Exemple #1
0
void det_derivative(const int id, hamiltonian_field_t * const hf) {
  monomial * mnl = &monomial_list[id];

  /* This factor 2 a missing factor 2 in trace_lambda */
  (*mnl).forcefactor = 2.;

  if(mnl->even_odd_flag) {
    /*********************************************************************
     * 
     * even/odd version 
     *
     * This a term is det(\hat Q^2(\mu))
     *
     *********************************************************************/
    
    g_mu = mnl->mu;
    boundary(mnl->kappa);

    if(mnl->solver != CG) {
      fprintf(stderr, "Bicgstab currently not implemented, using CG instead! (det_monomial.c)\n");
    }
    
    /* Invert Q_{+} Q_{-} */
    /* X_o -> DUM_DERI+1 */
    chrono_guess(g_spinor_field[DUM_DERI+1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
		 mnl->csg_N, mnl->csg_n, VOLUME/2, &Qtm_pm_psi);
    mnl->iter1 += cg_her(g_spinor_field[DUM_DERI+1], mnl->pf, mnl->maxiter, mnl->forceprec, 
			 g_relative_precision_flag, VOLUME/2, &Qtm_pm_psi);
    chrono_add_solution(g_spinor_field[DUM_DERI+1], mnl->csg_field, mnl->csg_index_array,
			mnl->csg_N, &mnl->csg_n, VOLUME/2);
    
    /* Y_o -> DUM_DERI  */
    Qtm_minus_psi(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+1]);
    
    /* apply Hopping Matrix M_{eo} */
    /* to get the even sites of X_e */
    H_eo_tm_inv_psi(g_spinor_field[DUM_DERI+2], g_spinor_field[DUM_DERI+1], EO, -1.);
    /* \delta Q sandwitched by Y_o^\dagger and X_e */
    deriv_Sb(OE, g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+2], hf); 
    
    /* to get the even sites of Y_e */
    H_eo_tm_inv_psi(g_spinor_field[DUM_DERI+3], g_spinor_field[DUM_DERI], EO, +1);
    /* \delta Q sandwitched by Y_e^\dagger and X_o */
    deriv_Sb(EO, g_spinor_field[DUM_DERI+3], g_spinor_field[DUM_DERI+1], hf);

  } 
  else {
    /*********************************************************************
     * non even/odd version
     * 
     * This term is det(Q^2 + \mu_1^2)
     *
     *********************************************************************/
    g_mu = mnl->mu;
    boundary(mnl->kappa);
    if(mnl->solver == CG) {
      /* Invert Q_{+} Q_{-} */
      /* X -> DUM_DERI+1 */
      chrono_guess(g_spinor_field[DUM_DERI+1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
		   mnl->csg_N, mnl->csg_n, VOLUME/2, &Q_pm_psi);
      mnl->iter1 += cg_her(g_spinor_field[DUM_DERI+1], mnl->pf, 
			mnl->maxiter, mnl->forceprec, g_relative_precision_flag, 
			VOLUME, &Q_pm_psi);
      chrono_add_solution(g_spinor_field[DUM_DERI+1], mnl->csg_field, mnl->csg_index_array,
			  mnl->csg_N, &mnl->csg_n, VOLUME/2);

      /* Y -> DUM_DERI  */
      Q_minus_psi(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+1]);
      
    }
    else {
      /* Invert first Q_+ */
      /* Y -> DUM_DERI  */
      chrono_guess(g_spinor_field[DUM_DERI], mnl->pf, mnl->csg_field, mnl->csg_index_array,
		   mnl->csg_N, mnl->csg_n, VOLUME/2, &Q_plus_psi);
      mnl->iter1 += bicgstab_complex(g_spinor_field[DUM_DERI], mnl->pf, 
				     mnl->maxiter, mnl->forceprec, g_relative_precision_flag, 
				     VOLUME,  Q_plus_psi);
      chrono_add_solution(g_spinor_field[DUM_DERI], mnl->csg_field, mnl->csg_index_array,
			  mnl->csg_N, &mnl->csg_n, VOLUME/2);
      
      /* Now Q_- */
      /* X -> DUM_DERI+1 */
      g_mu = -g_mu;
      chrono_guess(g_spinor_field[DUM_DERI+1], g_spinor_field[DUM_DERI], mnl->csg_field2, 
		   mnl->csg_index_array2, mnl->csg_N2, mnl->csg_n2, VOLUME/2, &Q_minus_psi);
      mnl->iter1 += bicgstab_complex(g_spinor_field[DUM_DERI+1], g_spinor_field[DUM_DERI], 
				     mnl->maxiter, mnl->forceprec, g_relative_precision_flag, 
				     VOLUME, Q_minus_psi);
      chrono_add_solution(g_spinor_field[DUM_DERI+1], mnl->csg_field2, mnl->csg_index_array2,
			  mnl->csg_N2, &mnl->csg_n2, VOLUME/2);
      g_mu = -g_mu;   
    }
    
    /* \delta Q sandwitched by Y^\dagger and X */
    deriv_Sb_D_psi(g_spinor_field[DUM_DERI], g_spinor_field[DUM_DERI+1], hf);
  }
  g_mu = g_mu1;
  boundary(g_kappa);

  return;
}
Exemple #2
0
void det_derivative(const int id, hamiltonian_field_t * const hf) {
  monomial * mnl = &monomial_list[id];
  double atime, etime;
  atime = gettime();
  mnl->forcefactor = 1.;

  if(mnl->even_odd_flag) {
    /*********************************************************************
     * 
     * even/odd version 
     *
     * This a term is det(\hat Q^2(\mu))
     *
     *********************************************************************/
    
    g_mu = mnl->mu;
    boundary(mnl->kappa);

    /* Invert Q_{+} Q_{-} */
    /* X_o -> w_fields[1] */
    chrono_guess(mnl->w_fields[1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
		 mnl->csg_N, mnl->csg_n, VOLUME/2, mnl->Qsq);

    if(mnl->solver==BICGSTAB) 
    {      
	  fprintf(stderr, "Bicgstab currently not implemented, using CG instead! (det_monomial.c)\n");
	  mnl->iter1 += solve_degenerate(mnl->w_fields[1], mnl->pf, mnl->solver_params, mnl->maxiter, mnl->forceprec, 
			 g_relative_precision_flag, VOLUME/2, mnl->Qsq, CG);
    }
    else{
	  mnl->iter1 += solve_degenerate(mnl->w_fields[1], mnl->pf, mnl->solver_params, mnl->maxiter, mnl->forceprec, 
			 g_relative_precision_flag, VOLUME/2, mnl->Qsq, mnl->solver);
    }


    chrono_add_solution(mnl->w_fields[1], mnl->csg_field, mnl->csg_index_array,
			mnl->csg_N, &mnl->csg_n, VOLUME/2);
    
    /* Y_o -> w_fields[0]  */
    mnl->Qm(mnl->w_fields[0], mnl->w_fields[1]);
    
    /* apply Hopping Matrix M_{eo} */
    /* to get the even sites of X_e */
    H_eo_tm_inv_psi(mnl->w_fields[2], mnl->w_fields[1], EO, -1.);
    /* \delta Q sandwitched by Y_o^\dagger and X_e */
    deriv_Sb(OE, mnl->w_fields[0], mnl->w_fields[2], hf, mnl->forcefactor); 
    
    /* to get the even sites of Y_e */
    H_eo_tm_inv_psi(mnl->w_fields[3], mnl->w_fields[0], EO, +1);
    /* \delta Q sandwitched by Y_e^\dagger and X_o */
    deriv_Sb(EO, mnl->w_fields[3], mnl->w_fields[1], hf, mnl->forcefactor);
  } 
  else {
    /*********************************************************************
     * non even/odd version
     * 
     * This term is det(Q^2 + \mu_1^2)
     *
     *********************************************************************/
    g_mu = mnl->mu;
    boundary(mnl->kappa);
    if((mnl->solver == CG) || (mnl->solver == MIXEDCG) || (mnl->solver == RGMIXEDCG)) {
      /* Invert Q_{+} Q_{-} */
      /* X -> w_fields[1] */
      chrono_guess(mnl->w_fields[1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
		               mnl->csg_N, mnl->csg_n, VOLUME/2, &Q_pm_psi);
      mnl->iter1 += solve_degenerate(mnl->w_fields[1], mnl->pf, mnl->solver_params, 
			                               mnl->maxiter, mnl->forceprec, g_relative_precision_flag, 
			                               VOLUME, &Q_pm_psi, mnl->solver);
      chrono_add_solution(mnl->w_fields[1], mnl->csg_field, mnl->csg_index_array,
			                    mnl->csg_N, &mnl->csg_n, VOLUME/2);

      /* Y -> w_fields[0]  */
      Q_minus_psi(mnl->w_fields[0], mnl->w_fields[1]);
      
    }
    else {
      /* Invert first Q_+ */
      /* Y -> w_fields[0]  */
      chrono_guess(mnl->w_fields[0], mnl->pf, mnl->csg_field, mnl->csg_index_array,
		   mnl->csg_N, mnl->csg_n, VOLUME/2, &Q_plus_psi);
      mnl->iter1 += solve_degenerate(mnl->w_fields[0], mnl->pf, mnl->solver_params, 
				     mnl->maxiter, mnl->forceprec, g_relative_precision_flag, 
				     VOLUME, &Q_plus_psi, mnl->solver);
      chrono_add_solution(mnl->w_fields[0], mnl->csg_field, mnl->csg_index_array,
			  mnl->csg_N, &mnl->csg_n, VOLUME/2);
      
      /* Now Q_- */
      /* X -> w_fields[1] */
      
      chrono_guess(mnl->w_fields[1], mnl->w_fields[0], mnl->csg_field2, 
		   mnl->csg_index_array2, mnl->csg_N2, mnl->csg_n2, VOLUME/2, &Q_minus_psi);
      mnl->iter1 += solve_degenerate(mnl->w_fields[1], mnl->w_fields[0], mnl->solver_params, 
				     mnl->maxiter, mnl->forceprec, g_relative_precision_flag, 
				     VOLUME, &Q_minus_psi, mnl->solver);
      chrono_add_solution(mnl->w_fields[1], mnl->csg_field2, mnl->csg_index_array2,
			  mnl->csg_N2, &mnl->csg_n2, VOLUME/2);
        
    }
    
    /* \delta Q sandwitched by Y^\dagger and X */
    deriv_Sb_D_psi(mnl->w_fields[0], mnl->w_fields[1], hf, mnl->forcefactor);
  }
  g_mu = g_mu1;
  boundary(g_kappa);
  etime = gettime();
  if(g_debug_level > 1 && g_proc_id == 0) {
    printf("# Time for %s monomial derivative: %e s\n", mnl->name, etime-atime);
  }
  return;
}
void cloverdet_derivative(const int id, hamiltonian_field_t * const hf) {
  monomial * mnl = &monomial_list[id];
  double atime, etime;
  int N = VOLUME/2;
  atime = gettime();
  for(int i = 0; i < VOLUME; i++) { 
    for(int mu = 0; mu < 4; mu++) { 
      _su3_zero(swm[i][mu]);
      _su3_zero(swp[i][mu]);
    }
  }

  mnl->forcefactor = 1.;
  /*********************************************************************
   * 
   *
   * This a term is det(\hat Q^2(\mu))
   *
   *********************************************************************/
  
  g_mu = mnl->mu;
  g_mu3 = mnl->rho;
  boundary(mnl->kappa);
  
  // we compute the clover term (1 + T_ee(oo)) for all sites x
  sw_term( (const su3**) hf->gaugefield, mnl->kappa, mnl->c_sw); 
  // we invert it for the even sites only
  if(!mnl->even_odd_flag) {
    N = VOLUME;
  }
  else {
    sw_invert(EE, mnl->mu);
  }
  
  if(mnl->solver != CG && g_proc_id == 0) {
    fprintf(stderr, "Bicgstab currently not implemented, using CG instead! (cloverdet_monomial.c)\n");
  }
  
  // Invert Q_{+} Q_{-}
  // X_o -> w_fields[1]
  chrono_guess(mnl->w_fields[1], mnl->pf, mnl->csg_field, mnl->csg_index_array,
               mnl->csg_N, mnl->csg_n, VOLUME/2, mnl->Qsq);
  mnl->iter1 += solve_degenerate(mnl->w_fields[1], mnl->pf, mnl->solver_params, mnl->maxiter, mnl->forceprec, 
                                 g_relative_precision_flag, VOLUME/2, mnl->Qsq, mnl->solver);
  chrono_add_solution(mnl->w_fields[1], mnl->csg_field, mnl->csg_index_array,
                      mnl->csg_N, &mnl->csg_n, N);
  
  // Y_o -> w_fields[0]
  mnl->Qm(mnl->w_fields[0], mnl->w_fields[1]);
  if(mnl->even_odd_flag) {
    // apply Hopping Matrix M_{eo}
    // to get the even sites of X_e
    H_eo_sw_inv_psi(mnl->w_fields[2], mnl->w_fields[1], EO, -1, mnl->mu);
    // \delta Q sandwitched by Y_o^\dagger and X_e
    deriv_Sb(OE, mnl->w_fields[0], mnl->w_fields[2], hf, mnl->forcefactor); 
    
    // to get the even sites of Y_e
    H_eo_sw_inv_psi(mnl->w_fields[3], mnl->w_fields[0], EO, +1, mnl->mu);
    // \delta Q sandwitched by Y_e^\dagger and X_o
    // uses the gauge field in hf and changes the derivative fields in hf
    deriv_Sb(EO, mnl->w_fields[3], mnl->w_fields[1], hf, mnl->forcefactor);
    
    // here comes the clover term...
    // computes the insertion matrices for S_eff
    // result is written to swp and swm
    // even/even sites sandwiched by gamma_5 Y_e and gamma_5 X_e
    sw_spinor_eo(EE, mnl->w_fields[2], mnl->w_fields[3], mnl->forcefactor);
    
    // odd/odd sites sandwiched by gamma_5 Y_o and gamma_5 X_o
    sw_spinor_eo(OO, mnl->w_fields[0], mnl->w_fields[1], mnl->forcefactor);
  
    // compute the contribution for the det-part
    // we again compute only the insertion matrices for S_det
    // the result is added to swp and swm
    // even sites only!
    sw_deriv(EE, mnl->mu);
  }
  else {
    /* \delta Q sandwitched by Y^\dagger and X */
    deriv_Sb_D_psi(mnl->w_fields[0], mnl->w_fields[1], hf, mnl->forcefactor);

    sw_spinor(mnl->w_fields[0], mnl->w_fields[1], mnl->forcefactor);
  }
  
  // now we compute
  // finally, using the insertion matrices stored in swm and swp
  // we compute the terms F^{det} and F^{sw} at once
  // uses the gaugefields in hf and changes the derivative field in hf
  sw_all(hf, mnl->kappa, mnl->c_sw);

  g_mu = g_mu1;
  g_mu3 = 0.;
  boundary(g_kappa);
  etime = gettime();
  if(g_debug_level > 1 && g_proc_id == 0) {
    printf("# Time for %s monomial derivative: %e s\n", mnl->name, etime-atime);
  }
  return;
}