obs atten will be reduced by 6dB  */
 
/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( 0.5*ni*1/(sw1) > timeAB - gt4 - WFG_START_DELAY - pwC7 )
       { printf(" ni is too big. Make ni equal to %d or less.\n",
         ((int)((timeAB - gt4 - WFG_START_DELAY - pwC7)*2.0*sw1))); psg_abort(1);}
    PRexp = 0;
    if((pra > 0.0) && (pra < 90.0)) PRexp = 1;

    if (PRexp) 
    {
      if( 0.5*ni*sna/sw1 > timeTN - WFG3_START_DELAY)
        { printf(" ni is too big. Make ni equal to %d or less.\n",
        ((int)((timeTN - WFG3_START_DELAY)*2.0*sw1/sna))); psg_abort(1);}
    }
    else 
    {
      if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY)
       { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", 
         ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);}
    }

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}
    if ( dpwr2 > 50 )
       { printf("dpwr2 too large! recheck value  "); psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value "); psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value "); psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y')
       { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);}


/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)   tsadd(t3,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }


/*  Set up f1180  */
   
    
    if(PRexp)                /* set up Projection-Reconstruction experiment */
      tau1 = d2*csa;
    else
      tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    if(PRexp)
      tau2 = d2*sna;
    else
    {
      tau2 = d3;
      if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    }
    tau2 = tau2/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }



/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   	delay(d1);
        if ( dm3[B] == 'y' )
          { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/

	rcvroff();
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rf0);
	obsoffset(tof);
	txphase(zero);
   	delay(1.0e-5);
        if (TROSY[A] == 'n')
	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
        if (TROSY[A] == 'n')
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

   	rgpulse(pw,zero,0.0,0.0);                      /* 1H pulse excitation */

   	decphase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(tauCH - gt0);

   	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

   	txphase(one);
	decphase(t3);
	zgradpulse(gzlvl0, gt0);
	delay(tauCH - gt0);

   	rgpulse(pw, one, 0.0, 0.0);
	zgradpulse(gzlvl3, gt3);
	delay(2.0e-4);
      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          gt4=0.0;             /* no gradients during 2H decoupling */
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }
   	decrgpulse(pwC, t3, 0.0, 0.0);                         	
								/* point a */	
	txphase(zero);
	decphase(zero);
        decpwrf(rf7);
     	delay(tau1);

						        /*  WFG3_START_DELAY  */
	sim3shaped_pulse("", "offC7", "", 0.0, pwC7, 2.0*pwN, zero, zero, zero, 
								     0.0, 0.0);

	zgradpulse(gzlvl4, gt4);
        decpwrf(rf2);	
        if ( pwC7 > 2.0*pwN)
     	   {delay(timeCH - pwC7 - gt4 - WFG3_START_DELAY - 2.0*pw);}
        else
     	   {delay(timeCH - 2.0*pwN - gt4 - WFG3_START_DELAY - 2.0*pw);}

     	rgpulse(2.0*pw,zero,0.0,0.0);

     	delay(timeAB - timeCH);

     	decrgpulse(pwC2, zero, 0.0, 0.0);

	zgradpulse(gzlvl4, gt4);
        decpwrf(rf7);
     	delay(timeAB - tau1 - gt4 - WFG_START_DELAY - pwC7 - 2.0e-6);

 							/*  WFG_START_DELAY   */
     	decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0);
                                                              
	decpwrf(rf1);					       	/* point b */
   	decrgpulse(pwC1, zero, 2.0e-6, 0.0);                   		
	obspwrf(tpwr1); obspower(tpwr-6);				       /* POWER_DELAY */
	obsprgon("dipsi2", pwH, 5.0);		           /* PRG_START_DELAY */
	xmtron();
								/* point c */
	dec2phase(zero);
	decpwrf(rf2);
	delay(zeta - POWER_DELAY - PRG_START_DELAY);

	sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, zero, 0.0, 0.0); 

	decpwrf(rf1);
	dec2phase(t8);
	delay(zeta);
								/* point d */
	decrgpulse(pwC1, zero, 0.0, 0.0);                        
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

	zgradpulse(gzlvl3, gt3);
        if (TROSY[A]=='y') { xmtroff(); obsprgoff(); }
 	delay(2.0e-4);
	dec2rgpulse(pwN, t8, 0.0, 0.0);
								/* point e */

	decpwrf(rf2);
	decphase(zero);
	dec2phase(t9);
	delay(timeTN - WFG3_START_DELAY - tau2);
							 /* WFG3_START_DELAY  */
	sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, t9, 0.0, 0.0);

	dec2phase(t10);
        decpwrf(rf7);

if (TROSY[A]=='y')
{
    if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4)
	{
	  txphase(t4);
          delay(timeTN - pwC7 - WFG_START_DELAY);          /* WFG_START_DELAY */
          decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')  magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else
	{
	  txphase(t4);
          delay(timeTN -pwC7 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);                    /* WFG_START_DELAY */
          decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0);
          delay(tau2);
	}
}
else
{
    if (tau2 > kappa)
	{
          delay(timeTN - pwC7 - WFG_START_DELAY);     	   /* WFG_START_DELAY */
          decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0);
          delay(tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);
          delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else if (tau2 > (kappa - pwC7 - WFG_START_DELAY))
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);                                     /* WFG_START_DELAY */
          decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0);
          delay(kappa -pwC7 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4)
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);
          delay(kappa - tau2 - pwC7 - WFG_START_DELAY);    /* WFG_START_DELAY */
          decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);
	}
    else
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY);
          xmtroff();
	  obsprgoff();					    /* PRG_STOP_DELAY */
	  txphase(t4);
    	  delay(kappa-tau2-pwC7-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspwrf(4095.0); obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - 2.0*POWER_DELAY);                    /* WFG_START_DELAY */
          decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0);
          delay(tau2);
	}
}                                                            	/* point f */
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
	if (TROSY[A]=='y')  rgpulse(pw, t4, 0.0, 0.0);
	else                sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 0.65*(pw + pwN) - gt5);
	else   delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(t11);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl6, gt5);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	dec2phase(t10);
	zgradpulse(gzlvl6, gt5);
	if (TROSY[A]=='y')   delay(lambda - 1.6*pwN - gt5);
	else   delay(lambda - 0.65*pwN - gt5);

	if (TROSY[A]=='y')   dec2rgpulse(pwN, t10, 0.0, 0.0); 
	else    	     rgpulse(pw, zero, 0.0, 0.0); 

	delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

	rgpulse(2.0*pw, zero, 0.0, rof1);
	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')    magradpulse(icosel*gzcal*gzlvl2, gt1/10.0);
        else   zgradpulse(icosel*gzlvl2, gt1/10.0);            /* 2.0*GRADIENT_DELAY */
        delay(gstab);
        rcvron();
statusdelay(C,1.0e-4 - rof1);
   if (dm3[B]=='y') lk_sample();

	setreceiver(t12);
}		 
pulsesequence()
{
/* DECLARE VARIABLES */

 char       satmode[MAXSTR],
	    fscuba[MAXSTR],
            fc180[MAXSTR],    /* Flag for checking sequence              */
            ddseq[MAXSTR],    /* 2H decoupling seqfile */
            fCTCa[MAXSTR],    /* Flag for CT or non_CT on Ca dimension */
            sel_flg[MAXSTR],
	    cbdecseq[MAXSTR];

 int         icosel,
             ni = getval("ni"),
             t1_counter;   /* used for states tppi in t1           */ 

 double      tau1,         /*  t1 delay */
             tau2,         /*  t2 delay */
             tau3,         /*  t2 delay */
             taua,         /*  ~ 1/4JNH =  2.25 ms */
             taub,         /*  ~ 1/4JNH =  2.25 ms */
             tauc,         /*  ~ 1/4JCaC' =  4 ms */
             taud,         /*  ~ 1/4JCaC' =  4.5 ms if bigTCo can be set to be
				less than 4.5ms and then taud can be smaller*/
             zeta,        /* time for C'-N to refocuss set to 0.5*24.0 ms */
             bigTCa,      /* Ca T period */
             bigTCo,      /* Co T period */
             bigTN,       /* nitrogen T period */
             BigT1,       /* delay to compensate for gradient gt5 */
             sw1,          /* sweep width in f1                    */             
             sw2,          /* sweep width in f2                    */             
	     sphase,       /* small angle phase shift */
	     sphase1,
	     sphase2,      /* used only for constant t2 period */
             pwS4,         /* selective CO 180 */
             pwS3,         /* selective Ca 180 */
             pwS1,         /* selecive Ca 90 */
             pwS2,         /* selective CO 90 */
	     cbpwr,        /* power level for selective CB decoupling */
	     cbdmf,        /* pulse width for selective CB decoupling */
             cbres,        /* decoupling resolution of CB decoupling */

             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gt9,
             gt10,
             gt11,
             gt12,
             gstab,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7, 
             gzlvl8, 
             gzlvl9, 
             gzlvl10, 
             gzlvl11, 
             gzlvl12,

             compH = getval("compH"),         /* adjustment for amplifier compression */
             pwHs = getval ("pwHs"),         /* H1 90 degree pulse at tpwrs */
             tpwrs,                          /* power for pwHs ("H2osinc") pulse */

             pwClvl = getval("pwClvl"),                 /* coarse power for C13 pulse */
             pwC = getval("pwC"),             /* C13 90 degree pulse length at pwClvl */

             pwNlvl = getval("pwNlvl"),                       /* power for N15 pulses */
             pwN = getval("pwN"),             /* N15 90 degree pulse length at pwNlvl */

	     swCa = getval("swCa"),
	     swCO = getval("swCO"),
	     swN  = getval("swN"),
	     swTilt,      /* This is the sweep width of the tilt vector */

	     cos_N, cos_CO, cos_Ca,
	     angle_N, angle_CO, angle_Ca;
             angle_N=0.0;                      /*initialize variable*/

/* LOAD VARIABLES */


  getstr("satmode",satmode);
  getstr("fc180",fc180);
  getstr("fscuba",fscuba);
  getstr("ddseq",ddseq);
  getstr("fCTCa",fCTCa);

  getstr("sel_flg",sel_flg);

  taua   = getval("taua"); 
  taub   = getval("taub"); 
  tauc   = getval("tauc"); 
  taud   = getval("taud"); 
  zeta  = getval("zeta");
  bigTCa = getval("bigTCa");
  bigTCo = getval("bigTCo");
  bigTN = getval("bigTN");
  BigT1 = getval("BigT1");
  tpwr = getval("tpwr");
  dpwr = getval("dpwr");
  dpwr3 = getval("dpwr3");
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  sphase = getval("sphase");
  sphase1 = getval("sphase1");
  sphase2 = getval("sphase2");

  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");
  gt9 = getval("gt9");
  gt10 = getval("gt10");
  gt11 = getval("gt11");
  gt12 = getval("gt12");

  gstab = getval("gstab");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");
  gzlvl9 = getval("gzlvl9");
  gzlvl10 = getval("gzlvl10");
  gzlvl11 = getval("gzlvl11");
  gzlvl12 = getval("gzlvl12");

  /* Load variable */
     cbpwr = getval("cbpwr");
     cbdmf = getval("cbdmf");
     cbres = getval("cbres");
     tau1 = 0;
     tau2 = 0;
     tau3 = 0;
     cos_N = 0;
     cos_CO = 0;
     cos_Ca = 0;

     getstr("cbdecseq", cbdecseq);

/* LOAD PHASE TABLE */

  settable(t1,1,phi1);
  settable(t2,1,phi2);
  settable(t3,4,phi3);
  settable(t4,1,phi4);
  settable(t5,1,phi5);
  settable(t7,4,phi7);
  settable(t8,4,phi8);
  settable(t6,4,rec);

   pwS1=c13pulsepw("ca", "co", "square", 90.0);
   pwS2=c13pulsepw("co", "ca", "sinc", 90.0);
   pwS3=c13pulsepw("ca", "co", "square", 180.0);
   pwS4=c13pulsepw("co", "ca", "sinc", 180.0);

   tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));   /*needs 1.69 times more*/
   tpwrs = (int) (tpwrs);                          /*power than a square pulse */


/* CHECK VALIDITY OF PARAMETER RANGES */

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    {
        printf("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y'))
    {
        printf("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }

    if( satpwr > 6 )
    {
        printf("TSATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 46 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 46 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pwClvl > 62 )
    {
        printf("don't fry the probe, pwClvl too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 
    if( pwN > 200.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 
    if( pwC > 200.0e-6 )
    {
        printf("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( gt3 > 2.5e-3 ) 
    {
        printf("gt3 is too long\n");
        psg_abort(1);
    }
    if( gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt4 > 10.0e-3 || gt5 > 10.0e-3
        || gt6 > 10.0e-3 || gt7 > 10.0e-3 || gt8 > 10.0e-3
	|| gt9 > 10.0e-3 || gt10 > 10.0e-3 || gt11 > 50.0e-6)
    {
        printf("gt values are too long. Must be < 10.0e-3 or gt11=50us\n");
        psg_abort(1);
    } 


/* PHASES AND INCREMENTED TIMES */


   /* Set up angles and phases */

   angle_CO=getval("angle_CO");  cos_CO=cos(PI*angle_CO/180.0);
   angle_Ca=getval("angle_Ca");  cos_Ca=cos(PI*angle_Ca/180.0);

   if ( (angle_CO < 0) || (angle_CO > 90) )
   {  printf ("angle_CO must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( (angle_Ca < 0) || (angle_Ca > 90) )
   {  printf ("angle_Ca must be between 0 and 90 degree.\n"); psg_abort(1); }

   if ( 1.0 < (cos_CO*cos_CO + cos_Ca*cos_Ca) )
   {
       printf ("Impossible angles.\n"); psg_abort(1);
   }
   else
   {
           cos_N=sqrt(1.0- (cos_CO*cos_CO + cos_Ca*cos_Ca));
           angle_N = 180.0*acos(cos_N)/PI;
   }

   swTilt=swCO*cos_CO + swCa*cos_Ca + swN*cos_N;

   if (ix ==1)
   {
      printf("\n\nn\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
      printf ("Maximum Sweep Width: \t\t %f Hz\n", swTilt);
      printf ("Anlge_CO:\t%6.2f\n", angle_CO);
      printf ("Anlge_Ca:\t%6.2f\n", angle_Ca);
      printf ("Anlge_N :\t%6.2f\n", angle_N );
   }

/* Set up hyper complex */

   /* sw1 is used as symbolic index */
   if ( sw1 < 1000 ) { printf ("Please set sw1 to some value larger than 1000.\n"); psg_abort(1); }

   if (ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if (t1_counter % 2)  { tsadd(t2,2,4); tsadd(t6,2,4); }

   if (phase1 == 1)  { ;}                                                  /* CC */
   else if (phase1 == 2)  { tsadd(t5,1,4);}                                /* SC */
   else if (phase1 == 3)  { tsadd(t1,1,4); }                               /* CS */
   else if (phase1 == 4)  { tsadd(t5,1,4); tsadd(t1,1,4); }                /* SS */
   else { printf ("phase1 can only be 1,2,3,4. \n"); psg_abort(1); }

   if (phase2 == 2)  { tsadd(t4,2,4); icosel = 1; }                      /* N  */
            else                       icosel = -1;

   tau1 = 1.0*t1_counter*cos_Ca/swTilt;
   tau2 = 1.0*t1_counter*cos_CO/swTilt;
   tau3 = 1.0*t1_counter*cos_N/swTilt;

   tau1 = tau1/2.0;  tau2 = tau2/2.0;  tau3 = tau3/2.0;


/* CHECK VALIDITY OF PARAMETER RANGES */

    if (bigTN - 0.5*ni*(cos_N/swTilt) + pwS4 < 0.2e-6)
       { printf(" ni is too big. Make ni equal to %d or less.\n",
         ((int)((bigTN + pwS4)*2.0*swTilt/cos_N)));              psg_abort(1);}

    if ((fCTCa[A]=='y') && (bigTCa - 0.5*ni*(cos_Ca/swTilt) - WFG_STOP_DELAY 
             - POWER_DELAY - gt11 - 50.2e-6 < 0.2e-6))
       {
         printf(" ni is too big for Ca. Make ni equal to %d or less.\n",
            (int) ((bigTCa -WFG_STOP_DELAY
              - POWER_DELAY - gt11 - 50.2e-6)/(0.5*cos_Ca/swTilt)) );
         psg_abort(1);
       }

     if (bigTCo - 0.5*ni*(cos_CO/swTilt) - 4.0e-6 - POWER_DELAY < 0.2e-6)
       {
        printf(" ni is too big for CO. Make ni equal to %d or less.\n",
        (int) ((bigTCo -  4.0e-6 - POWER_DELAY) / (0.5*cos_CO/swTilt)) );
        psg_abort(1);
        }


/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obsoffset(tof);
   obspower(satpwr);      /* Set transmitter power for 1H presaturation */
   obspwrf(4095.0);
   decpower(pwClvl);       /* Set Dec1 power for hard 13C pulses         */
   decpwrf(4095.0);
   dec2power(pwNlvl);      /* Set Dec2 power for 15N hard pulses         */
   dec2pwrf(4095.0);
   set_c13offset("ca");		/* set Dec1 carrier at Ca		      */
   sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 0.0,
                             zero, zero, zero, 2.0e-6, 0.0);
   set_c13offset("co");		/* set Dec1 carrier at Co		      */

/* Presaturation Period */

   if (satmode[0] == 'y')
   {
	delay(2.0e-5);
        rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */
   	obspower(tpwr);      /* Set transmitter power for hard 1H pulses */
	delay(2.0e-5);
	if(fscuba[0] == 'y')
	{
		delay(2.2e-2);
		rgpulse(pw,zero,2.0e-6,0.0);
		rgpulse(2*pw,one,2.0e-6,0.0);
		rgpulse(pw,zero,2.0e-6,0.0);
		delay(2.2e-2);
	}
   }
   else
   {
    delay(d1);
   }
   obspower(tpwr);           /* Set transmitter power for hard 1H pulses */
   txphase(one);
   dec2phase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(B);

   rcvroff();
   lk_hold();

   shiftedpulse("sinc", pwHs, 90.0, 0.0, one, 2.0e-6, 0.0);
   txphase(zero);
   delay(2.0e-6);


/*   xxxxxxxxxxxxxxxxxxxxxx    1HN to 15N TRANSFER   xxxxxxxxxxxxxxxxxx    */

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(0.2e-6);
   zgradpulse(gzlvl1, gt1);
   delay(2.0e-6);

   delay(taua - gt1 - 2.2e-6);   /* taua <= 1/4JNH */ 

   sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

   txphase(three); dec2phase(zero); decphase(zero); 

   delay(taua - gt1 - gstab -0.2e-6 - 2.0e-6);

   delay(0.2e-6);
   zgradpulse(gzlvl1, gt1);
   delay(gstab);

/*   xxxxxxxxxxxxxxxxxxxxxx    15N to 13CO TRANSFER   xxxxxxxxxxxxxxxxxx    */

   if(sel_flg[A] == 'n') {

   rgpulse(pw,three,2.0e-6,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl2, gt2);
   delay(gstab);

   dec2rgpulse(pwN,zero,0.0,0.0);

   delay( zeta + pwS4 );

   dec2rgpulse(2*pwN,zero,0.0,0.0);
   c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);
   dec2phase(one);

   delay(zeta - 2.0e-6);

   dec2rgpulse(pwN,one,2.0e-6,0.0);

  }

   else {

   rgpulse(pw,one,2.0e-6,0.0);

   initval(1.0,v6);
   dec2stepsize(45.0);
   dcplr2phase(v6);


   delay(0.2e-6);
   zgradpulse(gzlvl2, gt2);
   delay(gstab);

   dec2rgpulse(pwN,zero,0.0,0.0);
   dcplr2phase(zero); dec2phase(zero);

   delay(1.34e-3 - SAPS_DELAY - 2.0*pw);

   rgpulse(pw,one,0.0,0.0);
   rgpulse(2.0*pw,zero,0.0,0.0);
   rgpulse(pw,one,0.0,0.0);

   delay( zeta - 1.34e-3 - 2.0*pw + pwS4 );

   dec2rgpulse(2*pwN,zero,0.0,0.0);
   c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);
   dec2phase(one);

   delay(zeta - 2.0e-6);

   dec2rgpulse(pwN,one,2.0e-6,0.0);

  }

   dec2phase(zero); decphase(zero);

   delay(0.2e-6);
   zgradpulse(gzlvl3, gt3);
   delay(gstab);

/* xxxxxxxxxxxxxxxxxxxxx 13CO to 13CA TRANSFER xxxxxxxxxxxxxxxxxxxxxxx  */

   c13pulse("co", "ca", "sinc", 90.0, zero, 2.0e-6, 0.0);

                delay(2.0e-7);
                zgradpulse(gzlvl10, gt10);
                delay(100.0e-6);

  delay(tauc - POWER_DELAY - gt10 - 100.2e-6 - (0.5*10.933*pwC));

        decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0);
        decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0);
        decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0);      /* Shaka 6 composite */
        decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0);
        decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0);
        decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0);

                delay(2.0e-7);
                zgradpulse(gzlvl10, gt10);
                delay(100.0e-6);

      delay(tauc - POWER_DELAY - 4.0e-6 - gt10 - 100.2e-6 - (0.5*10.933*pwC));

   c13pulse("co", "ca", "sinc", 90.0, one, 4.0e-6, 0.0);

   set_c13offset("ca");   /* change Dec1 carrier to Ca (55 ppm) */
   delay(0.2e-6);
   zgradpulse(gzlvl9, gt9);
   delay(gstab);

/* xxxxxxxxxxxxxxxxxx 13CA EVOLUTION xxxxxxxxxxxxxxxxxxxxxx */
                /* Turn on D decoupling using the third decoupler */
                dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0);
                dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
                /* Turn on D decoupling */

   c13pulse("ca", "co", "square", 90.0, t5, 2.0e-6, 0.0);

if (fCTCa[A]=='y')  
{
/* Constant t2 */
   decpower(cbpwr);
   decphase(zero);
   decprgon(cbdecseq,1/cbdmf,cbres);
   decon();
	   
   delay(tau1);

   decoff();
   decprgoff();
   decpower(pwClvl);

   dec2rgpulse(pwN,one,0.0,0.0);
   dec2rgpulse(2*pwN,zero,0.0,0.0);
   dec2rgpulse(pwN,one,0.0,0.0);
   c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);

   decpower(cbpwr);
   decphase(zero);
   decprgon(cbdecseq,1/cbdmf,cbres);
   decon();

   delay(bigTCa - 4.0*pwN - WFG_START_DELAY - pwS4
         - WFG_STOP_DELAY - POWER_DELAY - WFG_START_DELAY - gt11 - gstab -0.2e-6);

   decoff();
   decprgoff();
   decpower(pwClvl);

   delay(0.2e-6);
   zgradpulse(gzlvl11, gt11);
   delay(gstab);

       initval(1.0,v3);
       decstepsize(140);
       dcplrphase(v3);

   c13pulse("ca", "co", "square", 180.0, zero, 0.0, 0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl11, gt11);
   delay(gstab);

   decpower(cbpwr);
   decphase(zero);
   decprgon(cbdecseq,1/cbdmf,cbres);
   decon();

   delay(bigTCa - tau1 - WFG_STOP_DELAY - POWER_DELAY - gt11 - gstab -0.2e-6);

   decoff();
   decprgoff();
}

/* non_constant t2 */
else
{
  if (fc180[A]=='n')
   {
    if ((ni>1.0) && (tau1>0.0))
    {
    if (tau1 - 2.0*pwS1/PI - PRG_START_DELAY - 2*POWER_DELAY -
        PRG_STOP_DELAY - pwN > 0.0)
     {
   decpower(cbpwr);
   decphase(zero);
   decprgon(cbdecseq,1/cbdmf,cbres);
   decon();

   delay(tau1 - 2.0*pwS1/PI - PRG_START_DELAY - 2*POWER_DELAY -
        PRG_STOP_DELAY - pwN);
   decoff();
   decprgoff();

   decphase(zero); dec2phase(zero);
   decpower(pwClvl);

   sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 0.0, 0.0);

   decpower(cbpwr);
   decphase(zero);
   decprgon(cbdecseq,1/cbdmf,cbres);
   decon();

   delay(tau1 - 2.0*pwS1/PI - PRG_START_DELAY - 2*POWER_DELAY -
        PRG_STOP_DELAY - pwN);
   decoff();
   decprgoff();

   decstepsize(1.0);
   initval(sphase1, v3);
   dcplrphase(v3);

     }
    else
     {
       tsadd(t6,2,4);
       delay(2.0*tau1);
       delay(10.0e-6); 
       sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 2.0e-6, 0.0);
       delay(10.0e-6);
     }
   }
   else
   {

       tsadd(t6,2,4);
       delay(10.0e-6);
       sim3_c13pulse("", "ca", "co", "square", "", 0.0, 180.0, 2.0*pwN,
                             zero, zero, zero, 2.0e-6, 0.0);
       delay(10.0e-6);
   }
 }
   else
  {
   /* for checking sequence */
   c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0);
  }
}

   decpower(pwClvl);
   decphase(t7);
   c13pulse("ca", "co", "square", 90.0, t7, 4.0e-6, 0.0);
   dcplrphase(zero);
 
                /* Turn off D decoupling */
                dec3rgpulse(1/dmf3, three, 0.0, 0.0); dec3blank();
                setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3); dec3blank();
                /* Turn off D decoupling */
 

   set_c13offset("co");   /* set carrier back to Co */

   delay(0.2e-6);

   zgradpulse(gzlvl12, gt12);
   delay(gstab);


/* xxxxxxxxxxxxxxx  13CA to 13CO TRANSFER and CT 13CO EVOLUTION xxxxxxxxxxxxxxxxx */

   c13pulse("co", "ca", "sinc", 90.0, t1, 2.0e-6, 0.0);

   delay(tau2);
   dec2rgpulse(pwN,one,0.0,0.0);
   dec2rgpulse(2*pwN,zero,0.0,0.0);
   dec2rgpulse(pwN,one,0.0,0.0);

   delay(taud - 4.0*pwN - POWER_DELAY
         - 0.5*(WFG_START_DELAY + pwS3 + WFG_STOP_DELAY));

   c13pulse("ca", "co", "square", 180.0, zero, 0.0, 0.0);
       decphase(t8);

                initval(1.0,v4);
                decstepsize(sphase);
                dcplrphase(v4);

      delay(bigTCo - taud
            - 0.5*(WFG_START_DELAY + pwS3 + WFG_STOP_DELAY) );

      c13pulse("co", "ca", "sinc", 180.0, t8, 0.0, 0.0);
      dcplrphase(zero); decphase(one);

    delay(bigTCo - tau2 - POWER_DELAY - 4.0e-6);

   c13pulse("co", "ca", "sinc", 90.0, one, 4.0e-6, 0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl4, gt4);
   delay(gstab);

/* t3 period */
   dec2rgpulse(pwN,t2,2.0e-6,0.0);

   dec2phase(t3);

   delay(bigTN - tau3 + pwS4);

     dec2rgpulse(2*pwN,t3,0.0,0.0);
     c13pulse("co", "ca", "sinc", 180.0, zero, 0.0, 0.0);

   txphase(zero);
   dec2phase(t4);

  delay(bigTN - gt5 - gstab -0.2e-6 - 2.0*GRADIENT_DELAY
	- 4.0e-6 - WFG_START_DELAY - pwS3 - WFG_STOP_DELAY);

   delay(0.2e-6);
   zgradpulse(icosel*gzlvl5, gt5);
   delay(gstab);

      c13pulse("ca", "co", "square", 180.0, zero, 4.0e-6, 0.0);

   delay(tau3);

   sim3pulse(pw,0.0,pwN,zero,zero,t4,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl6, gt6);
   delay(2.0e-6);

   dec2phase(zero);
   delay(taub - gt6 - 2.2e-6);

   sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl6, gt6);
   delay(200.0e-6);
   
   txphase(one);
   dec2phase(one);

   delay(taub - gt6 - 200.2e-6);

   sim3pulse(pw,0.0,pwN,one,zero,one,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl7, gt7);
   delay(2.0e-6);
 
   txphase(zero);
   dec2phase(zero);

   delay(taub - gt7 - 2.2e-6);

   sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl7, gt7);
   delay(200.0e-6);

   delay(taub - gt7 - 200.2e-6);

   sim3pulse(pw,0.0,pwN,zero,zero,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(-gzlvl8, gt8/2.0);
   delay(50.0e-6);

   delay(BigT1 - gt8/2.0 - 50.2e-6 - 0.5*(pwN - pw) - 2.0*pw/PI);

   rgpulse(2*pw,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl8, gt8/2.0);
   delay(50.0e-6);
   
   dec2power(dpwr2);
   decpower(dpwr);
   
   delay(BigT1 - gt8/2.0 - 50.2e-6 - 2.0*POWER_DELAY);

lk_sample();
/*   rcvron();  */          /* Turn on receiver to warm up before acq */ 

/* BEGIN ACQUISITION */

status(C);
         setreceiver(t6);

}
Exemple #26
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            RELAY[MAXSTR],                         /* Insert HCCH-relay delay */
            ribose[MAXSTR],                         /* ribose CHn groups only */
            aromatic[MAXSTR],                     /* aromatic CHn groups only */
            rna_stCshape[MAXSTR],     /* calls sech/tanh pulses from shapelib */
            rna_stCdec[MAXSTR],        /* calls STUD+ waveforms from shapelib */
	    mag_flg[MAXSTR],             /* Flag to use magic-angle gradients */
	    H2O_flg[MAXSTR],
	    sspul[MAXSTR],
            SHAPE[MAXSTR],
	    STUD[MAXSTR];   /* apply automatically calculated STUD decoupling */
 
int         t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
            ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
            delta1,delta2,
               ni = getval("ni"),
            lambda = 0.94/(4*getval("JCH")),       /* 1/4J H1 evolution delay */
            tCH = 1/(6.0*getval("JCH")),          /* 1/4J C13 evolution delay */
            tCC = 1/(8*getval("JCC")),

        pwClvl = getval("pwClvl"),              /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
   rfC,                           /* maximum fine power when using pwC pulses */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */
                               /* temporary Pbox parameters */
   bw, pws, ofs, ppm, nst,     /* bandwidth, pulsewidth, offset, ppm, # steps */

/* Sech/tanh inversion pulses automatically calculated by macro "rna_cal"     */
/* and string parameter rna_stCshape calls them from your shapelib.           */
   rfst = 0.0,          /* fine power for the rna_stCshape pulse, initialised */
   dofa,        /* dof shifted to 80 or 120ppm for ribose or aromatic spectra */

/* string parameter stCdec calls stud decoupling waveform from your shapelib.*/
   studlvl,	                         /* coarse power for STUD+ decoupling */
            stdmf = getval("dmf80"),     /* dmf for 80 ppm of STUD decoupling */
            rf80 = getval("rf80"),                /* rf in Hz for 80ppm STUD+ */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gt7 = getval("gt7"),
	gt8 = getval("gt8"),
	gt9 = getval("gt9"),
        gzcal = getval("gzcal"),
	grecov = getval("grecov"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),

	gzlvl7 = getval("gzlvl7"),		/* triax option */
	gzlvl8 = getval("gzlvl8"),
	gzlvl9 = getval("gzlvl9");

    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("f2180",f2180);
    getstr("RELAY",RELAY);
    getstr("ribose",ribose);
    getstr("aromatic",aromatic);
    getstr("H2O_flg",H2O_flg);
    getstr("sspul",sspul);
    getstr("SHAPE",SHAPE);
    getstr("STUD",STUD);


/*   INITIALIZE VARIABLES   */

/* maximum fine power for pwC pulses */
        rfC = 4095.0;

  setautocal();                        /* activate auto-calibration flags */ 

  if (autocal[0] == 'n') 
  {
      /* 50ppm sech/tanh inversion */
      rfst = (compC*4095.0*pwC*4000.0*sqrt((7.5*sfrq/600+3.85)/0.41));
      rfst = (int) (rfst + 0.5);
  }
  else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
  {
    if(FIRST_FID)                                            /* call Pbox */
    {
      ppm = getval("dfrq"); 
      bw = 50.0*ppm; pws = 0.001; ofs = 0.0; nst = 500.0; 
      stC50 = pbox_makeA("rna_stC50", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
      if (dm3[B] == 'y') H2ofs = 3.2;
      ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
    }
    rfst = stC50.pwrf; 
  }
        strcpy(rna_stCshape, "rna_stC50");
        strcpy(rna_stCdec, "wurst80");
        studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80);
        studlvl = (int) (studlvl + 0.5);

/*  RIBOSE spectrum only, centered on 80ppm. */
  if (ribose[A]=='y')
        dofa = dof - 30.0*dfrq;

/*  AROMATIC spectrum only, centered on 120ppm */
  else
        dofa = dof + 10*dfrq;


/* CHECK VALIDITY OF PARAMETER RANGES */

  if( dpwrf < 4095 )
        { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
          psg_abort(1); }

  if( pwC > (24.0e-6*600.0/sfrq) )
        { printf("Increase pwClvl so that pwC < 24*600/sfrq");
          psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y' ))
	{ printf("incorrect Dec1 decoupler flags!  "); psg_abort(1);}

  if((dm2[A] == 'y' || dm2[B] == 'y'))
	{ printf("incorrect Dec2 decoupler flags!  "); psg_abort(1);}

  if((dm3[A] == 'y' || dm3[C] == 'y' ))
	{printf("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' ");
								psg_abort(1); }
  if ((dm3[B] == 'y'  &&   dpwr3 > 44 ))
	{ printf("Deuterium decoupling power too high ! "); psg_abort(1);}

  if( dpwr > 50 )
	{ printf("don't fry the probe, dpwr too large!  "); psg_abort(1);}

  if( dpwr2 > 50 )
	{ printf("don't fry the probe, dpwr2 too large!  "); psg_abort(1); }


/*  CHOICE OF PULSE SEQUENCE */

  if ( ((ribose[A]=='y') && (aromatic[A]=='y')) )
   { text_error("Choose  ONE  of  ribose='y'  OR  aromatic='y' ! ");
        psg_abort(1); }

  if ( ((aromatic[A]=='y') && (RELAY[A]=='y')) )
   { text_error("No RELAY with aromatic='y' ! ");
        psg_abort(1); }


/* LOAD VARIABLES */

   settable(t1, 2, phi1);
   settable(t2, 4, phi2);
   settable(t3, 16, phi3);
   settable(t4, 2, phi4);
   settable(t11,8, rec);


/* INITIALIZE VARIABLES */

/* Phase incrementation for hypercomplex data */

   if ( phase1 == 2 )     /* Hypercomplex in t1 */
     tsadd(t1,1,4);

   if ( phase2 == 2 )
     tsadd(t2,1,4);

/* calculate modification to phases based on current t1 values
   to achieve States-TPPI acquisition */

   if(ix == 1) d2_init = d2;
   t1_counter = (int)((d2-d2_init)*sw1 + 0.5);
   if(t1_counter % 2)     
   {
       tsadd(t1,2,4);
       tsadd(t11,2,4);
   }

/* calculate modification to phases based on current t2 values
   to achieve States-TPPI acquisition */

   if(ix == 1) d3_init = d3;
   t2_counter = (int)((d3-d3_init)*sw2 + 0.5);
   if(t2_counter % 2)     
   {
       tsadd(t2,2,4);
       tsadd(t11,2,4);
   }
 
/* set up so that get (90, -180) phase corrects in F1 if f1180 flag is y */

   tau1 = d2;
   if(f1180[A] == 'y')
   {
      tau1 += (1.0/(2.0*sw1));
   }
   if (tau1 < 1.0e-6) tau1 = 0.0;
   tau1 = tau1/2.0;

/* set up so that get (90, -180) phase corrects in F2 if f2180 flag is y */

   tau2 = d3;
   if(f2180[A] == 'y')
   {
      tau2 += (1.0/(2.0*sw2));
   }
   if (tau2 < 1.0e-6) tau2 = 0.0;
   tau2 = tau2/2.0;

   if (ni > 1)
      delta1 = (double)(t1_counter*(lambda - gt5 - 0.2e-3))/((double)(ni-1));
   else delta1 = 0.0;
   if (ni2 > 1)
      delta2 = (double)(t2_counter*(tCC - 0.6e-3))/((double)(ni2-1));
   else delta2 = 0.0;

   initval(7.0, v1);
   obsstepsize (45.0);

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obsoffset(tof);
   decoffset(dofa);
   dec2offset(dof2);
   obspower(tpwr-12);                   
   decpower(pwClvl);
   decpwrf(rfC);
   dec2power(pwNlvl);                  
   decphase(zero);
   dec2phase(zero);
   if (sspul[0] == 'y')
   {
      rgpulse(200*pw, one, 10.0e-6, 0.0e-6);
      rgpulse(200*pw, zero, 0.0e-6, 1.0e-6);
   }
   obspower(tpwr);                   
   xmtrphase(v1);
   txphase(t1);
   if (dm3[B] == 'y') lk_sample();
   delay(d1);
   if (dm3[B] == 'y') lk_hold();
   rcvroff();

       decrgpulse(pwC, zero, rof1, rof1);
       delay(rof1);
       zgradpulse(gzlvl0,0.5e-3); 
       delay(grecov);

   if(dm3[B] == 'y')				  /*optional 2H decoupling on */
        { 
          dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
         } 

status(B);
	rgpulse(pw, t1, 1.0e-4, rof1);
	xmtrphase(zero);
	txphase(zero);

	zgradpulse(gzlvl5,gt5); 

/*
        decpwrf(rfst);
        delay(lambda - gt5 - rof1 - SAPS_DELAY - GRADIENT_DELAY - POWER_DELAY -
                        WFG2_START_DELAY - 0.5e-3 + 70.0e-6 + tau1);

        decshaped_pulse(rna_stCshape, 1.0e-3, zero, 0.0, 0.0);

        delay(tau1 - delta1);

        rgpulse(2.0*pw, zero, 0.0, rof1);
        txphase(one);
        decpwrf(rfC);

        zgradpulse(gzlvl5,gt5);
        delay(lambda - delta1 - gt5 - rof1 - GRADIENT_DELAY - POWER_DELAY - 0.5e-3 + 70.0e-6);
*/


        delay(lambda - gt5 - rof1 - SAPS_DELAY - GRADIENT_DELAY + tau1);

        decrgpulse(2*pwC, zero, 0.0, 0.0);

        delay(tau1 - delta1);

        rgpulse(2.0*pw, zero, 0.0, rof1);
        txphase(one);

        zgradpulse(gzlvl5,gt5);
        delay(lambda - delta1 - gt5 - rof1 - GRADIENT_DELAY);

	rgpulse(pw, one, 0.0, rof1);
	decphase(t2);
	txphase(zero);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl3,gt3); 
   else
      zgradpulse(gzlvl3,gt3); 

	delay(grecov);

	decrgpulse(pwC, t2, rof1, 0.0);
	decphase(zero);

	delay(tau2);
	
	dec2rgpulse(2.0*pwN,zero,0.0,0.0);

	delay(tCH - 2*pwN);

	rgpulse(2.0*pw, zero, 0.0, 0.0);
	decphase(t3);

	delay(tCC - tCH + tau2 - delta2 - 2.0*pw);
	
	decrgpulse(2.0*pwC, t3, 0.0, 0.0);
	decphase(t4);

	delay(tCC - delta2);

	decrgpulse(pwC, t4, 0.0, rof1);
	txphase(zero);
	decphase(zero);

  if(RELAY[A] == 'y')
   {
        zgradpulse(gzlvl4, gt4);
        delay(tCC - gt4 - GRADIENT_DELAY - pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        zgradpulse(gzlvl4, gt4);
        delay(tCC - gt4 - GRADIENT_DELAY - pwC);

        decrgpulse(pwC, zero, 0.0, 0.0);
   }

	zgradpulse(gzlvl4,gt4); 
   	delay(tCC - gt4);

   	decrgpulse(2.0*pwC, zero, 0.0, rof1);

   if (H2O_flg[A] == 'y')
   {
      delay(tCC - gt4 - grecov - POWER_DELAY);

      zgradpulse(gzlvl4,gt4); 

      txphase(one);
      decphase(one);
      delay(grecov);

      decrgpulse(pwC, one, 0.0, rof1);
      rgpulse(900*pw, one, 0.0, rof1);
      txphase(zero);

      rgpulse(500*pw, zero, rof1, rof1);
      decphase(one);

      if(mag_flg[A] == 'y')
         magradpulse(gzcal*gzlvl7,gt7);
      else
         zgradpulse(gzlvl7,gt7);
      delay(200.0e-6);

      simpulse(pw, pwC, zero, one, 0.0, rof1);
      decphase(zero);

      zgradpulse(gzlvl4,gt4); 
      delay(tCH - gt4);

      simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, rof1);

      zgradpulse(gzlvl4,gt4); 
      delay(tCH - gt4);
   }
   else
   {
      delay(tCC - tCH - 2.0*pw - POWER_DELAY);
      rgpulse(2.0*pw, zero, 0.0, rof1);

      zgradpulse(gzlvl4,gt4); 
      delay(tCH - gt4 - rof1);
   }
   
	decrgpulse(pwC, zero, 0.0, rof1);
	txphase(zero);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl8,gt8); 
   else
      zgradpulse(gzlvl8,gt8); 

	delay(grecov);

        if(dm3[B] == 'y')	         /*optional 2H decoupling off */
        {
         dec3rgpulse(1/dmf3, three, 0.0, 0.0);
         dec3blank();
         setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
         dec3blank();
        }

	rgpulse(pw, zero, 0.0, rof1);

  if (SHAPE[A] =='y')
   {
	decpwrf(rfst);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

	delay(lambda - gt9 - GRADIENT_DELAY - POWER_DELAY - WFG2_START_DELAY - 0.5e-3 + 70.0e-6);

        simshaped_pulse("",rna_stCshape,2*pw, 1.0e-3, zero, zero, 0.0, rof1);
        decphase(zero);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

	decpwrf(rfC);

if (STUD[A]=='y') decpower(studlvl); else decpower(dpwr);

	delay(lambda - gt9 -rof1 -0.5*pw - 2*POWER_DELAY - GRADIENT_DELAY - 0.5e-3 + 70.0e-6);
   }
  else
   {
   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

        delay(lambda - gt9 - GRADIENT_DELAY);

        simpulse(2*pw, 2*pwC, zero, zero, 0.0, rof1);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

if (STUD[A]=='y') decpower(studlvl); else decpower(dpwr);

        delay(lambda - gt9 -rof1 -0.5*pw - POWER_DELAY - GRADIENT_DELAY);
     } 

	rgpulse(pw, zero, rof1, rof2);
	rcvron();
if (dm3[B] == 'y') lk_sample();
	setreceiver(t11);

if ((STUD[A]=='y') && (dm[C] == 'y'))
	{
        decunblank();
        decon();
        decprgon(rna_stCdec,1/stdmf, 1.0);
        startacq(alfa);
        acquire(np, 1.0/sw);
        decprgoff();
        decoff();
        decblank();
        }
   else	
	 status(C);
setreceiver(t11);
}
Exemple #27
0
void pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            mag_flg[MAXSTR],                            /*magic angle gradient*/
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
	    stCdec[MAXSTR],	       /* calls STUD+ waveforms from shapelib */
	    STUD[MAXSTR];   /* apply automatically calculated STUD decoupling */
 
int         icosel1,          			  /* used to get n and p type */
	    icosel2,
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    del = getval("del"),     /* time delays for CH coupling evolution */
         BPdpwrspinlock,        /*  user-defined upper limit for spinlock(Hz) */
         BPpwrlimits,           /*  =0 for no limit, =1 for limit             */

	    del1 = getval("del1"),
	    del2 = getval("del2"),
/* STUD+ waveforms automatically calculated by macro "biocal"  	      */
/* and string parameter stCdec calls them from your shapelib. 	              */
   stdmf,                                /* dmf for STUD decoupling           */
   studlvl,	                         /* coarse power for STUD+ decoupling */
   rf80 = getval("rf80"), 			  /* rf in Hz for 80ppm STUD+ */
   bw, ofs, ppm,                            /* temporary Pbox parameters */
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* p_d is used to calculate the isotropic mixing on the Cab region            */
        spinlock = getval("spinlock"), /* DIPSI-3 spinlock field strength in Hz */
        p_d,                  	       /* 50 degree pulse for DIPSI-2 at rfd  */
        rfd,                    /* fine power for 7 kHz rf for 500MHz magnet  */
	ncyc = getval("ncyc"), 			  /* no. of cycles of DIPSI-3 */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "ghcch_tocsy" .  SLP pulse shapes, "offC10" etc are called   */
/* directly from your shapelib.                    			      */
   pwC10,                       /* 180 degree selective sinc pulse on CO(174ppm) */
   pwZ,					  /* the largest of pwC10 and 2.0*pwN */
   rf10,	                 /* fine power for the pwC10 ("offC10") pulse */

   compC = getval("compC"),         /* adjustment for C13 amplifier compression */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
	gzcal = getval("gzcal"),               /* G/cm to DAC coversion factor*/
        gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt3 = getval("gt3"),				   /* other gradients */
	gt5 = getval("gt5"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("STUD",STUD);
    getstr("mag_flg",mag_flg);
    getstr("f1180",f1180);
    getstr("f2180",f2180);
   strcpy(stCdec, "stCdec80");
   stdmf = getval("dmf80");
   studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80);
   studlvl = (int) (studlvl + 0.5);
  P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1);
  P_getreal(GLOBAL,"BPdpwrspinlock",&BPdpwrspinlock,1);


/*   LOAD PHASE TABLE    */

	settable(t3,2,phi3);
	settable(t6,1,phi6);
	settable(t5,4,phi5);
	settable(t10,1,phi10);
	settable(t11,4,rec);

        

/*   INITIALIZE VARIABLES   */


  if (BPpwrlimits > 0.5)
  {
   if (spinlock > BPdpwrspinlock)
    {
     spinlock = BPdpwrspinlock;  
     printf("spinlock too large, reset to user-defined limit (BPdpwrspinlock)");
     psg_abort(1);
    }
  }
    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

      setautocal();                        /* activate auto-calibration flags */ 
        
      if (autocal[0] == 'n') 
      {
        /* "offC10": 180 degree one-lobe sinc pulse on CO, null at Ca 139ppm away */
        pwC10 = getval("pwC10");
	  rf10 = (compC*4095.0*pwC*2.0*1.65)/pwC10;     /* needs 1.65 times more     */
	  rf10 = (int) (rf10 + 0.5);		           /* power than a square pulse */

        if( pwC > (24.0e-6*600.0/sfrq) )
	  { printf("Increase pwClvl so that pwC < 24*600/sfrq");
	    psg_abort(1); 
        }
      }
      else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
      {
        if(FIRST_FID)                                            /* call Pbox */
        {
          ppm = getval("dfrq"); 
          bw = 118.0*ppm; ofs = 139.0*ppm;
          offC10 = pbox_make("offC10", "sinc180n", bw, ofs, compC*pwC, pwClvl);
          if(dm3[B] == 'y') H2ofs = 3.2;    
          ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
        }
        rf10 = offC10.pwrf;  pwC10 = offC10.pw;
      }
				
   /* dipsi-3 decoupling on CbCa */	
 	p_d = (5.0)/(9.0*4.0*spinlock);      /*  DIPSI-3 Field Strength */
 	rfd = (compC*4095.0*pwC*5.0)/(p_d*9.0);
	rfd = (int) (rfd + 0.5);
  	ncyc = (int) (ncyc + 0.5);


/* CHECK VALIDITY OF PARAMETER RANGES */

    if( gt1 > 0.5*del - 1.0e-4)
    {
        printf(" gt1 is too big. Make gt1 less than %f.\n", (0.5*del - 1.0e-4));
        psg_abort(1);
    }

    if( dm[A] == 'y' )
    {
        printf("incorrect dec1 decoupler flag! Should be 'nny' or 'nnn' ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[C] == 'y'))
    {
        printf("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }
    if((dm3[A] == 'y' || dm3[C] == 'y'))
    {
        printf("incorrect dec3 decoupler flags! Should be 'nnn' or 'nyn' ");
        psg_abort(1);
    }

    if( dpwr > 52 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( pw > 50.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 
  
    if( pwN > 100.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 
 

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    icosel1 = -1;  icosel2 = -1;
    if (phase1 == 2) 
	{ tsadd(t6,2,4); icosel1 = -1*icosel1; }
    if (phase2 == 2) 
	{ tsadd(t10,2,4); icosel2 = -1*icosel2; tsadd(t6,2,4); }


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t11,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t5,2,4); tsadd(t11,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
        if ( dm3[B] == 'y' )
          lk_sample();  
        if ((ni/sw1-d2)>0) 
         delay(ni/sw1-d2);       /*decreases as t1 increases for const.heating*/
        if ((ni2/sw2-d3)>0) 
         delay(ni2/sw2-d3);      /*decreases as t2 increases for const.heating*/
   	delay(d1);
        if ( dm3[B] == 'y' )
          { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/

	rcvroff();
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rf0);
	obsoffset(tof);
	txphase(t3);
	delay(1.0e-5);

	decrgpulse(pwC, zero, 0.0, 0.0);	   /*destroy C13 magnetization*/
	zgradpulse(gzlvl1, 0.5e-3);
	delay(1.0e-4);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl1, 0.5e-3);
	delay(5.0e-4);

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }
	rgpulse(pw, t3, 0.0, 0.0);                    /* 1H pulse excitation */

        decphase(zero);
	delay(0.5*del + tau1 - 2.0*pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        txphase(zero);
	delay(tau1);

	rgpulse(2.0*pw, zero, 0.0, 0.0);

                if (mag_flg[A] == 'y')
                {
                   magradpulse(icosel1*gzcal*gzlvl1,0.1*gt1);
                }
                else
                {
                   zgradpulse(icosel1*gzlvl1, 0.1*gt1);
                }
        decphase(t5);
	delay(0.5*del - 0.1*gt1);

	simpulse(pw, pwC, zero, t5, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        decphase(zero);
	delay(0.5*del2 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        txphase(t6);
        decphase(one);
	delay(0.5*del2 - gt3);

	simpulse(pw, pwC, t6, one, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
        txphase(zero);
        decphase(zero);
	delay(0.5*del1 - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl4, gt3);
	delay(0.5*del1 - gt3);

	decrgpulse(pwC, zero, 0.0, 0.0);
	decpwrf(rfd);
	delay(2.0e-6);
	initval(ncyc, v2);
	starthardloop(v2);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);
     decrgpulse(5.0*p_d,two,0.0,0.0);
     decrgpulse(5.5*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.6*p_d,zero,0.0,0.0);
     decrgpulse(7.2*p_d,two,0.0,0.0);
     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.4*p_d,two,0.0,0.0);
     decrgpulse(6.8*p_d,zero,0.0,0.0);
     decrgpulse(7.0*p_d,two,0.0,0.0);
     decrgpulse(5.2*p_d,zero,0.0,0.0);
     decrgpulse(5.4*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.5*p_d,two,0.0,0.0);
     decrgpulse(7.3*p_d,zero,0.0,0.0);
     decrgpulse(5.1*p_d,two,0.0,0.0);
     decrgpulse(7.9*p_d,zero,0.0,0.0);

     decrgpulse(4.9*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
     decrgpulse(5.0*p_d,zero,0.0,0.0);
     decrgpulse(5.5*p_d,two,0.0,0.0);
     decrgpulse(0.6*p_d,zero,0.0,0.0);
     decrgpulse(4.6*p_d,two,0.0,0.0);
     decrgpulse(7.2*p_d,zero,0.0,0.0);
     decrgpulse(4.9*p_d,two,0.0,0.0);
     decrgpulse(7.4*p_d,zero,0.0,0.0);
     decrgpulse(6.8*p_d,two,0.0,0.0);
     decrgpulse(7.0*p_d,zero,0.0,0.0);
     decrgpulse(5.2*p_d,two,0.0,0.0);
     decrgpulse(5.4*p_d,zero,0.0,0.0);
     decrgpulse(0.6*p_d,two,0.0,0.0);
     decrgpulse(4.5*p_d,zero,0.0,0.0);
     decrgpulse(7.3*p_d,two,0.0,0.0);
     decrgpulse(5.1*p_d,zero,0.0,0.0);
     decrgpulse(7.9*p_d,two,0.0,0.0);
	endhardloop();

        dec2phase(zero);
        decphase(zero);
        txphase(zero);
	decpwrf(rf10);
	delay(tau2);
							  /* WFG3_START_DELAY */
	sim3shaped_pulse("", "offC10", "", 2.0*pw, pwC10, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
        if(pwC10>2.0*pwN) pwZ=0.0; else pwZ=2.0*pwN - pwC10;

	delay(tau2);
	decpwrf(rf0);
                if (mag_flg[A] == 'y')
                {
                   magradpulse(-icosel2*gzcal*gzlvl2, 1.8*gt1);
                }
                else
                {
                   zgradpulse(-icosel2*gzlvl2, 1.8*gt1);
                }
	delay(2.02e-4);

	decrgpulse(2.0*pwC, zero, 0.0, 0.0);

	decpwrf(rf10);
                if (mag_flg[A] == 'y')
                {
                   magradpulse(icosel2*gzcal*gzlvl2, 1.8*gt1);
                }
                else
                {
                   zgradpulse(icosel2*gzlvl2, 1.8*gt1);
                }
	delay(2.0e-4 + WFG3_START_DELAY + pwZ);

	decshaped_pulse("offC10", pwC10, zero, 0.0, 0.0);
	decpwrf(rf0);
	decrgpulse(pwC, zero, 2.0e-6, 0.0);

	zgradpulse(gzlvl5, gt5);
	delay(0.5*del1 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	decphase(t10);
	delay(0.5*del1 - gt5);

	simpulse(pw, pwC, one, t10, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	txphase(zero);
	decphase(zero);
	delay(0.5*del2 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	delay(0.5*del2 - gt5);

	simpulse(pw, pwC, zero, zero, 0.0, 0.0);

	delay(0.5*del - 0.5*pwC);

	simpulse(2.0*pw,2.0*pwC, zero, zero, 0.0, 0.0);
        if (mag_flg[A] == 'y')
            magradpulse(gzcal*gzlvl1, gt1);
        else
            zgradpulse(gzlvl1, gt1);
        rcvron();
   if ((STUD[A]=='n') && (dm[C] == 'y'))
        decpower(dpwr);
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
        {
           delay(0.5*del-40.0e-6 -gt1 -1/dmf3);
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           lk_sample();
           if (mag_flg[A] == 'y')
            statusdelay(C,40.0e-6  - 2.0*VAGRADIENT_DELAY - POWER_DELAY);
           else
            statusdelay(C,40.0e-6  - 2.0*GRADIENT_DELAY - POWER_DELAY);
        }
      else
        {
         delay(0.5*del-40.0e-6 -gt1);
        if (mag_flg[A] == 'y')
         statusdelay(C,40.0e-6  - 2.0*VAGRADIENT_DELAY - POWER_DELAY);
        else
         statusdelay(C,40.0e-6  - 2.0*GRADIENT_DELAY - POWER_DELAY);
        }
  if ((STUD[A]=='y') && (dm[C] == 'y'))
        {decpower(studlvl);
         decunblank();
         decon();
         decprgon(stCdec,1/stdmf, 1.0);
         startacq(alfa);
         acquire(np, 1.0/sw);
         decprgoff();
         decoff();
         decblank();
        }
 setreceiver(t11);
}		 
Exemple #28
0
pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
 	    TROSY[MAXSTR],			    /* do TROSY on N15 and H1 */
	    h1dec[MAXSTR],		/* Flag to waltz-decouple of H1 for t1*/
	    CT_c[MAXSTR];           /* Flag to constant time evolution for C13*/
 
int         icosel,          			  /* used to get n and p type */
            t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
            timeTC = getval("timeTC"),     /* constant time for 13C evolution */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
	    kappa = 5.4e-3,
	    lambda = 2.4e-3,
	    taud = 1.7e-3,
            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* 90 degree pulse at Ca (56ppm), first off-resonance null at CO (174ppm)     */
        pwC1,		              /* 90 degree pulse length on C13 at rf1 */
        rf1,		       /* fine power for 4.7 kHz rf for 600MHz magnet */

/* 180 degree pulse at Ca (56ppm), first off-resonance null at CO(174ppm)     */
        pwC2,		                    /* 180 degree pulse length at rf2 */
        rf2,		      /* fine power for 10.5 kHz rf for 600MHz magnet */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "BPcal".  SLP pulse shapes, "offC9" etc are called       */
/* directly from your shapelib.                    			      */
   pwC9 = getval("pwC9"),  /*180 degree pulse at CO(174ppm) null at Ca(56ppm) */
   pwC9a = getval("pwC9a"),    /* pwC9a=pwC9, but not set to zero when pwC9=0 */
   phshift9,             /* phase shift induced on Ca by pwC9 ("offC9") pulse */
   pwZ,					   /* the largest of pwC9 and 2.0*pwN */
   pwZ1,                /* the larger of pwC9a and 2.0*pwN for 1D experiments */
   rf9,	                           /* fine power for the pwC9 ("offC9") pulse */

   compH = getval("compH"),       /* adjustment for C13 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

   	pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
   	tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

   	pwHd,	    		        /* H1 90 degree pulse length at tpwrd */
   	tpwrd,	  	                   /* rf for WALTZ decoupling */

        waltzB1 = getval("waltzB1"),  /* waltz16 field strength (in Hz)     */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal = getval("gzcal"),             /* g/cm to DAC conversion factor */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gt7 = getval("gt7"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6"),
	gzlvl7 = getval("gzlvl7");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("mag_flg",mag_flg);
    getstr("TROSY",TROSY);
    getstr("h1dec",h1dec);
    getstr("CT_c",CT_c);



/*   LOAD PHASE TABLE    */

	settable(t3,2,phi3);
	settable(t4,1,phx);
	settable(t5,4,phi5);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,4,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}




/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;
	
     /* 90 degree pulse on Ca, null at CO 118ppm away */
       pwC1 = sqrt(15.0)/(4.0*118.0*dfrq);
        rf1 = (compC*4095.0*pwC)/pwC1;
        rf1 = (int) (rf1 + 0.5);

    /* 180 degree pulse on Ca, null at CO 118ppm away */
        pwC2 = sqrt(3.0)/(2.0*118.0*dfrq);
        rf2 = (4095.0*compC*pwC*2.0)/pwC2;
        rf2 = (int) (rf2 + 0.5);
        if( rf2 > 4095.0 )
         {printf("increase pwClvl so that C13 90 < 24us*(600/sfrq)"); psg_abort(1);}

    /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
        rf9 = (compC*4095.0*pwC*2.0*1.65)/pwC9a; /* needs 1.65 times more     */
        rf9 = (int) (rf9 + 0.5);                 /* power than a square pulse */

    /* the pwC9 pulse at the middle of t1  */
        if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0;
        if (pwC9a > 2.0*pwN) pwZ = pwC9a; else pwZ = 2.0*pwN;
        if ((pwC9==0.0) && (pwC9a>2.0*pwN)) pwZ1=pwC9a-2.0*pwN; else pwZ1=0.0;
        if (ni > 1)  pwC9 = pwC9a;
        if ( pwC9 > 0 )  phshift9 = 320.0;
	else             phshift9 = 0.0;

    /* selective H20 one-lobe sinc pulse */
    tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */
    tpwrs = (int) (tpwrs);                       /* power than a square pulse */

    /* power level and pulse time for WALTZ 1H decoupling */
	pwHd = 1/(4.0 * waltzB1) ;                           
	tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw));
	tpwrd = (int) (tpwrd + 0.5);
 


/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( 0.5*ni*1/(sw1) > timeTC)
       { printf(" ni is too big. Make ni less than %d . Check by using dps and make sure no ? appears for d2=t1max (ni/sw1).\n", 
  	 ((int)((timeTC)*2.0*sw1-7))); psg_abort(1);   }

    if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY)
       { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", 
  	 ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}	
    if ( dpwr2 > 46 )
       { printf("dpwr2 too large! recheck value  "); psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value "); psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value "); psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y')
       { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);}



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)   tsadd(t3,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }



/* BEGIN PULSE SEQUENCE */

status(A);
delay(d1);
if ( dm3[B] == 'y' )
  { lk_hold(); lk_sampling_off();}  /*freezes z0 correction, stops lock pulsing*/

rcvroff();
obspower(tpwr);
decpower(pwClvl);
dec2power(pwNlvl);
decpwrf(rf0);
obsoffset(tof);
txphase(zero);
delay(1.0e-5);

dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
decrgpulse(pwC, zero, 0.0, 0.0);
zgradpulse(gzlvl0, 0.5e-3);
delay(1.0e-4);
dec2rgpulse(pwN, one, 0.0, 0.0);
decrgpulse(pwC, zero, 0.0, 0.0);
zgradpulse(0.7*gzlvl0, 0.5e-3);
delay(5.0e-4);

rgpulse(pw,zero,0.0,0.0);                      /* 1H pulse excitation */

dec2phase(zero);
zgradpulse(gzlvl0, gt0);
delay(lambda - gt0);

sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

txphase(one);
zgradpulse(gzlvl0, gt0);
delay(lambda - gt0);

rgpulse(pw, one, 0.0, 0.0);

if (TROSY[A]=='y')
   {
    txphase(two);
    obspower(tpwrs);
    shaped_pulse("H2Osinc",pwHs,two,5.0e-4,0.0);
    obspower(tpwr);
    zgradpulse(gzlvl3, gt3);
    delay(2.0e-4);
    dec2rgpulse(pwN, zero, 0.0, 0.0);

    delay(0.5*kappa - 2.0*pw);
    rgpulse(2.0*pw, two, 0.0, 0.0);

    dec2phase(zero);
    decpwrf(rf2);
    delay(timeTN - 0.5*kappa);
   }

else
   {
    txphase(zero);
    obspower(tpwrs);
    shaped_pulse("H2Osinc",pwHs,zero,5.0e-4,0.0);
    obspower(tpwrd);
    zgradpulse(gzlvl3, gt3);
    delay(2.0e-4);
    dec2rgpulse(pwN, zero, 0.0, 0.0);

    txphase(one);
    delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY);

    rgpulse(pwHd,one,0.0,0.0);
    txphase(zero);
    delay(2.0e-6);
    obsprgon("waltz16", pwHd, 90.0);	          /* PRG_START_DELAY */
    xmtron();
    decphase(zero);
    dec2phase(zero);
    decpwrf(rf2);
    delay(timeTN - kappa);
   }

	sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	decphase(t3);
	decpwrf(rf1);
	delay(timeTN);

	dec2rgpulse(pwN, zero, 0.0, 0.0);
if (TROSY[A]=='n')
   {
    xmtroff();
    obsprgoff();
    if (h1dec[0]=='y')
      rgpulse(pwHd,three,2.0e-6,0.0);
    else
      rgpulse(pwHd,one,2.0e-6,0.0);
   }

   zgradpulse(gzlvl3, gt3);
   txphase(one);
   delay(2.0e-4);

if(h1dec[0]=='y')
   {
     obspower(tpwrd);
     rgpulse(pwHd,one,0.0,0.0);
     txphase(zero);
     delay(2.0e-6);
     obsprgon("waltz16", pwHd, 90.0);	       
     xmtron();
   }

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }

decrgpulse(pwC1,t3,0.0,0.0);
decphase(zero);
/*   xxxxxxxxxxxxxxxxxxxxxx       13Ca EVOLUTION        xxxxxxxxxxxxxxxxxx    */

if (CT_c[0]=='n')  {
  if ((ni>1.0) && (tau1>0.0))          /* total 13C evolution equals d2 exactly */
   {         /* 2.0*pwC1/PI compensates for evolution at 64% rate duting pwC1 */
	decpwrf(rf9);
     if(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ > 0.0)
	   {
	delay(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ);
							  /* WFG3_START_DELAY */
	sim3shaped_pulse("", "offC9", "", 0.0, pwC9a, 2.0*pwN, zero, zero, zero,
								      0.0, 0.0);
	initval(phshift9, v9);
	decstepsize(1.0);
	dcplrphase(v9);  				        /* SAPS_DELAY */
	delay(tau1 - 2.0*pwC1/PI  - SAPS_DELAY - 0.5*pwZ - 2.0e-6);
	   }
      else
	   {
	initval(180.0, v9);
	decstepsize(1.0);
	dcplrphase(v9);  				        /* SAPS_DELAY */
	delay(2.0*tau1 - 4.0*pwC1/PI - SAPS_DELAY - 2.0e-6);
	   }
   }

  else if (ni==1.0)         /* special 1D check of pwC9 phase enabled when ni=1 */
    {
	decpwrf(rf9);
	delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1);
							  /* WFG3_START_DELAY */
	sim3shaped_pulse("", "offC9", "", 0.0, pwC9, 2.0*pwN, zero, zero, zero,
							          2.0e-6, 0.0);
	initval(phshift9, v9);
	decstepsize(1.0);
	dcplrphase(v9);  					/* SAPS_DELAY */
	delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1);
     }

  else			       /* 13Ca evolution refocused for 1st increment  */
    {
	decpwrf(rf2);
	decrgpulse(pwC2, zero, 2.0e-6, 0.0);
     }

}

else {   /* %%%%%%%%%%STARTING 13Ca Constant Time EVOLUTION %%%%%%%%%%%%%%%%%%*/
    decpwrf(rf9);
    if(tau1 - 2.0*pwC1/PI - WFG_START_DELAY -POWER_DELAY> 0.0) {
       delay(tau1 -2.0*pwC1/PI -POWER_DELAY -WFG_START_DELAY);
       sim3shaped_pulse("","offC9","",0.0,pwC9a, 2.0*pwN, zero, zero, zero, 
								0.0, 0.0);
    }
    else {
       sim3shaped_pulse("","offC9","",0.0,pwC9a, 2.0*pwN, zero, zero, zero, 
								0.0, 0.0);
    }
    if (h1dec[0]=='n'){
      delay(taud-POWER_DELAY);
      obspower(tpwr);
      rgpulse(2.0*pw,zero,0.0,0.0);
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           delay(timeTC -pwZ -2.0*WFG_STOP_DELAY -taud -2.0*pw -1/dmf3 -2.0e-6 -202.0e-6 -gt7);
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           }
      else{				       /* Should be forbidden?? */
        delay(timeTC -pwZ -WFG_STOP_DELAY -taud -2.0*pw -202.0e-6 -gt7);
      } 
    }
    else {						/*  hdec=y    */
        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           delay(timeTC -pwZ -2.0*WFG_STOP_DELAY -PRG_STOP_DELAY -pwHd -1/dmf3
						-4.0e-6-202.0e-6-gt7);
           xmtroff();
           obsprgoff();
           rgpulse(pwHd,three,2.0e-6,2.0e-6);
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           }
      else{
        delay(timeTC -pwZ -WFG_STOP_DELAY -PRG_STOP_DELAY -4.0e-6 -202.0e-6
								-gt7);
        xmtroff();     
        obsprgoff();   
        rgpulse(pwHd,three,2.0e-6,2.0e-6);
     }
  }

    delay(2.0e-6);
    zgradpulse(gzlvl7,gt7);
    delay(200.0e-6-POWER_DELAY);
    decpwrf(rf2);

    decrgpulse(pwC2, zero, 0.0, 0.0); 	             /* 13Ca 180 degree pulse */ 

    delay(2.0e-6);
    zgradpulse(gzlvl7,gt7); 
    delay(200.0e-6);

    if (h1dec[0]=='n') {
      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        delay(timeTC-tau1-202.0e-6-gt7-2.0*WFG_START_DELAY-1/dmf3-
	  2.0*POWER_DELAY-pwC9a-2.0e-6-WFG_STOP_DELAY-SAPS_DELAY);
        }
      else{                                            /* Should be forbidden??? */
        delay(timeTC -tau1 - 202.0e-6 - gt7-2.0*POWER_DELAY-pwC9a-
	  WFG_START_DELAY-WFG_STOP_DELAY-2.0e-6-SAPS_DELAY);
      }
    }
    else {
      if (dm3[B]=='y') {
	rgpulse(pwHd,one,0.0,0.0);
        txphase(zero);
        delay(2.0e-6);
        obsprgon("waltz16", pwHd, 90.0);
        xmtron();

          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        delay(timeTC-tau1-202.0e-6-gt7-2.0*WFG_START_DELAY-4.0e-6-1/dmf3-pwHd-
	           PRG_START_DELAY-2.0*POWER_DELAY-pwC9a-2.0e-6-SAPS_DELAY);
      }
      else {
        delay(2.0e-6);
        rgpulse(pwHd,one,0.0,0.0);
        txphase(zero);
        delay(2.0e-6);
        obsprgon("waltz16", pwHd, 90.0);
        xmtron();
        delay(timeTC-tau1-202.0e-6-gt7-4.0e-6-pwHd-PRG_START_DELAY-
	  2.0*POWER_DELAY-pwC9a-WFG_START_DELAY-WFG_STOP_DELAY-SAPS_DELAY);
      }
    }
    decpwrf(rf9);

    decshaped_pulse("offC9",pwC9a,zero,0.0,0.0); 
    initval(phshift9, v9);
    decstepsize(1.0);
    dcplrphase(v9);                                         /* SAPS_DELAY */

}  /* %%%%%%%%%%%%%%%%%%ENDING 13Ca Constant Time EVOLUTION %%%%%%%%%%%%%%%%%%*/


  decphase(t5);
  decpwrf(rf1);
  decrgpulse(pwC1, t5, 2.0e-6, 0.0);

  dec2phase(t8);
  dcplrphase(zero);

        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }
  if (h1dec[0]=='y')
  {
    xmtroff();
    obsprgoff();
    rgpulse(pwHd,three,2.0e-6,0.0);
    txphase(one);
  }

  delay(2.0e-6);
  zgradpulse(gzlvl4, gt4);
  delay(2.0e-4);
  if (TROSY[A]=='n') {
    rgpulse(pwHd,one,0.0,0.0);
    txphase(zero);
    delay(2.0e-6);
    obsprgon("waltz16", pwHd, 90.0);
    xmtron();
  }

/* %%%%%%%%%%%%%%%%%%STARTING N15 Constant Time Evolution %%%%%%%%%%%%%%%%%%*/

	dec2rgpulse(pwN, t8, 0.0, 0.0);

	decphase(zero);
	dec2phase(t9);
	decpwrf(rf2);
	delay(timeTN - tau2);

	sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, t9, 0.0, 0.0);

	dec2phase(t10);
        decpwrf(rf9);

if (TROSY[A]=='y')
{    if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs)
	{
	  txphase(three);
          delay(timeTN - pwC9a - WFG_START_DELAY);         /* WFG_START_DELAY */
          decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs);
          if (mag_flg[A]=='y')  magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
	  txphase(t4);
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(0.5e-4 - POWER_DELAY);
	}

    else if (tau2 > pwHs + 0.5e-4)
	{
	  txphase(three);
          delay(timeTN-pwC9a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                     /* WFG_START_DELAY */
          decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0);
          delay(tau2 - pwHs - 0.5e-4);
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
	  txphase(t4);
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(0.5e-4 - POWER_DELAY);
	}
    else
	{
	  txphase(three);
          delay(timeTN - pwC9a - WFG_START_DELAY - gt1 - 2.0*GRADIENT_DELAY
							    - 1.5e-4 - pwHs);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else  zgradpulse(gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                     /* WFG_START_DELAY */
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
	  txphase(t4);
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(0.5e-4 - POWER_DELAY);
          decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0);
          delay(tau2);
	}
}
else
{
    if (tau2 > kappa)
	{
          delay(timeTN - pwC9a - WFG_START_DELAY);     	   /* WFG_START_DELAY */
          decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0);
          delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
          delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else if (tau2 > (kappa - pwC9a - WFG_START_DELAY))
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);                                     /* WFG_START_DELAY */
          decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0);
          delay(kappa -pwC9a -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4)
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
          delay(kappa - tau2 - pwC9a - WFG_START_DELAY);   /* WFG_START_DELAY */
          decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
	  obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
    	  delay(kappa-tau2-pwC9a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(gzcal*gzlvl1, gt1);
          else    zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                    /* WFG_START_DELAY */
          decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0);
          delay(tau2);
	}
}                                                          
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
	if (TROSY[A]=='y')  rgpulse(pw, t4, 0.0, 0.0);
	else                sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 0.65*(pw + pwN) - gt5);
	else   delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(t11);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl6, gt5);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	dec2phase(t10);
	zgradpulse(gzlvl6, gt5);
	if (TROSY[A]=='y')   delay(lambda - 1.6*pwN - gt5);
	else   delay(lambda - 0.65*pwN - gt5);

	if (TROSY[A]=='y')   dec2rgpulse(pwN, t10, 0.0, 0.0); 
	else    	     rgpulse(pw, zero, 0.0, 0.0); 

	delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

	rgpulse(2.0*pw, zero, 0.0, rof1);
	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')    magradpulse(icosel*gzcal*gzlvl2, gt1/10.0);
        else   zgradpulse(icosel*gzlvl2, gt1/10.0);            /* 2.0*GRADIENT_DELAY */

        delay(gstab);
        rcvron();
statusdelay(C,1.0e-4 - rof1);
   if (dm3[B]=='y') lk_sample();

	setreceiver(t12);
}		 
Exemple #29
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char    	 
        CA90_in_str[MAXSTR],     
  	CA180_in_str[MAXSTR],  CA180n_in_str[MAXSTR],       
        CO180offCA_in_str[MAXSTR],   
        RFpars[MAXSTR],       
        exp_mode[MAXSTR],         /* flag to run 3D, or 2D time-shared 15N TROSY /13C HSQC-SE*/   

	f1180[MAXSTR],   		                     /* Flag to start t1 @ halfdwell */
	f2180[MAXSTR],
	f3180[MAXSTR];			                           /* do TROSY on N15 and H1 */
 
int     icosel=1.0;      			                 /* used to get n and p type */
     

double  x,y,z, t2max, t1max, tpwrs,

        tpwrsf_d = getval("tpwrsf_d"), /* fine power adustment for first soft pulse(down)*/
        tpwrsf_u = getval("tpwrsf_u"), /* fine power adustment for second soft pulse(up) */
        pwHs = getval("pwHs"),                     /* H1 90 degree pulse length at tpwrs */
        compH =getval("compH"),

        tau1, tau2,                                 /*evolution times in indirect dimensions */
        ni2=getval("ni2"),

        tauNH=getval("tauNH"),                                     /* 1/(4Jhn), INEPTs, 2.4ms*/
        tauNH1=getval("tauNH1"),                           /* 1/(4Jhn), TROSY in CN CT, 2.7ms*/
        timeTN1=getval("timeTN1"),                   /* CT time for (first) N->CA*N transfer */
        timeTN=getval("timeTN"),                                /* CT time for last SE TROSY */ 
        timeCN=getval("timeCN"),                     /* CT time for CA -> N transfer, middle */
 
	pwClvl = getval("pwClvl"), 	       	               /* coarse power for C13 pulse */
	pwC = getval("pwC"),     	             /* C13 90 degree pulse length at pwClvl */
        compC = getval("compC"),
        dfrq = getval("dfrq"),
   	              
	pwNlvl = getval("pwNlvl"),	                            /* power for N15 pulses */
        pwN = getval("pwN"),                        /* N15 90 degree pulse length at pwNlvl */
        
	gstab = getval("gstab"),
	g6bal= getval("g6bal"),  
	                         /* balance of the decoding gradient around last 180 pulse on 1H
			        g6bal=1.0 : full g6 is on the right side of the last pw180 on 1H
			        g6bal=0.0:  full g6 is on the left side*/

  	gt0 = getval("gt0"),     
        gt1 = getval("gt1"),
        gt2 = getval("gt2"),
 	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
        gt6 = getval("gt6"),
 	gt7 = getval("gt7"),

	gzlvl0 = getval("gzlvl0"),
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),	
        gzlvl6 = getval("gzlvl6"),
	gzlvl7 = getval("gzlvl7"),
        gzlvl11 = getval("gzlvl11");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("exp_mode",exp_mode);
        
    tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));          /*needs 1.69 times more*/
    tpwrs = (int) (tpwrs);                               /*power than a square pulse */
    if (tpwrsf_d<4095.0)
        tpwrs=tpwrs+6.0;  /* add 6dB to let tpwrsf_d control fine power ~2048*/

/*   LOAD PHASE TABLE    */
	
        
        settable(t1,1,phi1);

        settable(t2,4,phi2);                                        /* default double trosy */
	  if (exp_mode[A] == 'h') {settable(t2,4,phi2h);};      /*option for regular hNcaNH */
                
        settable(t3,4,phi3);
        settable(t4,8,phi4);
        settable(t5,2,phi5);
        settable(t6,4,phi6);
        settable(t7,4,phi7);
        settable(t8,4,phi8);
	settable(t21,1,psi1);                          /*trosy and SE hsqc in reverse INPET */
	settable(t22,1,psi2);
        settable(t23,1,psi2c);  
        settable(t31,8,rec); 

/* some checks */

 if((dm2[A] == 'y') || (dm2[B] == 'y') || (dm2[C] == 'y') || (dm2[D] == 'y'))
  { text_error("incorrect dec2 decoupler flags! Should be 'nnnn' "); psg_abort(1); }

     if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}	
    if ( dpwr3 > 56 )
       { printf("dpwr3 too large! recheck value  "); psg_abort(1);}

    if ( (dm3[B] == 'y' )  && (timeCN*2.0 > 60.0e-3) )
       { printf("too lond time for 2H decoupling, SOL ");psg_abort(1);}


/*   INITIALIZE VARIABLES   */
  if(FIRST_FID)                                                          /* call Pbox */
    {
     getstr("CA180_in_str",CA180_in_str);  getstr("CA180n_in_str",CA180n_in_str);
     getstr("CA90_in_str",CA90_in_str);    getstr("CO180offCA_in_str",CO180offCA_in_str);

     strcpy(RFpars,             "-stepsize 0.5 -attn i");

     CA180 =  pbox("et_CA180_auto", CA180_in_str, RFpars, dfrq, compC*pwC, pwClvl);
     CA180n = pbox("et_CA180n_auto", CA180n_in_str, RFpars, dfrq, compC*pwC, pwClvl);
     CA90  =  pbox("et_CA90_auto", CA90_in_str, RFpars, dfrq, compC*pwC, pwClvl);
     CO180offCA = pbox("et_CO180offCA_auto", CO180offCA_in_str, RFpars, dfrq, compC*pwC, pwClvl);
    };


 /*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

   /* t1 , N15 */
    if (phase1 == 2)  {tsadd(t2 ,1,4);}
    if(d2_index % 2)  {tsadd(t2,2,4); tsadd(t31,2,4); }  
   
   
/* setting up semi-CT on t1 (ni) dimension */
    tau1  = d2; 
    t1max=(ni-1.0)/sw1;
  
    if((f1180[A] == 'y') && (ni > 0.0)) 
          {tau1 +=  0.5/sw1 ; t1max+= 0.5/sw1; }  

    if( t1max < timeTN1*2.0) {t1max=2.0*timeTN1;}; 
                            /* if not enough  ni increments, then just regular CT in t1/ni CN */
   /* t2, CA  */

      if  (phase2 == 2)    { tsadd(t3,1,4); }	 
      if (d3_index % 2)    { tsadd(t3,2,4);  tsadd(t31,2,4); }   

/* setup  constant time in t2 (ni2) */
    tau2 = d3;  
    t2max=2.0*(timeCN - CO180offCA.pw);

    if((f2180[A] == 'y') && (ni2 > 0.0)) 
          {tau2 +=  0.5/sw2 ; t2max +=  0.5/sw2 ;}

    if(tau2 < 0.2e-6) {tau2 = 0.0;}


    if ( (ni2-1.0)/sw2 > t2max) 
       { text_error("too  many ni2 increments in t2 !  "); psg_abort(1); }
     
  if(FIRST_FID)                                            
        {
             printf("t1max is %f\n",t1max);
	     printf("t2max is %f\n",t2max);
        };
   

/* BEGIN PULSE SEQUENCE */

status(A);

	obspower(tpwr);
	decpower(pwClvl);
	dec2power(pwNlvl);

	txphase(zero);
        decphase(zero);
        dec2phase(zero);

        delay(d1);
        zgradpulse(gzlvl2, gt2);
	delay(gstab*3.0);

 if (exp_mode[B]=='n') dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);     /* test for steady-state 15N */
		
       /* Hz -> HzXz INEPT */

   	rgpulse(pw,zero,rof1,rof1);                              /* 1H pulse excitation */
 
        zgradpulse(gzlvl0, gt0);
	delay(tauNH -gt0);

   	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

   	delay(tauNH - gt0 -gstab);
	zgradpulse(gzlvl0, gt0);
	delay(gstab);

 	rgpulse(pw, t6, rof1, rof1);

       /* on HzNz now */
      /* water flipback*/

        obspower(tpwrs); obspwrf(tpwrsf_u);
 	shaped_pulse("H2Osinc",pwHs,zero,rof1,rof1);
	obspower(tpwr); obspwrf(4095.0);

       /* purge */
       
	zgradpulse(gzlvl3, gt3);
        dec2phase(t2);
	
	delay(gstab*2.0);
        
/*  HzNz -> NzCAz  +t1 evolution*/

	dec2rgpulse(pwN, t2, 0.0, 0.0);

      /* double-trosy hNcaNH */
	
	delay(tauNH1  -pwHs-4.0*rof1 -pw  
               -2.0*POWER_DELAY -WFG_STOP_DELAY-WFG_START_DELAY);            
        obspower(tpwrs); obspwrf(tpwrsf_d);
 	shaped_pulse("H2Osinc",pwHs,two,rof1,rof1);
	obspower(tpwr); obspwrf(4095.0); 
        rgpulse(pw, zero, rof1, rof1);   
        rgpulse(pw, t7, rof1, rof1);
        obspower(tpwrs); obspwrf(tpwrsf_u);
 	shaped_pulse("H2Osinc",pwHs,t8,rof1,rof1);
	obspower(tpwr);  obspwrf(4095.0);         		
        dec_c13_shpulse(CO180offCA,zero);  
        delay(tau1*0.5);
	dec_c13_shpulse(CO180offCA,zero); dec2phase(zero);

       	delay( timeTN1 -tauNH1 -pwHs  -4.0*rof1 -pw  -2.0*POWER_DELAY
               -WFG_STOP_DELAY -WFG_START_DELAY -CA180.pw -2.0*CO180offCA.pw 
               -3.0*(2.0*POWER_DELAY +WFG_STOP_DELAY +WFG_START_DELAY)); 
                       
	dec_c13_shpulse(CA180,zero);
	delay(tau1*0.5 -timeTN1*tau1/t1max); 
        dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);      
	delay( timeTN1 -tau1*timeTN1/t1max);
       	dec2rgpulse(pwN, zero, 0.0, 0.0);

/*   on CAzNz now */

/* purge */
       zgradpulse(gzlvl7, gt7);
       delay(gstab);	

       if(dm3[B] == 'y')
        {  dec3unblank();
           if(1.0/dmf3>900.0e-6)
            {
	     dec3power(dpwr3+6.0);
	     dec3rgpulse(0.5/dmf3, one, 1.0e-6, 0.0e-6);
	     dec3power(dpwr3);
	    }
           else 
            dec3rgpulse(1.0/dmf3, one, 1.0e-6,0.0e-6);
  	    dec3phase(zero);      
            setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }	

	/* dec_c13_shpulse(CA90,t3);*/
        
        /* t2 time, CA evolution */
	decrgpulse(pwC,t3,0.0,0.0);
	decphase(zero);
        delay(0.5*(timeCN+tau2*0.5-CO180offCA.pw)  );
        dec_c13_shpulse(CO180offCA,zero);  
        delay(0.5*(timeCN+tau2*0.5-CO180offCA.pw)  -pwN*2.0 + WFG_STOP_DELAY);

        if (exp_mode[A]=='R')  /* test CA.N relaxation rate  */
           {
	    delay(2.0*pwN);
           } 
        else
           dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
	
	dec_c13_shpulse(CA180n,zero);
        delay(0.5*(timeCN-tau2*0.5-CO180offCA.pw)  );
        dec_c13_shpulse(CO180offCA,zero);  
        delay(0.5*(timeCN-tau2*0.5-CO180offCA.pw) + WFG_START_DELAY);

	/*dec_c13_shpulse(CA90,zero);*/

	decrgpulse(pwC,zero,0.0,0.0);
 

 	if(dm3[B] == 'y') 
         {                     
	  setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);                  
	  if(1.0/dmf3>900.0e-6)
           {
	    dec3power(dpwr3+6.0);
	    dec3rgpulse(0.5/dmf3, three, 1.0e-6, 0.0e-6);
	    dec3power(dpwr3);
	   }
	  else 
           dec3rgpulse(1.0/dmf3, three, 1.0e-6, 0.0e-6);
           dec3blank();
           delay(PRG_START_DELAY);
         }

       zgradpulse(gzlvl5, gt5);
	dec2phase(t4);
       delay(gstab);	

       /*    CaN->N + back to NH */

   	dec2rgpulse(pwN, t4, 0.0, 0.0);
        dec2phase(zero);
        delay(timeTN);
	dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);     
        dec_c13_shpulse(CA180,zero);
        delay(timeTN - CA180.pw   -gt4-gstab -pwHs-3.0*rof1
             -4.0*POWER_DELAY -2.0*WFG_STOP_DELAY-2.0*WFG_START_DELAY
             -2.0*GRADIENT_DELAY
             +4.0*pwN/3.1415-pw);
       zgradpulse(gzlvl4, gt4);
       delay(gstab);	  
    
       /*Water flipback (flipdown actually ) */
        obspower(tpwrs); obspwrf(tpwrsf_d);                         
 	shaped_pulse("H2Osinc",pwHs,three,rof1,rof1);
	obspower(tpwr); obspwrf(4095.0);  
 
/* reverse double INEPT */


/* 90 */  
   rgpulse(pw, t21, rof1, rof1);  
   zgradpulse(gzlvl11, gt1);		       
   delay(tauNH  -gt1 -rof1 
        -CA180.pw -2.0*POWER_DELAY - WFG_STOP_DELAY- WFG_START_DELAY );        
   dec_c13_shpulse(CA180,zero);
   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
   delay(tauNH  - gt1 -gstab);
   zgradpulse(gzlvl11, gt1);		 
   delay(gstab);

 /* 90 */ 

   sim3pulse(pw, 0.0, pwN, one, zero, zero, 0.0, 0.0);
   zgradpulse(gzlvl1, gt1);		 
   delay(tauNH  -gt1);
   sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
   delay(tauNH -POWER_DELAY  -gt1- gstab);
   zgradpulse(gzlvl1, gt1);
   dec2phase(t22);		 
   delay(gstab);      
   sim3pulse(0.0,0.0, pwN, one, zero, t22, 0.0, 0.0);  
   zgradpulse(-(1.0-g6bal)*gzlvl6*icosel, gt6);                 /* 2.0*GRADIENT_DELAY */
   delay( gstab   -pwN*0.5 +pw*(2.0/3.1415-0.5) );
   rgpulse(2.0*pw, zero, rof1, rof1);
   dec2power(dpwr2); decpower(dpwr);			      
   zgradpulse(g6bal*gzlvl6*icosel, gt6);		        /* 2.0*GRADIENT_DELAY */
   delay(gstab +2.0*POWER_DELAY );
   status(C);
	setreceiver(t31);
}	 
Exemple #30
0
pulsesequence()

{

/* DECLARE VARIABLES */

 char       autocal[MAXSTR],  /* auto-calibration flag */
            fsat[MAXSTR],
	    fscuba[MAXSTR],
            f1180[MAXSTR],    /* Flag to start t1 @ halfdwell             */
            f2180[MAXSTR],    /* Flag to start t2 @ halfdwell             */
            ddseq[MAXSTR],    /* deuterium decoupling sequence */
            shp_sl[MAXSTR],

            shcreb[MAXSTR],  /* reburp shape for center of t1 period */
            shcgcob[MAXSTR], /* g3 inversion at 154 ppm (350 us) */
            shcgcoib[MAXSTR],  /* g3 time inversion at 154 ppm (350 us) */
            shca180[MAXSTR],   /* Ca 180 [D/sq(3)] during 15N CT */
            shco180[MAXSTR],   /* Co 180 [D/sq(15)] during 15N CT */
            sel_flg[MAXSTR],   /* active/passive purging of undesired 
                                  component  */ 
            fCT[MAXSTR],	       /* Flag for constant time C13 evolution */
            fc180[MAXSTR],
            cal_sphase[MAXSTR],
            shared_CT[MAXSTR],
            nietl_flg[MAXSTR];

 int         phase, phase2, ni2, icosel, 
             t1_counter,   /* used for states tppi in t1           */ 
             t2_counter;   /* used for states tppi in t2           */ 

 double      tau1,         /*  t1 delay */
             tau2,         /*  t2 delay */
             taua,         /*  ~ 1/4JNH =  2.25 ms */
             del1,       /* time for C'-N to refocus set to 0.5*24.0 ms */
             bigTN,        /* nitrogen T period */
             bigTC,        /* carbon T period */
             zeta,         /* delay for transfer from ca to cb = 3.5 ms */
             tsatpwr,      /* low level 1H trans.power for presat  */
             sw1,          /* sweep width in f1                    */             
             sw2,          /* sweep width in f2                    */             
             tauf,         /* 1/2J NH value                     */
             pw_sl,        /* selective pulse on water      */
             phase_sl,     /* phase on water      */
             tpwrsl,       /* power for pw_sl               */
             at,

             d_cgcob,     /* power level for g3 pulses at 154 ppm */
             d_creb,      /* power level for reburp 180 at center of t1 */
             pwcgcob,     /* g3 ~ 35o us 180 pulse */
             pwcreb,      /* reburp ~ 400us 180 pulse */ 
 
             pwD,        /* 2H 90 pulse, about 125 us */
             pwDlvl,        /* 2H 90 pulse, about 125 us */

             pwca180,     /* Ca 180 during N CT at d_ca180 */
             pwco180,     /* Co 180 during N CT at d_co180 */

             d_ca180,
             d_co180,

             compC = getval("compC"),	/* C-13 RF calibration parameters */
             pwC = getval("pwC"),
             pwClvl = getval("pwClvl"),

             pwN,
             pwNlvl,

             sphase,

             pw_sl1,
             tpwrsl1,

             gstab,

             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gt9,
             gt11,
             gt13,
             gt14,

             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7,
             gzlvl8,
             gzlvl9,
             gzlvl11,
             gzlvl13,
             gzlvl14;
            
/*  variables commented out are already defined by the system      */


/* LOAD VARIABLES */


  getstr("autocal",autocal);
  getstr("fsat",fsat);
  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("fscuba",fscuba);
  getstr("ddseq",ddseq);
  getstr("shp_sl",shp_sl);

  getstr("sel_flg",sel_flg);
  
  getstr("fCT",fCT);
  getstr("fc180",fc180);
  getstr("cal_sphase",cal_sphase);

  getstr("shared_CT",shared_CT);

  getstr("nietl_flg",nietl_flg);

  taua   = getval("taua"); 
  del1  = getval("del1");
  bigTN = getval("bigTN");
  bigTC = getval("bigTC");
  zeta = getval("zeta");
  pwN = getval("pwN");
  tpwr = getval("tpwr");
  tsatpwr = getval("tsatpwr");
  dpwr = getval("dpwr");
  pwNlvl = getval("pwNlvl");
  pwD = getval("pwD");
  pwDlvl = getval("pwDlvl");
  phase = (int) ( getval("phase") + 0.5);
  phase2 = (int) ( getval("phase2") + 0.5);
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  ni2 = getval("ni2");
  tauf = getval("tauf");
  pw_sl = getval("pw_sl");
  phase_sl = getval("phase_sl");
  tpwrsl = getval("tpwrsl");
  at = getval("at");

  sphase = getval("sphase");

  pw_sl1 = getval("pw_sl1");
  tpwrsl1 = getval("tpwrsl1");

  gstab = getval("gstab");

  gt1 = getval("gt1");
  if (getval("gt2") > 0) gt2=getval("gt2");
    else gt2=gt1*0.1;
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");
  gt9 = getval("gt9");
  gt11 = getval("gt11");
  gt13 = getval("gt13");
  gt14 = getval("gt14");

  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");
  gzlvl9 = getval("gzlvl9");
  gzlvl11 = getval("gzlvl11");
  gzlvl13 = getval("gzlvl13");
  gzlvl14 = getval("gzlvl14");

  if(autocal[0]=='n')
  {     
    getstr("shcgcob",shcgcob);
    getstr("shcgcoib",shcgcoib);
    getstr("shcreb",shcreb);
    getstr("shca180",shca180);
    getstr("shco180",shco180);
    
    d_ca180 = getval("d_ca180");
    d_co180 = getval("d_co180");
    d_cgcob = getval("d_cgcob");
    d_creb = getval("d_creb");
    pwca180 = getval("pwca180");
    pwco180 = getval("pwco180");
    pwcgcob = getval("pwcgcob");
    pwcreb = getval("pwcreb");
  }
  else
  {        
    strcpy(shcgcob,"Pg3_107p");    
    strcpy(shcgcoib,"Pg3i_107p");    
    strcpy(shcreb,"Preb_on");    
    strcpy(shca180,"Phard_15p");    
    strcpy(shco180,"Phard_133p");    
    if (FIRST_FID)  
    {
      cgcob = pbox(shcgcob, G3CGCOB, CAB180ps, dfrq, compC*pwC, pwClvl);
      cgcoib = pbox(shcgcoib, G3CGCOBi, CAB180ps, dfrq, compC*pwC, pwClvl);  
      creb = pbox(shcreb, CREB180, CAB180ps, dfrq, compC*pwC, pwClvl);      
      ca180 = pbox(shca180, CA180, CA180ps, dfrq, compC*pwC, pwClvl);        
      co180 = pbox(shco180, CO180, CA180ps, dfrq, compC*pwC, pwClvl);  
    }   
    d_ca180 = ca180.pwr;
    d_co180 = co180.pwr;
    d_cgcob = cgcob.pwr;
    d_creb = creb.pwr;
    pwca180 = ca180.pw;
    pwco180 = co180.pw;
    pwcgcob = cgcob.pw;
    pwcreb = creb.pw;
  }   

/* LOAD PHASE TABLE */

  settable(t1,2,phi1);
  settable(t2,4,phi2);
  settable(t3,8,phi3);
  settable(t4,1,phi4);
  settable(t5,16,phi5);
  settable(t6,8,phi6);
  settable(t7,1,phi7);
  settable(t8,16,rec); 

/* CHECK VALIDITY OF PARAMETER RANGES */

   if(shared_CT[A] == 'n')
    if(bigTN - 0.5*(ni2 -1)/sw2 - POWER_DELAY < 0.2e-6)
    {
        text_error(" ni2 is too big\n");
        text_error(" please set ni2 smaller or equal to %d\n",
    			(int) ((bigTN -POWER_DELAY)*sw2*2.0) +1 );
        psg_abort(1);
    }

   if(fCT[A] == 'y')
    if(bigTC - 0.5*(ni-1)/sw1 - WFG_STOP_DELAY - gt14 - 102.0e-6
        - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY
        - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY
        - POWER_DELAY - 4.0e-6 < 0.2e-6) {

          text_error("ni is too big\n");
          text_error(" please set ni smaller or equal to %d\n",
    			(int) ((bigTC - WFG_STOP_DELAY - gt14 - 102.0e-6
        			- POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY
        			- POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwcgcob - WFG_STOP_DELAY
        			- POWER_DELAY - 4.0e-6)*sw1*2.0) +1 );
          psg_abort(1);
    }

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y'))
    {
        text_error("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y'))
    {
        text_error("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }

    if( tsatpwr > 6 )
    {
        text_error("TSATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 46 )
    {
        text_error("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 47 )
    {
        text_error("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pwClvl > 63 )
    {
        text_error("don't fry the probe, pwClvl too large!  ");
        psg_abort(1);
    }

    if( pwNlvl > 63 )
    {
        text_error("don't fry the probe, pwNlvl too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        text_error("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 
    if( pwN > 200.0e-6 )
    {
        text_error("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 
    if( pwC > 200.0e-6 )
    {
        text_error("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( f1180[A] != 'n' && f2180[A] != 'n' ) {
        text_error("flags may be set wrong: set f1180=n and f2180=n for 3d\n");
        psg_abort(1);
    }

    if(d_ca180 > 58) 
    {
        text_error("dont fry the probe, d_ca180 too high ! ");
        psg_abort(1);
    }

    if(d_co180 > 58) 
    {
        text_error("dont fry the probe, d_ca180 too high ! ");
        psg_abort(1);
    }

    if( gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 
        || gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 
        || gt7 > 15e-3 || gt8 > 15e-3 || gt9 > 15e-3 
        || gt11 > 15e-3 || gt13 > 15e-3  
        || gt14 > 15e-3)
    {
       text_error("gti values must be < 15e-3\n");
       psg_abort(1);
    } 

    if(tpwrsl > 25) {
       text_error("tpwrsl must be less than 25\n");
       psg_abort(1);
    }

    if(tpwrsl1 > 25) {
       text_error("tpwrsl1 must be less than 25\n");
       psg_abort(1);
    }

    if( dpwr3 > 50) {
       text_error("dpwr3 too high\n");
       psg_abort(1);
    }
    if( del1 > 0.1 ) {
       text_error("too long del1\n");
       psg_abort(1);
    }
    if( zeta > 0.1 ) {
       text_error("too long zeta\n");
       psg_abort(1);
    }
    if( bigTN > 0.1) {
       text_error("too long bigTN\n");
       psg_abort(1);
    }
    if( bigTC > 0.1) {
       text_error("too long bigTC\n");
       psg_abort(1);
    }
    if( pw_sl > 10e-3) {
       text_error("too long pw_sl\n");
       psg_abort(1);
    }
    if( pw_sl1 > 10e-3) {
       text_error("too long pw_sl1\n");
       psg_abort(1);
    }
    if( at > 0.1 && dm2[D] == 'y') {
       text_error("too long at with dec2\n");
       psg_abort(1);
    }

    if(pwDlvl > 59) {
        text_error("pwDlvl is too high; <= 59\n");
        psg_abort(1);
    }

    if(d_creb > 62) {
        text_error("d_creb is too high; <= 62\n");
        psg_abort(1);
    }

    if(d_cgcob > 60) {
        text_error("d_cgcob is too high; <=60\n");
        psg_abort(1);
    }

    if(cal_sphase[A] == 'y') {
      text_error("Use only to calibrate sphase\n");
      text_error("Set zeta to 600 us, gt11=gt13=0, fCT=y, fc180=n\n");
    }

    if(nietl_flg[A] == 'y' && sel_flg[A] == 'y') {
       text_error("Both nietl_flg and sel_flg cannot by y\n");
       psg_abort(1);
    }

    if (fCT[A] == 'n' && fc180[A] =='y' && ni > 1.0) {
       text_error("must set fc180='n' to allow Calfa/Cbeta evolution (ni>1)\n");
       psg_abort(1);
   }


/*  Phase incrementation for hypercomplex 2D data */

    /* changed from 1 to 3; spect. rev. not needed */
    if (phase == 2) { tsadd(t2,3,4); tsadd(t3,3,4); }

    if (shared_CT[A] == 'n') 
      {
       if (phase2 == 2) { tsadd(t7,2,4); icosel = 1; }
         else icosel = -1;
      }
     else 
      {
       if (phase2 == 2) { tsadd(t7,2,4); icosel = -1; }
         else icosel = 1;
      }

    if (nietl_flg[A] == 'y') icosel = -1*icosel;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
      tsadd(t2,2,4);     
      tsadd(t8,2,4);    
    }

   if( ix == 1) d3_init = d3 ;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) {
      tsadd(t5,2,4);  
      tsadd(t8,2,4);    
    }

/*  Set up f1180  tau1 = t1         */

      tau1 = d2;
      if(f1180[A] == 'y' && fCT[A] == 'y') 
          tau1 += ( 1.0 / (2.0*sw1) );

      if(f1180[A] == 'y' && fCT[A] == 'n') 
          tau1 += (1.0 / (2.0*sw1) - 4.0/PI*pwC - POWER_DELAY
                    - 4.0e-6);

      if(f1180[A] == 'n' && fCT[A] == 'n') 
          tau1 = (tau1 - 4.0/PI*pwC - POWER_DELAY
                    - 4.0e-6);

      if(tau1 < 0.2e-6) tau1 = 4.0e-7; 
      tau1 = tau1/2.0;

/*  Set up f2180  tau2 = t2         */

    tau2 = d3;
    if(f2180[A] == 'y') {
        tau2 += ( 1.0 / (2.0*sw2) ); 
        if(tau2 < 0.2e-6) tau2 = 0.2e-6;
    }
        tau2 = tau2/2.0;

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obspower(tsatpwr);     /* Set transmitter power for 1H presaturation */
   decpower(pwClvl);      /* Set Dec1 power to high power          */
   dec2power(pwNlvl);     /* Set Dec2 power for 15N hard pulses         */
   dec3power(pwDlvl);     /* Set Dec3 for 2H hard pulses */

/* Presaturation Period */

   if (fsat[0] == 'y')
     {
      delay(2.0e-5);
      rgpulse(d1,zero,0.0,2.0e-6);
      obspower(tpwr);      /* Set transmitter power for hard 1H pulses */
      delay(2.0e-5);
      if (fscuba[0] == 'y')
	{
	 delay(2.2e-2);
	 rgpulse(pw,zero,2.0e-6,0.0);
	 rgpulse(2*pw,one,2.0e-6,0.0);
	 rgpulse(pw,zero,2.0e-6,0.0);
	 delay(2.2e-2);
        }
     }
    else
     {
      delay(d1);
     }
   obspower(tpwr);           /* Set transmitter power for hard 1H pulses */
   txphase(zero);
   dec2phase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(B);

   rcvroff();
   lk_hold();
   delay(20.0e-6);

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(0.2e-6);
   zgradpulse(gzlvl5,gt5);
   delay(2.0e-6);

   delay(taua - gt5 - 2.2e-6);   /* taua <= 1/4JNH */ 

   sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

   dec2phase(t1); decphase(zero); 

   delay(taua - gt5 - 200.2e-6); 

   delay(0.2e-6);
   zgradpulse(gzlvl5,gt5);
   delay(200.0e-6);

   if (sel_flg[A] == 'y') 
     {
      rgpulse(pw,one,4.0e-6,0.0);

      initval(1.0,v2);
      obsstepsize(phase_sl);
      xmtrphase(v2);

      /* shaped pulse */
      obspower(tpwrsl);
      shaped_pulse(shp_sl,pw_sl,two,2.0e-6,0.0);
      xmtrphase(zero);
      delay(2.0e-6);
      obspower(tpwr);
      /* shaped pulse */

      initval(1.0,v6);
      dec2stepsize(45.0);
      dcplr2phase(v6);

      delay(0.2e-6);
      zgradpulse(gzlvl3,gt3);
      delay(200.0e-6);

      dec2rgpulse(pwN,t1,0.0,0.0);
      dcplr2phase(zero);

      delay(1.34e-3 - SAPS_DELAY);
   
      rgpulse(pw,zero,0.0,0.0);
      rgpulse(2.0*pw,one,2.0e-6,0.0);
      rgpulse(pw,zero,2.0e-6,0.0);

      decpower(d_ca180);

        dec2phase(zero);
   
        delay(del1 - 1.34e-3 - 4.0*pw - 4.0e-6 
              - POWER_DELAY + WFG_START_DELAY + pwca180 + WFG_STOP_DELAY);
     }
    else  
     {
      rgpulse(pw,three,4.0e-6,0.0);

      initval(1.0,v2);
      obsstepsize(phase_sl);
      xmtrphase(v2);
   
      /* shaped pulse */
      obspower(tpwrsl);
      shaped_pulse(shp_sl,pw_sl,zero,2.0e-6,0.0);
      xmtrphase(zero);
      delay(2.0e-6);
      obspower(tpwr);
      /* shaped pulse */
   
      delay(0.2e-6);
      zgradpulse(gzlvl3,gt3);
      delay(200.0e-6);

      dec2rgpulse(pwN,t1,0.0,0.0);
      dec2phase(zero);

      decpower(d_ca180);

      delay(del1 - POWER_DELAY + WFG_START_DELAY
      		+ pwca180 + WFG_STOP_DELAY);
     }

   decphase(zero);
   dec2rgpulse(2*pwN,zero,0.0,0.0);
   decshaped_pulse(shca180,pwca180,zero,0.0,0.0);

   dec2phase(one);

   delay(del1);

   dec2rgpulse(pwN,one,0.0,0.0);

   decpower(pwClvl);

   decphase(t2); 

   delay(0.2e-6);
   zgradpulse(gzlvl4,gt4);
   delay(200.0e-6);

   dec2phase(t5); 

   /* Turn on D decoupling using the third decoupler */
   dec3phase(one);
   dec3power(pwDlvl);
   dec3rgpulse(pwD,one,4.0e-6,0.0);
   dec3phase(zero);
   dec3power(dpwr3);
   dec3unblank();
   setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
   /* Turn on D decoupling */

   decrgpulse(pwC,t2,0.0,0.0);

   delay(zeta
	- PRG_STOP_DELAY - DELAY_BLANK - POWER_DELAY - 4.0e-6
        - pwD
        - gt11 - 102.0e-6 - POWER_DELAY - WFG_START_DELAY); 
      
   /* Turn off D decoupling */
   setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
   dec3blank(); 
   dec3phase(three);
   dec3power(pwDlvl);
   dec3rgpulse(pwD,three,4.0e-6,0.0);
   /* Turn off D decoupling */

    decphase(zero);

   delay(2.0e-6);
   zgradpulse(gzlvl11,gt11);
   delay(100.0e-6);

   if (cal_sphase[A] == 'y') 
     {
      decpower(pwClvl);
      decshaped_pulse("hard",2.0*pwC,zero,4.0e-6,4.0e-6);
     }
    else 
     {
      initval(1.0,v3);
      decstepsize(sphase);
      dcplrphase(v3);
      decpower(d_creb);
      decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6);
      dcplrphase(zero);
     }

   delay(2.0e-6);
   zgradpulse(gzlvl11,gt11);
   delay(100.0e-6);

   /* Turn on D decoupling using the third decoupler */
   dec3phase(one);
   dec3power(pwDlvl);
   dec3rgpulse(pwD,one,4.0e-6,0.0);
   dec3phase(zero);
   dec3power(dpwr3);
   dec3unblank();
   setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
   /* Turn on D decoupling */

   delay(zeta - WFG_STOP_DELAY - gt11 - 102.0e-6 
	- POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - PRG_START_DELAY
        - DELAY_BLANK - POWER_DELAY - 4.0e-6);

   decpower(pwClvl);
   decrgpulse(pwC,t3,4.0e-6,0.0);

   if (fCT[A] == 'y') 
     {
      delay(tau1);

      decpower(d_cgcob);
      decshaped_pulse(shcgcob,pwcgcob,zero,4.0e-6,0.0);

      delay(bigTC - POWER_DELAY - WFG_START_DELAY - 4.0e-6
            - pwcgcob - WFG_STOP_DELAY 
            - 102.0e-6 - gt14 
            - PRG_STOP_DELAY - DELAY_BLANK
            - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY - WFG_START_DELAY);
 
      /* Turn off D decoupling */
      setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
      dec3blank();
      dec3phase(three);
      dec3power(pwDlvl);
      dec3rgpulse(pwD,three,4.0e-6,0.0);
      /* Turn off D decoupling */

      delay(2.0e-6);
      zgradpulse(gzlvl14,gt14);
      delay(100.0e-6);

      initval(1.0,v4);
      decstepsize(sphase);
      dcplrphase(v4);
      decpower(d_creb);
      decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6);
      dcplrphase(zero);
    
      delay(2.0e-6);
      zgradpulse(gzlvl14,gt14);
      delay(100.0e-6);

      /* Turn on D decoupling using the third decoupler */
      dec3phase(one);
      dec3power(pwDlvl);
      dec3rgpulse(pwD,one,4.0e-6,0.0);
      dec3phase(zero);
      dec3power(dpwr3);
      dec3unblank(); 
      setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
      /* Turn on D decoupling */


      delay(bigTC - tau1 - WFG_STOP_DELAY - gt14
            - 102.0e-6 - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY
            - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY
            - 4.0e-6 - pwcgcob - WFG_STOP_DELAY - POWER_DELAY 
            - 4.0e-6);

      decpower(d_cgcob);
      decshaped_pulse(shcgcoib,pwcgcob,zero,4.0e-6,0.0);
      decphase(t4);
     }
    else if(fCT[A] == 'n' && fc180[A] == 'n') 
     {
      delay(tau1);
      delay(tau1);
     }
    else if(fCT[A] == 'n' && fc180[A] == 'y') 
     {
      initval(1.0,v4);
      decstepsize(sphase);
      dcplrphase(v4);

      decpower(d_creb);
      decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,0.0);

      dcplrphase(zero);
     }

   decpower(pwClvl);
   decrgpulse(pwC,t4,4.0e-6,0.0);

   delay(zeta - POWER_DELAY - 4.0e-6
          - pwD - PRG_STOP_DELAY - DELAY_BLANK
          - gt13
          - 102.0e-6 - POWER_DELAY - WFG_START_DELAY); 

   /* Turn off D decoupling */
   setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
   dec3blank(); 
   dec3power(pwDlvl);
   dec3rgpulse(pwD,three,4.0e-6,0.0);
   /* Turn off D decoupling */

   delay(2.0e-6);
   zgradpulse(gzlvl13,gt13);
   delay(100.0e-6);

   if (cal_sphase[A] == 'y') 
     {
      decpower(pwClvl);
      decshaped_pulse("hard",2.0*pwC,zero,4.0e-6,4.0e-6);
     }
    else 
     {
      initval(1.0,v5);
      decstepsize(sphase);
      dcplrphase(v5);
      decpower(d_creb);
      decshaped_pulse(shcreb,pwcreb,zero,4.0e-6,4.0e-6);
      dcplrphase(zero);
     }

   delay(2.0e-6);
   zgradpulse(gzlvl13,gt13);
   delay(100.0e-6);

   /* Turn on D decoupling using the third decoupler */
   dec3phase(one);
   dec3power(pwDlvl);
   dec3rgpulse(pwD,one,4.0e-6,0.0);
   dec3phase(zero);
   dec3power(dpwr3);
   dec3unblank();
   setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
   /* Turn on D decoupling */


   delay(zeta - WFG_STOP_DELAY - gt13 - 102.0e-6  
        - POWER_DELAY - 4.0e-6 - pwD - POWER_DELAY
        - PRG_START_DELAY - DELAY_BLANK
        - POWER_DELAY - 4.0e-6);

   decpower(pwClvl);
   decrgpulse(pwC,zero,4.0e-6,0.0);

   /* Turn off D decoupling */
   setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
   dec3blank();
   dec3phase(three);
   dec3power(pwDlvl);
   dec3rgpulse(pwD,three,4.0e-6,0.0);
   /* Turn off D decoupling */

   delay(0.2e-6);
   zgradpulse(gzlvl9,gt9);
   delay(200.0e-6);

   if (shared_CT[A] == 'n') 
     {
      dec2rgpulse(pwN,t5,2.0e-6,0.0);

      decpower(d_ca180);

      dec2phase(t6); 

      delay(bigTN - tau2 - POWER_DELAY);

      dec2rgpulse(2*pwN,t6,0.0,0.0);
      decshaped_pulse(shca180,pwca180,zero,0.0,0.0);
      dec2phase(t7);

      delay(bigTN - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY
            - gt1 - 2.0*GRADIENT_DELAY - 500.2e-6 
            - POWER_DELAY - 4.0e-6 - WFG_START_DELAY
            - pwco180 - WFG_STOP_DELAY);

      delay(0.2e-6);
      zgradpulse(gzlvl1,gt1);
      delay(500.0e-6);

      decpower(d_co180);
      decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0);

      delay(tau2);
   
      sim3pulse(pw,0.0,pwN,zero,zero,t7,0.0,0.0);
     }
    else if (shared_CT[A] == 'y') 
     {
      dec2rgpulse(pwN,t5,2.0e-6,0.0);

      decpower(d_co180);
      dec2phase(t6); 

      if (bigTN - tau2 >= 0.2e-6) 
        {
         delay(tau2);

         decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0);
         decpower(d_ca180);

         delay(0.2e-6);
         zgradpulse(gzlvl1,gt1);
         delay(500.0e-6);

         delay(bigTN - 4.0e-6 - WFG_START_DELAY - pwco180 - WFG_STOP_DELAY
               - POWER_DELAY - gt1 - 500.2e-6 - 2.0*GRADIENT_DELAY
               - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY);

         decshaped_pulse(shca180,pwca180,zero,0.0,0.0);
         dec2rgpulse(2*pwN,t6,0.0,0.0);

         delay(bigTN - tau2);
        }
       else 
        {
         delay(tau2);
         decshaped_pulse(shco180,pwco180,zero,4.0e-6,0.0);

         delay(0.2e-6);
         zgradpulse(gzlvl1,gt1);
         delay(500.0e-6);
     
         decpower(d_ca180);
         delay(bigTN - 4.0e-6 - WFG_START_DELAY - pwco180
               - WFG_STOP_DELAY - gt1 - 500.2e-6 - 2.0*GRADIENT_DELAY
               - POWER_DELAY - WFG_START_DELAY - pwca180 - WFG_STOP_DELAY); 
   
         decshaped_pulse(shca180,pwca180,zero,0.0,0.0);
    
         delay(tau2 - bigTN);
         dec2rgpulse(2.0*pwN,t6,0.0,0.0);
        }
      sim3pulse(pw,0.0,pwN,zero,zero,t7,0.0,0.0);
     }
/* end of shared_CT */

   if (nietl_flg[A] == 'n') 
     {
      decpower(pwClvl);
      decrgpulse(pwC,zero,4.0e-6,0.0);

      delay(0.2e-6);
      zgradpulse(gzlvl6,gt6);
      delay(2.0e-6);

      dec2phase(zero);
      delay(tauf - POWER_DELAY - 4.0e-6 
                 - pwC - gt6 - 2.2e-6);

      sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

      txphase(one);
      dec2phase(one);
   
      delay(tauf - gt6 - 200.2e-6);

      delay(0.2e-6);
      zgradpulse(gzlvl6,gt6);
      delay(200.0e-6);

      sim3pulse(pw,0.0,pwN,one,zero,one,0.0,0.0);
      
      delay(0.2e-6);
      zgradpulse(gzlvl7,gt7);
      delay(2.0e-6);
 
      txphase(zero);
      dec2phase(zero);
      delay(tauf - gt7 - 2.2e-6);

      sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

      delay(tauf - gt7 - 200.2e-6);

      delay(0.2e-6);
      zgradpulse(gzlvl7,gt7);
      delay(200.0e-6);
   
      sim3pulse(pw,0.0e-6,pwN,zero,zero,zero,0.0,0.0);
     }
    else  
     {   /* nietl_flg == y */
      /* shaped pulse */
      obspower(tpwrsl1);
      shaped_pulse(shp_sl,pw_sl1,zero,2.0e-6,0.0);
      delay(2.0e-6);
      obspower(tpwr);
      /* shaped pulse */

      decpower(pwClvl);
      decrgpulse(pwC,zero,4.0e-6,0.0);

      delay(0.2e-6);
      zgradpulse(gzlvl6,gt6);
      delay(2.0e-6);
   
      dec2phase(zero);
      delay(tauf 
                 - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
                 - pw_sl1 - WFG_STOP_DELAY - 2.0e-6 - POWER_DELAY
                 - POWER_DELAY - 4.0e-6 
                 - pwC - gt6 - 2.2e-6);

      sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);

      txphase(one);
      dec2phase(zero);

      delay(tauf - gt6 - 200.2e-6);

      delay(0.2e-6);
      zgradpulse(gzlvl6,gt6);
      delay(200.0e-6);

      sim3pulse(pw,0.0,pwN,one,zero,zero,0.0,0.0);
   
      delay(0.2e-6);
      zgradpulse(gzlvl7,gt7);
      delay(2.0e-6);
 
      txphase(zero);
      dec2phase(zero);
      delay(tauf - gt7 - 2.2e-6);

      sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,0.0,0.0);
      txphase(one);
      dec2phase(one);
   
      delay(tauf - gt7 - 200.2e-6);

      delay(0.2e-6);
      zgradpulse(gzlvl7,gt7);
      delay(200.0e-6);
   
      sim3pulse(pw,0.0e-6,pwN,one,zero,one,0.0,0.0);
      txphase(zero);
     }  /* end of nietl_flg == y  */

   delay(gt2 +gstab -0.5*(pwN-pw) -2.0*pw/PI);

   rgpulse(2*pw,zero,0.0,0.0);

   delay(2.0e-6);
   zgradpulse(icosel*gzlvl2,gt2);
   decpower(dpwr);    /* NO  13C decoupling */
   dec2power(dpwr2);  /* NO  15N decoupling */
   delay(gstab -2.0e-6 -2.0*GRADIENT_DELAY -2.0*POWER_DELAY);

   lk_sample();
/* BEGIN ACQUISITION */
status(C);
   setreceiver(t8);

}