Exemple #1
0
/* Estimate the pixel gain of PRISM enhancement and soft-clipping algorithm*/
static u32 nvsd_softclip(fixed20_12 pixel, fixed20_12 k, fixed20_12 th)
{
	fixed20_12 num, f;

	if (pixel.full >= th.full) {
		num.full = pixel.full - th.full;
		f.full = dfixed_const(1) - dfixed_div(num, th);
	} else {
		f.full = dfixed_const(1);
	}

	num.full = dfixed_mul(pixel, f);
	f.full = dfixed_mul(num, k);
	num.full = pixel.full + f.full;

	return min_t(u32, num.full, dfixed_const(255));
}
int
nv50_calc_pll2(struct drm_device *dev, struct pll_lims *pll, int clk,
	       int *N, int *fN, int *M, int *P)
{
	fixed20_12 fb_div, a, b;

	*P = pll->vco1.maxfreq / clk;
	if (*P > pll->max_p)
		*P = pll->max_p;
	if (*P < pll->min_p)
		*P = pll->min_p;

	/* *M = ceil(refclk / pll->vco.max_inputfreq); */
	a.full = dfixed_const(pll->refclk);
	b.full = dfixed_const(pll->vco1.max_inputfreq);
	a.full = dfixed_div(a, b);
	a.full = dfixed_ceil(a);
	*M = dfixed_trunc(a);

	/* fb_div = (vco * *M) / refclk; */
	fb_div.full = dfixed_const(clk * *P);
	fb_div.full = dfixed_mul(fb_div, a);
	a.full = dfixed_const(pll->refclk);
	fb_div.full = dfixed_div(fb_div, a);

	/* *N = floor(fb_div); */
	a.full = dfixed_floor(fb_div);
	*N = dfixed_trunc(fb_div);

	/* *fN = (fmod(fb_div, 1.0) * 8192) - 4096; */
	b.full = dfixed_const(8192);
	a.full = dfixed_mul(a, b);
	fb_div.full = dfixed_mul(fb_div, b);
	fb_div.full = fb_div.full - a.full;
	*fN = dfixed_trunc(fb_div) - 4096;
	*fN &= 0xffff;

	return clk;
}
Exemple #3
0
static int nvsd_set_brightness(struct tegra_dc *dc)
{
	u32 bin_width;
	int i, j;
	int val;
	int pix;
	int bin_idx;

	int incr;
	int base;

	u32 histo[32];
	u32 histo_total = 0;		/* count of pixels */
	fixed20_12 nonhisto_gain;	/* gain of pixels not in histogram */
	fixed20_12 est_achieved_gain;	/* final gain of pixels */
	fixed20_12 histo_gain = dfixed_init(0);	/* gain of pixels */
	fixed20_12 k, threshold;	/* k is the fractional part of HW_K */
	fixed20_12 den, num, out;
	fixed20_12 pix_avg, pix_avg_softclip;

	/* Collet the inputs of the algorithm */
	for (i = 0; i < DC_DISP_SD_HISTOGRAM_NUM; i++) {
		val = tegra_dc_readl(dc, DC_DISP_SD_HISTOGRAM(i));
		for (j = 0; j < 4; j++)
			histo[i * 4 + j] = SD_HISTOGRAM_BIN(val, (j * 8));
	}

	val = tegra_dc_readl(dc, DC_DISP_SD_HW_K_VALUES);
	k.full = dfixed_const(SD_HW_K_R(val));
	den.full = dfixed_const(1024);
	k.full = dfixed_div(k, den);

	val = tegra_dc_readl(dc, DC_DISP_SD_SOFT_CLIPPING);
	threshold.full = dfixed_const(SD_SOFT_CLIPPING_THRESHOLD(val));

	val = tegra_dc_readl(dc, DC_DISP_SD_CONTROL);
	bin_width = SD_BIN_WIDTH_VAL(val);
	incr = 1 << bin_width;
	base = 256 - 32 * incr;

	for (pix = base, bin_idx = 0; pix < 256; pix += incr, bin_idx++) {
		num.full = dfixed_const(pix + pix + incr);
		den.full = dfixed_const(2);
		pix_avg.full = dfixed_div(num, den);
		pix_avg_softclip.full = nvsd_softclip(pix_avg, k, threshold);

		num.full = dfixed_const(histo[bin_idx]);
		den.full = dfixed_const(256);
		out.full = dfixed_div(num, den);
		num.full = dfixed_mul(out, pix_avg_softclip);
		out.full = dfixed_div(num, pix_avg);
		histo_gain.full += out.full;
		histo_total += histo[bin_idx];
	}

	out.full = dfixed_const(256 - histo_total);
	den.full = dfixed_const(1) + k.full;
	num.full = dfixed_mul(out, den);
	den.full = dfixed_const(256);
	nonhisto_gain.full = dfixed_div(num, den);

	den.full = nonhisto_gain.full + histo_gain.full;
	num.full = dfixed_const(1);
	out.full = dfixed_div(num, den);
	num.full = dfixed_const(255);
	est_achieved_gain.full = dfixed_mul(num, out);
	val = dfixed_trunc(est_achieved_gain);

	return nvsd_backlght_interplate(val, 128);
}