Exemple #1
0
void GlText::setText(std::string text) {
	if ( text.size() == input_interface ) { //seulement pour UNE interface
		this->text.insert(this->text.end(),default_input(input_interface, input_text));
		this->text.insert(this->text.end(),text);
	} else 
		this->text.insert(this->text.end(),text);
}
Exemple #2
0
int main( int ac, char** av )
{
    try
    {
        comma::command_line_options options( ac, av, usage );
        if( options.exists( "--input-fields" ) ) { std::cout << comma::join( comma::csv::names< input >( false ), ',' ) << std::endl; return 0; }
        bool verbose = options.exists( "--verbose,-v" );
        unsigned int rate = options.value< unsigned int >( "--rate,-r" );
        //double attenuation = options.value( "--attenuation", 1.0 );
        comma::csv::options csv( options );
        input default_input( options.value( "--frequency", 0.0 )
                           , options.value( "--duration", 0.0 )
                           , options.value( "--amplitude,--volume", 0.0 ) );
        bool randomize = !options.exists( "--no-phase-randomization" );
        bool antiphase = options.exists( "--antiphase-randomization,--antiphase" );
        bool anticlick = options.exists( "--anticlick" );
        double attack = options.value< double >( "--attack", 0 );
        bool realtime = false;
        realtime = options.exists( "--realtime" );
        #ifdef WIN32
        if( realtime ) { std::cerr << "audio-sample: --realtime not supported on windows" << std::endl; return 1; }
        #else
        comma::io::select select;
        if( realtime ) { select.read().add( 0 ); }
        #endif // #ifndef WIN32
        comma::csv::input_stream< input > istream( std::cin, csv, default_input );
        boost::optional< input > last;
        std::vector< input > v;
        unsigned int count = 0;
        while( std::cin.good() )
        {
            const input* p = istream.read();
            if( !p || ( !v.empty() && v.back().block != p->block ) )
            {
                std::vector< double > offsets( v.size(), 0 );
                std::vector< double > start( v.size(), 0 );
                std::vector< double > finish( v.size(), std::numeric_limits< double >::max() );
                if( randomize )
                {
                    static boost::mt19937 generator;
                    static boost::uniform_real< float > distribution( 0, 1 ); // watch performance
                    static boost::variate_generator< boost::mt19937&, boost::uniform_real< float > > random( generator, distribution );
                    if( antiphase ) { for( unsigned int i = 0; i < offsets.size(); offsets[i] = random() < 0.5 ? 0 : 0.5, ++i ); }
                    else { for( unsigned int i = 0; i < offsets.size(); offsets[i] = random(), start[i] = ( 1 - offsets[i] ) / v[i].frequency, ++i ); }
                    if( anticlick ) { for( unsigned int i = 0; i < finish.size(); ++i ) { finish[i] = start[i] + static_cast< unsigned int >( ( v[i].duration - start[i] ) * v[i].frequency ) / v[i].frequency; } }
                }
                double step = 1.0 / rate;
                if( realtime )
                {
                    #ifndef WIN32
                    boost::posix_time::ptime before = boost::posix_time::microsec_clock::universal_time();
                    double microseconds_per_sample = 1000000.0 / rate;
                    unsigned int size = 1;
                    double t = 0;
                    while( true )
                    {
                        for( unsigned int k = 0; k < size; --k, t += step )
                        {
                            double a = 0;
                            double factor = t < attack ? t / attack : ( v[0].duration - t ) < attack ? ( v[0].duration - t ) / attack : 1;
                            for( unsigned int i = 0; i < v.size(); ++i )
                            {
                                if( t > start[i] && t < finish[i] ) { a += v[i].amplitude * factor * std::sin( M_PI * 2 * ( offsets[i] + v[i].frequency * t ) ); }
                            }
                            if( csv.binary() ) { std::cout.write( reinterpret_cast< const char* >( &a ), sizeof( double ) ); }
                            else { std::cout << a << std::endl; }
                        }
                        
                        select.wait( boost::posix_time::microseconds( microseconds_per_sample ) );
                        if( select.read().ready( 0 ) ) { v.clear(); break; }
                        boost::posix_time::ptime now = boost::posix_time::microsec_clock::universal_time();
                        size = ( now - before ).total_microseconds() / microseconds_per_sample;
                        before = now;
                    }
                    #endif // #ifndef WIN32
                }
                else
                {
                    for( double t = 0; t < v[0].duration; t += step )
                    {
                        double a = 0;
                        double factor = t < attack ? t / attack : ( v[0].duration - t ) < attack ? ( v[0].duration - t ) / attack : 1;
                        for( unsigned int i = 0; i < v.size(); ++i )
                        {
                            if( t > start[i] && t < finish[i] ) { a += v[i].amplitude * factor * std::sin( M_PI * 2 * ( offsets[i] + v[i].frequency * t ) ); }
                        }
                        if( csv.binary() ) { std::cout.write( reinterpret_cast< const char* >( &a ), sizeof( double ) ); }
                        else { std::cout << a << std::endl; }
                    }
                    v.clear();
                }
                if( verbose && ++count % 100 == 0 ) { std::cerr << "audio-sample: processed " << count << " blocks" << std::endl; }
            }
            if( !p ) { break; }
            if( !v.empty() && !comma::math::equal( v.back().duration, p->duration ) ) { std::cerr << "audio-sample: expected consistent duration across a block, got " << v.back().duration << " and " << p->duration << " in block " << p->block << std::endl; return 1; }
            v.push_back( *p );
        }
        return 0;
    }
    catch( std::exception& ex )
    {
        std::cerr << "audio-sample: " << ex.what() << std::endl;
    }
    catch( ... )
    {
        std::cerr << "audio-sample: unknown exception" << std::endl;
    }
    return 1;
}
Exemple #3
0
void GlText::setText() {
	if ( text.size() == input_interface ) //seulement pour UNE interface
		this->text.insert(this->text.end(),default_input(input_interface, input_text));
}
Exemple #4
0
int main (int argc, char *argv[]) {
  static char usage[] = {
      "Calculate positions of pseudo-atoms in a model for a transmembrane channel and\n" 
      "write output to FILE or pore.pdb and pore.itp.\n\n"
      "  -h\t\t show help\n"
      "  -v\t\t be verbose (= -debuglevel 30 )\n"
      "  -debug <NUM>\t set debuglevel (0..100)\n"
      "  -spec <NUM>\t default species id\n"
      "  -showspec\t show hard coded species\n\n"
      "  -o FILE\t pdb coordinate file\n"
      "  -s FILE\t itp topology file\n"
      "\n"
      "  -f <file>\t read pore description from file (see below)\n"
      "  -R <r>\t Outer radius of the model\n"
      "  -P <r> <l>\t Pore region: inner radius and length\n"
      "  -M <r> <l>\t Mouth region: largest inner radius and length\n"
      "  -b dmin dmax g_min g_max   (repeatable)\n"
      "\t\tform bonds with angle gamma when atoms are no further apart\n"
      "\t\tthan dmax Ang and g_min <= gamma <= g_max, g from [0°..90°] )\n"
      "  -c\t\t only write connectivity to output, no bond length or kB, kA\n" 
      "  -x\t\t neither connectivity nor bond length to output (isolated atoms)\n" 
      "  -kB <c>\t Force constant of bonds, in kJ mol^-1 nm^-2\n"
      "  -kA <c>\t Force constant of angles, in kJ mol^-1 rad^-2\n"
      "  -cc\t\t Center ccordinates on cavitybox, not on unitcell\n"
      "\n"
      "Pore volume calculation (setting any of these switches on profile calculation):\n"
      "In order to enable volume calculation, set -volume explicitly!\n"
      "ATTENTION: all these LENGTHs are in NANO METRE not Angstrom !\n"
      "  -profile [<file>]  calculate the profile in addition to the volume\n"
      "  -z1, -z2 <z>       profile between z1 and z2\n"
      "  -Rmax <r>          integrate out to Rmax (also use for the total volume\n"
      "                     integration if -profile is set)\n"
      "  -npoints <N>       number of points per dimension in the integrals\n"
      "  -T temp            Temperature in Kelvin [300]\n"
      "  -wca               If set, only use the repulsive part of the Lennard-Jones\n"
      "                     potential (split after Weeks, Chandler & Andersen [1971])\n"
      "  -plot              xfarbe output of the potential in z slices\n"
      "  -nzplot            number of plot slices \n"
      "\nDescription of the input file:\n"
      "------------------------------\n"
      "Instead of using -R (RADIUS), -M (MOUTH), and -P (PORE) one can describe the system\n"
      "in a more flexible manner with a geometry in put file. It can contain up to "
      "MAXDOMAINS domains (i.e. MOUTH and PORE lines). Allowed lines:\n"
      "# comment (skipped)\n"
      "# RADIUS is the global outer radius (in Angstrom)  of the cylinder\n"
      "RADIUS r_outer\n"
      "# domain type and radius at the upper and lower end of the domain;\n"
      "# r_lower of domain i and r_upper of domain i+1 are typically identical\n"
      "MOUTH r_upper r_lower length [species]\n"
      "PORE  r_upper r_lower length [species]\n"

      
  };
  int i, n_atoms, n_bonds, n_angles, n_bc;
  int error;
  real vol;
  FILE *fp;

  /* 
     segmentation fault if arrays to large 
     --->> 
           now that I have learned to  calloc I should rewrite this 
           on purely aesthetical grounds !
     <<---- 
  */
  struct pdb_ATOM model[TOTALSITES];
  struct itp_bond bonds[MAXBONDS]; 
  struct itp_angle angles[MAXANGLES];
  struct geom geometry;
  struct std_input in;
  struct potpars  potential = {
    NULL,
    TEMPERATURE,
    NFREEDOM_SPC,
    CSIX_OW_MTH, CTWELVE_OW_MTH, 0.0,
    0, NULL, NULL,
    N_GAUSSLEG
  };
  struct pprofile profile = {
    "LJprofile.dat",
    FALSE,
    FALSE,
    POT_PLOT_SLICES,
    NULL,
    NZPROF,
    1.5,
    -2,2,
    NULL
  };

  /* argument processing */
  /* *** no sanity checks *** */

  n_atoms  = 0;  /* number of sites ('atoms') in the model */
  n_bonds  = 0;  /* number of bonds */
  n_angles = 0;  /* number of angles between bonds */
  n_bc     = 0;  /* number of constraint conditions for generating bonds */

  if (argc < 2) {
    printf("Running with default values.\n\nType %s -h for help.\n", argv[0]);
    debuglevel = IMPORTANT;
  };

  /* initialize defaults */
  in = default_input ();
  potential.u1 = vljcyl;     /* use the full Lennard-Jones potential in
                               the configurational volume calculations
                               by default */
  profile.pp = &potential;

  /* rudimentary opt-processing.. yarch */
  for (i = 1; i < argc; i++)
    {
      if (!strcmp(argv[i], "-debug")) { 
	debuglevel = atoi(argv[++i]);
      } else if (!strcmp(argv[i], "-v")) {
	debuglevel = VERBOSE; 
      } else if (!strcmp(argv[i], "-h")) {
	print_usage(argv[0],usage);
	exit(1);
      } else if (!strcmp(argv[i], "-showspec")) {
	print_species ();
	exit(1);
      } else if (!strcmp(argv[i], "-o")) {
	in.coordfile = argv[++i]; 
      } else if (!strcmp(argv[i], "-s")) {
	in.topofile = argv[++i];
      } else if (!strcmp(argv[i], "-f")) {
	in.datafile = argv[++i]; 
      } else if (!strcmp(argv[i], "-R")) {
	in.r_outer = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-M")) {
	in.r_mouth = atof(argv[++i]);
	in.l_mouth = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-P")) {
	in.r_pore = atof(argv[++i]);
	in.l_pore = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-spec")) {
	in.specid = atoi(argv[++i]);
      } else if (!strcmp(argv[i], "-b")) {
	if (n_bc > MAXBONDCONSTRAINTS) {
	  fatal_error (1,
		       "Error: too many bond constraints, maximum is %d.\n",  
		       MAXBONDCONSTRAINTS);
	}
	in.bc[n_bc].serial    = n_bc;
	in.bc[n_bc].dmin      = atof(argv[++i]);
	in.bc[n_bc].dmax      = atof(argv[++i]);
	in.bc[n_bc].gamma_min = atof(argv[++i]);
	in.bc[n_bc].gamma_max = atof(argv[++i]);
	in.n_bc               = ++n_bc;
      } else if (!strcmp(argv[i], "-c")) {
	in.connectonly  = TRUE;
      } else if (!strcmp(argv[i], "-x")) {
	in.atomsonly    = TRUE;
      } else if (!strcmp(argv[i], "-cc")) {
	in.shiftcbox    = TRUE;
      } else if (!strcmp(argv[i], "-kB")) {
	in.k_bond  = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-kA")) {
	in.k_angle = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-volume")) {
	profile.bSet = TRUE;
      } else if (!strcmp(argv[i], "-z1")) {
	profile.bSet = TRUE;
	profile.z1 = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-z2")) {
	profile.bSet = TRUE;
	profile.z2 = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-Rmax")) {
	profile.bSet = TRUE;
	profile.Rmax = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-profile")) {
	profile.bSet = TRUE;
	if (i < argc-1 && argv[i+1][0] != '-') 
	  strncpy(profile.fn,argv[++i],STRLEN);
      } else if (!strcmp(argv[i], "-npoints")) {
	potential.ngaussleg = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-T")) {
	potential.Temp = atof(argv[++i]);
      } else if (!strcmp(argv[i], "-wca")) {
	potential.u1 = vRljcyl;
      } else if (!strcmp(argv[i], "-plot")) {
	profile.bPlot = TRUE;
      } else if (!strcmp(argv[i], "-nzplot")) {
	profile.bPlot = TRUE;
	profile.nzplot = atoi(argv[++i]);
      } else {
	mesg(OFF,"Unknown option: %s",argv[i]);
      };
    };

  mesg (ALL, "TOTALSITES %d\n", TOTALSITES);
  mesg (ALL,
   "MAXBONDS %d\nsizeof struct bond %d, sizeof bonds[] %d\n", 
    MAXBONDS, sizeof (struct itp_bond), sizeof (bonds));
  mesg (ALL, 
   "MAXANGLES %d\nsizeof struct angle %d, sizeof angles[] %d\n", 
    MAXANGLES, sizeof (struct itp_angle), sizeof (angles));



  error = input_geom (&in, &geometry);
  setup_domain (&geometry);
  unitcell  (&geometry);
  cavitybox (&geometry);

  n_atoms  = do_coordinates (model, &geometry);

  if (!geometry.atomsonly) {
    n_bonds  = do_bonds (bonds, model, &geometry);
    n_angles = do_angles (angles, bonds, &geometry);
  } else {
    n_bonds = n_angles = 0;
  }

  print_geom (&geometry);    
  
  mesg (WARN, "\nNumber of sites:  %d", n_atoms);
  if (!geometry.atomsonly) {
    mesg (WARN, 
    "Number of bonds:  %d within max cut-off %5.2f Ang (no double-counting)", 
	n_bonds, find_dmax (geometry.bc, geometry.nbc));
    mesg (WARN, "Number of angles: %d (no double-counting)\n", n_angles);
  }

  center (model, &geometry);
  
  error = write_topology (model, bonds, angles, &geometry);
  error = write_pdb (model, bonds, &geometry);

  /* 
     calculate pore volume, based on J. S. Rowlinson, J Chem Soc,
     Faraday Trans. 2, 82 (1986), 1801, (which didnt really work), and
     discussion with Andrew Horsefield.  */

  if (profile.bSet) {
    vol = volume(&potential,model,geometry.domain[1],&profile);

    /* pore profile (already calculated in volume ) */
    fp=fopen(profile.fn,"w");
    if (fp) {
      for(i=0;i<NZPROF;i++) {
        fprintf(fp,"%f  %f\n",profile.r[i][0],profile.r[i][1]);
      }
      fclose(fp);
    }
    free(profile.r);
  }

  return error < 0 ? 1 : 0;
};