Exemple #1
0
/* Subroutine */ int dchkqr_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nxval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *
	nmax, doublereal *a, doublereal *af, doublereal *aq, doublereal *ar, 
	doublereal *ac, doublereal *b, doublereal *x, doublereal *xact, 
	doublereal *tau, doublereal *work, doublereal *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i"
	    "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes"
	    "t(\002,i2,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, 
	    imat, info;
    char path[3];
    integer kval[4];
    char dist[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *), dget02_(
	    char *, integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *);
    integer nfail, iseed[4];
    extern /* Subroutine */ int dqrt01_(integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
	     doublereal *, integer *, doublereal *, doublereal *);
    doublereal anorm;
    extern /* Subroutine */ int dqrt02_(integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
	     doublereal *, doublereal *, integer *, doublereal *, doublereal *
);
    integer minmn;
    extern /* Subroutine */ int dqrt03_(integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
	     doublereal *, doublereal *, integer *, doublereal *, doublereal *
);
    integer nerrs, lwork;
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), alaerh_(char *, 
	    char *, integer *, integer *, char *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *);
    extern logical dgennd_(integer *, integer *, doublereal *, integer *);
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), alasum_(char *, 
	    integer *, integer *, integer *, integer *);
    doublereal cndnum;
    extern /* Subroutine */ int dgeqrs_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *), dlatms_(integer *, integer *, 
	     char *, integer *, char *, doublereal *, integer *, doublereal *, 
	     doublereal *, integer *, integer *, char *, doublereal *, 
	    integer *, doublereal *, integer *), 
	    xlaenv_(integer *, integer *), derrqr_(char *, integer *);
    doublereal result[8];

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKQR tests DGEQRF, DORGQR and DORMQR. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB and NX contained in the */
/*          vectors NBVAL and NXVAL.  The blocking parameters are used */
/*          in pairs (NB,NX). */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NXVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the crossover point NX. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for M or N, used in dimensioning */
/*          the work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AF      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AQ      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AR      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AC      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  TAU     (workspace) DOUBLE PRECISION array, dimension (NMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --tau;
    --xact;
    --x;
    --b;
    --ac;
    --ar;
    --aq;
    --af;
    --a;
    --nxval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "QR", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrqr_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

    lda = *nmax;
    lwork = *nmax * max(*nmax,*nrhs);

/*     Do for each value of M in MVAL. */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];

/*        Do for each value of N in NVAL. */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    minmn = min(m,n);
	    for (imat = 1; imat <= 8; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L50;
		}

/*              Set up parameters with DLATB4 and generate a test matrix */
/*              with DLATMS. */

		dlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
		dlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, &
			work[1], &info);

/*              Check error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, " ", &m, &n, &c_n1, 
			    &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L50;
		}

/*              Set some values for K: the first value must be MINMN, */
/*              corresponding to the call of DQRT01; other values are */
/*              used in the calls of DQRT02, and must not exceed MINMN. */

		kval[0] = minmn;
		kval[1] = 0;
		kval[2] = 1;
		kval[3] = minmn / 2;
		if (minmn == 0) {
		    nk = 1;
		} else if (minmn == 1) {
		    nk = 2;
		} else if (minmn <= 3) {
		    nk = 3;
		} else {
		    nk = 4;
		}

/*              Do for each value of K in KVAL */

		i__3 = nk;
		for (ik = 1; ik <= i__3; ++ik) {
		    k = kval[ik - 1];

/*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL. */

		    i__4 = *nnb;
		    for (inb = 1; inb <= i__4; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);
			for (i__ = 1; i__ <= 8; ++i__) {
			    result[i__ - 1] = 0.;
			}
			nt = 2;
			if (ik == 1) {

/*                       Test DGEQRF */

			    dqrt01_(&m, &n, &a[1], &af[1], &aq[1], &ar[1], &
				    lda, &tau[1], &work[1], &lwork, &rwork[1], 
				     result);
			    if (! dgennd_(&m, &n, &af[1], &lda)) {
				result[7] = *thresh * 2;
			    }
			    ++nt;
			} else if (m >= n) {

/*                       Test DORGQR, using factorization */
/*                       returned by DQRT01 */

			    dqrt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &ar[1], 
				     &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], result);
			}
			if (m >= k) {

/*                       Test DORMQR, using factorization returned */
/*                       by DQRT01 */

			    dqrt03_(&m, &n, &k, &af[1], &ac[1], &ar[1], &aq[1]
, &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], &result[2]);
			    nt += 4;

/*                       If M>=N and K=N, call DGEQRS to solve a system */
/*                       with NRHS right hand sides and compute the */
/*                       residual. */

			    if (k == n && inb == 1) {

/*                          Generate a solution and set the right */
/*                          hand side. */

				s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, 
					(ftnlen)6);
				dlarhs_(path, "New", "Full", "No transpose", &
					m, &n, &c__0, &c__0, nrhs, &a[1], &
					lda, &xact[1], &lda, &b[1], &lda, 
					iseed, &info);

				dlacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], 
					&lda);
				s_copy(srnamc_1.srnamt, "DGEQRS", (ftnlen)32, 
					(ftnlen)6);
				dgeqrs_(&m, &n, nrhs, &af[1], &lda, &tau[1], &
					x[1], &lda, &work[1], &lwork, &info);

/*                          Check error code from DGEQRS. */

				if (info != 0) {
				    alaerh_(path, "DGEQRS", &info, &c__0, 
					    " ", &m, &n, nrhs, &c_n1, &nb, &
					    imat, &nfail, &nerrs, nout);
				}

				dget02_("No transpose", &m, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &b[1], &lda, &rwork[
					1], &result[6]);
				++nt;
			    }
			}

/*                    Print information about the tests that did not */
/*                    pass the threshold. */

			i__5 = nt;
			for (i__ = 1; i__ <= i__5; ++i__) {
			    if (result[i__ - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___33.ciunit = *nout;
				s_wsfe(&io___33);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nx, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[i__ - 1], (
					ftnlen)sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L20: */
			}
			nrun += nt;
/* L30: */
		    }
/* L40: */
		}
L50:
		;
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKQR */

} /* dchkqr_ */
Exemple #2
0
/* Subroutine */ int dchkge_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *
	nmax, doublereal *a, doublereal *afac, doublereal *ainv, doublereal *
	b, doublereal *x, doublereal *xact, doublereal *work, doublereal *
	rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 M = \002,i5,\002, N =\002,i5,\002, NB "
	    "=\002,i4,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)"
	    ;
    static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N"
	    "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g1"
	    "2.5)";
    static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002"
	    ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)"
	    ;

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, k, m, n, nb, im, in, kl, ku, nt, lda, inb, ioff, mode, imat, 
	    info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *), dget01_(
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *), dget02_(char *, 
	     integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *), dget03_(integer *, doublereal *, integer *, 
	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *), dget04_(integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    extern /* Subroutine */ int dget07_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, logical *, 
	    doublereal *, doublereal *);
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    integer itran;
    char trans[1];
    integer izero, nerrs;
    doublereal dummy;
    integer lwork;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *);
    extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *), dgecon_(char *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *);
    doublereal rcondc;
    extern /* Subroutine */ int derrge_(char *, integer *), dgerfs_(
	    char *, integer *, integer *, doublereal *, integer *, doublereal 
	    *, integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    integer *), dgetrf_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dlacpy_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), dlarhs_(char *, char *, char *, char *, integer *, 
	    integer *, integer *, integer *, integer *, doublereal *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *);
    doublereal rcondi;
    extern /* Subroutine */ int dgetri_(integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *), dlaset_(char *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *), alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    doublereal cndnum, anormi, rcondo;
    extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *);
    doublereal ainvnm;
    extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    logical trfcon;
    doublereal anormo;
    extern /* Subroutine */ int xlaenv_(integer *, integer *);
    doublereal result[8];

    /* Fortran I/O blocks */
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     January 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKGE tests DGETRF, -TRI, -TRS, -RFS, and -CON. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB contained in the vector NBVAL. */

/*  NBVAL   (input) INTEGER array, dimension (NBVAL) */
/*          The values of the blocksize NB. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for M or N, used in dimensioning */
/*          the work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AINV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(2*NMAX,2*NSMAX+NWORK)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    xlaenv_(&c__1, &c__1);
    if (*tsterr) {
	derrge_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

/*     Do for each value of M in MVAL */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	lda = max(1,m);

/*        Do for each value of N in NVAL */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    *(unsigned char *)xtype = 'N';
	    nimat = 11;
	    if (m <= 0 || n <= 0) {
		nimat = 1;
	    }

	    i__3 = nimat;
	    for (imat = 1; imat <= i__3; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L100;
		}

/*              Skip types 5, 6, or 7 if the matrix size is too small. */

		zerot = imat >= 5 && imat <= 7;
		if (zerot && n < imat - 4) {
		    goto L100;
		}

/*              Set up parameters with DLATB4 and generate a test matrix */
/*              with DLATMS. */

		dlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
		dlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, &
			work[1], &info);

/*              Check error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, " ", &m, &n, &c_n1, 
			    &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L100;
		}

/*              For types 5-7, zero one or more columns of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 5) {
			izero = 1;
		    } else if (imat == 6) {
			izero = min(m,n);
		    } else {
			izero = min(m,n) / 2 + 1;
		    }
		    ioff = (izero - 1) * lda;
		    if (imat < 7) {
			i__4 = m;
			for (i__ = 1; i__ <= i__4; ++i__) {
			    a[ioff + i__] = 0.;
/* L20: */
			}
		    } else {
			i__4 = n - izero + 1;
			dlaset_("Full", &m, &i__4, &c_b23, &c_b23, &a[ioff + 
				1], &lda);
		    }
		} else {
		    izero = 0;
		}

/*              These lines, if used in place of the calls in the DO 60 */
/*              loop, cause the code to bomb on a Sun SPARCstation. */

/*               ANORMO = DLANGE( 'O', M, N, A, LDA, RWORK ) */
/*               ANORMI = DLANGE( 'I', M, N, A, LDA, RWORK ) */

/*              Do for each blocksize in NBVAL */

		i__4 = *nnb;
		for (inb = 1; inb <= i__4; ++inb) {
		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);

/*                 Compute the LU factorization of the matrix. */

		    dlacpy_("Full", &m, &n, &a[1], &lda, &afac[1], &lda);
		    s_copy(srnamc_1.srnamt, "DGETRF", (ftnlen)32, (ftnlen)6);
		    dgetrf_(&m, &n, &afac[1], &lda, &iwork[1], &info);

/*                 Check error code from DGETRF. */

		    if (info != izero) {
			alaerh_(path, "DGETRF", &info, &izero, " ", &m, &n, &
				c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout);
		    }
		    trfcon = FALSE_;

/* +    TEST 1 */
/*                 Reconstruct matrix from factors and compute residual. */

		    dlacpy_("Full", &m, &n, &afac[1], &lda, &ainv[1], &lda);
		    dget01_(&m, &n, &a[1], &lda, &ainv[1], &lda, &iwork[1], &
			    rwork[1], result);
		    nt = 1;

/* +    TEST 2 */
/*                 Form the inverse if the factorization was successful */
/*                 and compute the residual. */

		    if (m == n && info == 0) {
			dlacpy_("Full", &n, &n, &afac[1], &lda, &ainv[1], &
				lda);
			s_copy(srnamc_1.srnamt, "DGETRI", (ftnlen)32, (ftnlen)
				6);
			nrhs = nsval[1];
			lwork = *nmax * max(3,nrhs);
			dgetri_(&n, &ainv[1], &lda, &iwork[1], &work[1], &
				lwork, &info);

/*                    Check error code from DGETRI. */

			if (info != 0) {
			    alaerh_(path, "DGETRI", &info, &c__0, " ", &n, &n, 
				     &c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, 
				     nout);
			}

/*                    Compute the residual for the matrix times its */
/*                    inverse.  Also compute the 1-norm condition number */
/*                    of A. */

			dget03_(&n, &a[1], &lda, &ainv[1], &lda, &work[1], &
				lda, &rwork[1], &rcondo, &result[1]);
			anormo = dlange_("O", &m, &n, &a[1], &lda, &rwork[1]);

/*                    Compute the infinity-norm condition number of A. */

			anormi = dlange_("I", &m, &n, &a[1], &lda, &rwork[1]);
			ainvnm = dlange_("I", &n, &n, &ainv[1], &lda, &rwork[
				1]);
			if (anormi <= 0. || ainvnm <= 0.) {
			    rcondi = 1.;
			} else {
			    rcondi = 1. / anormi / ainvnm;
			}
			nt = 2;
		    } else {

/*                    Do only the condition estimate if INFO > 0. */

			trfcon = TRUE_;
			anormo = dlange_("O", &m, &n, &a[1], &lda, &rwork[1]);
			anormi = dlange_("I", &m, &n, &a[1], &lda, &rwork[1]);
			rcondo = 0.;
			rcondi = 0.;
		    }

/*                 Print information about the tests so far that did not */
/*                 pass the threshold. */

		    i__5 = nt;
		    for (k = 1; k <= i__5; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L30: */
		    }
		    nrun += nt;

/*                 Skip the remaining tests if this is not the first */
/*                 block size or if M .ne. N.  Skip the solve tests if */
/*                 the matrix is singular. */

		    if (inb > 1 || m != n) {
			goto L90;
		    }
		    if (trfcon) {
			goto L70;
		    }

		    i__5 = *nns;
		    for (irhs = 1; irhs <= i__5; ++irhs) {
			nrhs = nsval[irhs];
			*(unsigned char *)xtype = 'N';

			for (itran = 1; itran <= 3; ++itran) {
			    *(unsigned char *)trans = *(unsigned char *)&
				    transs[itran - 1];
			    if (itran == 1) {
				rcondc = rcondo;
			    } else {
				rcondc = rcondi;
			    }

/* +    TEST 3 */
/*                       Solve and compute residual for A * X = B. */

			    s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (
				    ftnlen)6);
			    dlarhs_(path, xtype, " ", trans, &n, &n, &kl, &ku, 
				     &nrhs, &a[1], &lda, &xact[1], &lda, &b[1]
, &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';

			    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &
				    lda);
			    s_copy(srnamc_1.srnamt, "DGETRS", (ftnlen)32, (
				    ftnlen)6);
			    dgetrs_(trans, &n, &nrhs, &afac[1], &lda, &iwork[
				    1], &x[1], &lda, &info);

/*                       Check error code from DGETRS. */

			    if (info != 0) {
				alaerh_(path, "DGETRS", &info, &c__0, trans, &
					n, &n, &c_n1, &c_n1, &nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

			    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], 
				    &lda);
			    dget02_(trans, &n, &n, &nrhs, &a[1], &lda, &x[1], 
				    &lda, &work[1], &lda, &rwork[1], &result[
				    2]);

/* +    TEST 4 */
/*                       Check solution from generated exact solution. */

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[3]);

/* +    TESTS 5, 6, and 7 */
/*                       Use iterative refinement to improve the */
/*                       solution. */

			    s_copy(srnamc_1.srnamt, "DGERFS", (ftnlen)32, (
				    ftnlen)6);
			    dgerfs_(trans, &n, &nrhs, &a[1], &lda, &afac[1], &
				    lda, &iwork[1], &b[1], &lda, &x[1], &lda, 
				    &rwork[1], &rwork[nrhs + 1], &work[1], &
				    iwork[n + 1], &info);

/*                       Check error code from DGERFS. */

			    if (info != 0) {
				alaerh_(path, "DGERFS", &info, &c__0, trans, &
					n, &n, &c_n1, &c_n1, &nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[4]);
			    dget07_(trans, &n, &nrhs, &a[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &c_true, &rwork[nrhs + 1], &result[5]);

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = 3; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___46.ciunit = *nout;
				    s_wsfe(&io___46);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L40: */
			    }
			    nrun += 5;
/* L50: */
			}
/* L60: */
		    }

/* +    TEST 8 */
/*                    Get an estimate of RCOND = 1/CNDNUM. */

L70:
		    for (itran = 1; itran <= 2; ++itran) {
			if (itran == 1) {
			    anorm = anormo;
			    rcondc = rcondo;
			    *(unsigned char *)norm = 'O';
			} else {
			    anorm = anormi;
			    rcondc = rcondi;
			    *(unsigned char *)norm = 'I';
			}
			s_copy(srnamc_1.srnamt, "DGECON", (ftnlen)32, (ftnlen)
				6);
			dgecon_(norm, &n, &afac[1], &lda, &anorm, &rcond, &
				work[1], &iwork[n + 1], &info);

/*                       Check error code from DGECON. */

			if (info != 0) {
			    alaerh_(path, "DGECON", &info, &c__0, norm, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			}

/*                       This line is needed on a Sun SPARCstation. */

			dummy = rcond;

			result[7] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (result[7] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___50.ciunit = *nout;
			    s_wsfe(&io___50);
			    do_fio(&c__1, norm, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			    ++nfail;
			}
			++nrun;
/* L80: */
		    }
L90:
		    ;
		}
L100:
		;
	    }
/* L110: */
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKGE */

} /* dchkge_ */
Exemple #3
0
/* Subroutine */ int ddrvge_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, 
	doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, 
	doublereal *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test(\002,i2,\002) =\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a"
	    "1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2,\002"
	    ", test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a"
	    "1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    doublereal d__1;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    extern /* Subroutine */ int debchvxx_(doublereal *, char *);
    integer i__, k, n;
    doublereal *errbnds_c__, *errbnds_n__;
    integer k1, nb, in, kl, ku, nt, n_err_bnds__;
    extern doublereal dla_rpvgrw__(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *);
    integer lda;
    char fact[1];
    integer ioff, mode;
    doublereal amax;
    char path[3];
    integer imat, info;
    doublereal *berr;
    char dist[1];
    doublereal rpvgrw_svxx__;
    char type__[1];
    integer nrun;
    extern /* Subroutine */ int dget01_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    doublereal *), dget02_(char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *);
    integer ifact;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    integer nfail, iseed[4], nfact;
    extern doublereal dget06_(doublereal *, doublereal *);
    extern /* Subroutine */ int dget07_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, logical *, 
	    doublereal *, doublereal *);
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    doublereal rcond, roldc;
    integer nimat;
    doublereal roldi;
    extern /* Subroutine */ int dgesv_(integer *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, integer *);
    doublereal anorm;
    integer itran;
    logical equil;
    doublereal roldo;
    char trans[1];
    integer izero, nerrs, lwork;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *);
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *), dlaqge_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, char *);
    logical prefac;
    doublereal colcnd, rcondc;
    logical nofact;
    integer iequed;
    extern /* Subroutine */ int dgeequ_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *);
    doublereal rcondi;
    extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dgetri_(integer *, doublereal *, 
	     integer *, integer *, doublereal *, integer *, integer *), 
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), alasvm_(char *, integer *, 
	    integer *, integer *, integer *);
    doublereal cndnum, anormi, rcondo, ainvnm;
    extern doublereal dlantr_(char *, char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int dlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, integer *);
    logical trfcon;
    doublereal anormo, rowcnd;
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dgesvx_(char *, char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, char *, doublereal 
	    *, doublereal *, doublereal *, integer *, doublereal *, integer *, 
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
, integer *), dlatms_(integer *, integer *
, char *, integer *, char *, doublereal *, integer *, doublereal *
, doublereal *, integer *, integer *, char *, doublereal *, 
	    integer *, doublereal *, integer *), 
	    xlaenv_(integer *, integer *), derrvx_(char *, integer *);
    doublereal result[7], rpvgrw;
    extern /* Subroutine */ int dgesvxx_(char *, char *, integer *, integer *, 
	     doublereal *, integer *, doublereal *, integer *, integer *, 
	    char *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___67 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___68 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___74 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___75 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___76 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___77 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___78 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___79 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___80 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___81 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DDRVGE tests the driver routines DGESV, -SVX, and -SVXX. */

/*  Note that this file is used only when the XBLAS are available, */
/*  otherwise ddrvge.f defines this subroutine. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  S       (workspace) DOUBLE PRECISION array, dimension (2*NMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*NRHS+NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L80;
	    }

/*           Skip types 5, 6, or 7 if the matrix size is too small. */

	    zerot = imat >= 5 && imat <= 7;
	    if (zerot && n < imat - 4) {
		goto L80;
	    }

/*           Set up parameters with DLATB4 and generate a test matrix */
/*           with DLATMS. */

	    dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cndnum, dist);
	    rcondc = 1. / cndnum;

	    s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
	    dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &
		    anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], &
		    info);

/*           Check error code from DLATMS. */

	    if (info != 0) {
		alaerh_(path, "DLATMS", &info, &c__0, " ", &n, &n, &c_n1, &
			c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		goto L80;
	    }

/*           For types 5-7, zero one or more columns of the matrix to */
/*           test that INFO is returned correctly. */

	    if (zerot) {
		if (imat == 5) {
		    izero = 1;
		} else if (imat == 6) {
		    izero = n;
		} else {
		    izero = n / 2 + 1;
		}
		ioff = (izero - 1) * lda;
		if (imat < 7) {
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			a[ioff + i__] = 0.;
/* L20: */
		    }
		} else {
		    i__3 = n - izero + 1;
		    dlaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], &
			    lda);
		}
	    } else {
		izero = 0;
	    }

/*           Save a copy of the matrix A in ASAV. */

	    dlacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda);

	    for (iequed = 1; iequed <= 4; ++iequed) {
		*(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 
			1];
		if (iequed == 1) {
		    nfact = 3;
		} else {
		    nfact = 1;
		}

		i__3 = nfact;
		for (ifact = 1; ifact <= i__3; ++ifact) {
		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];
		    prefac = lsame_(fact, "F");
		    nofact = lsame_(fact, "N");
		    equil = lsame_(fact, "E");

		    if (zerot) {
			if (prefac) {
			    goto L60;
			}
			rcondo = 0.;
			rcondi = 0.;

		    } else if (! nofact) {

/*                    Compute the condition number for comparison with */
/*                    the value returned by DGESVX (FACT = 'N' reuses */
/*                    the condition number from the previous iteration */
/*                    with FACT = 'F'). */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], &
				lda);
			if (equil || iequed > 1) {

/*                       Compute row and column scale factors to */
/*                       equilibrate the matrix A. */

			    dgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], 
				    &rowcnd, &colcnd, &amax, &info);
			    if (info == 0 && n > 0) {
				if (lsame_(equed, "R")) 
					{
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if (lsame_(equed, "C")) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if (lsame_(equed, "B")) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}

/*                          Equilibrate the matrix. */

				dlaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 
					1], &rowcnd, &colcnd, &amax, equed);
			    }
			}

/*                    Save the condition number of the non-equilibrated */
/*                    system for use in DGET04. */

			if (equil) {
			    roldo = rcondo;
			    roldi = rcondi;
			}

/*                    Compute the 1-norm and infinity-norm of A. */

			anormo = dlange_("1", &n, &n, &afac[1], &lda, &rwork[
				1]);
			anormi = dlange_("I", &n, &n, &afac[1], &lda, &rwork[
				1]);

/*                    Factor the matrix A. */

			dgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info);

/*                    Form the inverse of A. */

			dlacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda);
			lwork = *nmax * max(3,*nrhs);
			dgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, 
				&info);

/*                    Compute the 1-norm condition number of A. */

			ainvnm = dlange_("1", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormo <= 0. || ainvnm <= 0.) {
			    rcondo = 1.;
			} else {
			    rcondo = 1. / anormo / ainvnm;
			}

/*                    Compute the infinity-norm condition number of A. */

			ainvnm = dlange_("I", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormi <= 0. || ainvnm <= 0.) {
			    rcondi = 1.;
			} else {
			    rcondi = 1. / anormi / ainvnm;
			}
		    }

		    for (itran = 1; itran <= 3; ++itran) {
			for (i__ = 1; i__ <= 7; ++i__) {
			    result[i__ - 1] = 0.;
			}

/*                    Do for each value of TRANS. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];
			if (itran == 1) {
			    rcondc = rcondo;
			} else {
			    rcondc = rcondi;
			}

/*                    Restore the matrix A. */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen)
				6);
			dlarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact && itran == 1) {

/*                       --- Test DGESV  --- */

/*                       Compute the LU factorization of the matrix and */
/*                       solve the system. */

			    dlacpy_("Full", &n, &n, &a[1], &lda, &afac[1], &
				    lda);
			    dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "DGESV ", (ftnlen)32, (
				    ftnlen)6);
			    dgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], 
				     &lda, &info);

/*                       Check error code from DGESV . */

			    if (info != izero) {
				alaerh_(path, "DGESV ", &info, &izero, " ", &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
				goto L50;
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[1], result);
			    nt = 1;
			    if (izero == 0) {

/*                          Compute residual of the computed solution. */

				dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				dget02_("No transpose", &n, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &work[1], &lda, &
					rwork[1], &result[1]);

/*                          Check solution from generated exact solution. */

				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;
			    }

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___55.ciunit = *nout;
				    s_wsfe(&io___55);
				    do_fio(&c__1, "DGESV ", (ftnlen)6);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L30: */
			    }
			    nrun += nt;
			}

/*                    --- Test DGESVX --- */

			if (! prefac) {
			    dlaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			dlaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and */
/*                       EQUED = 'R', 'C', or 'B'. */

			    dlaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using DGESVX. */

			s_copy(srnamc_1.srnamt, "DGESVX", (ftnlen)32, (ftnlen)
				6);
			dgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				&lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rwork[1], &
				rwork[*nrhs + 1], &work[1], &iwork[n + 1], &
				info);

/*                    Check the error code from DGESVX. */

			if (info == n + 1) {
			    goto L50;
			}
			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "DGESVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L50;
			}

/*                    Compare WORK(1) from DGESVX with the computed */
/*                    reciprocal pivot growth factor RPVGRW */

			if (info != 0) {
			    rpvgrw = dlantr_("M", "U", "N", &info, &info, &
				    afac[1], &lda, &work[1]);
			    if (rpvgrw == 0.) {
				rpvgrw = 1.;
			    } else {
				rpvgrw = dlange_("M", &n, &info, &a[1], &lda, 
					&work[1]) / rpvgrw;
			    }
			} else {
			    rpvgrw = dlantr_("M", "U", "N", &n, &n, &afac[1], 
				    &lda, &work[1]);
			    if (rpvgrw == 0.) {
				rpvgrw = 1.;
			    } else {
				rpvgrw = dlange_("M", &n, &n, &a[1], &lda, &
					work[1]) / rpvgrw;
			    }
			}
			result[6] = (d__1 = rpvgrw - work[1], abs(d__1)) / 
				max(work[1],rpvgrw) / dlamch_("E");

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    dget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
, &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    dget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &c_true, &rwork[*nrhs + 1], &result[3]
);
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from DGESVX with the computed value */
/*                    in RCONDC. */

			result[5] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "DGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    } else {
					io___62.ciunit = *nout;
					s_wsfe(&io___62);
					do_fio(&c__1, "DGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L40: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___63.ciunit = *nout;
				    s_wsfe(&io___63);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___64.ciunit = *nout;
				    s_wsfe(&io___64);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___65.ciunit = *nout;
				    s_wsfe(&io___65);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___66.ciunit = *nout;
				    s_wsfe(&io___66);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___67.ciunit = *nout;
				    s_wsfe(&io___67);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___68.ciunit = *nout;
				    s_wsfe(&io___68);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

/*                    --- Test DGESVXX --- */

/*                    Restore the matrices A and B. */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);
			dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &b[1], &lda);
			if (! prefac) {
			    dlaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			dlaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and */
/*                       EQUED = 'R', 'C', or 'B'. */

			    dlaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using DGESVXX. */

			s_copy(srnamc_1.srnamt, "DGESVXX", (ftnlen)32, (
				ftnlen)7);
			n_err_bnds__ = 3;

			dalloc3();
			
			dgesvxx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				 &lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rpvgrw_svxx__, 
				 berr, &n_err_bnds__, errbnds_n__, 
				errbnds_c__, &c__0, &c_b20, &work[1], &iwork[
				n + 1], &info);

			free3();

/*                    Check the error code from DGESVXX. */

			if (info == n + 1) {
			    goto L50;
			}
			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "DGESVXX", &info, &izero, ch__1, &n, 
				     &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L50;
			}

/*                    Compare rpvgrw_svxx from DGESVXX with the computed */
/*                    reciprocal pivot growth factor RPVGRW */

			if (info > 0 && info < n + 1) {
			    rpvgrw = dla_rpvgrw__(&n, &info, &a[1], &lda, &
				    afac[1], &lda);
			} else {
			    rpvgrw = dla_rpvgrw__(&n, &n, &a[1], &lda, &afac[
				    1], &lda);
			}
			result[6] = (d__1 = rpvgrw - rpvgrw_svxx__, abs(d__1))
				 / max(rpvgrw_svxx__,rpvgrw) / dlamch_("E");

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    dget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
, &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from DGESVXX with the computed value */
/*                    in RCONDC. */

			result[5] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___74.ciunit = *nout;
					s_wsfe(&io___74);
					do_fio(&c__1, "DGESVXX", (ftnlen)7);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    } else {
					io___75.ciunit = *nout;
					s_wsfe(&io___75);
					do_fio(&c__1, "DGESVXX", (ftnlen)7);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L45: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___76.ciunit = *nout;
				    s_wsfe(&io___76);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___77.ciunit = *nout;
				    s_wsfe(&io___77);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___78.ciunit = *nout;
				    s_wsfe(&io___78);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___79.ciunit = *nout;
				    s_wsfe(&io___79);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___80.ciunit = *nout;
				    s_wsfe(&io___80);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___81.ciunit = *nout;
				    s_wsfe(&io___81);
				    do_fio(&c__1, "DGESVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

L50:
			;
		    }
L60:
		    ;
		}
/* L70: */
	    }
L80:
	    ;
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

/*     Test Error Bounds from DGESVXX */
    debchvxx_(thresh, path);
    return 0;

/*     End of DDRVGE */

} /* ddrvge_ */
Exemple #4
0
/* Subroutine */ int dlsets_(integer *m, integer *p, integer *n, doublereal *
	a, doublereal *af, integer *lda, doublereal *b, doublereal *bf, 
	integer *ldb, doublereal *c__, doublereal *cf, doublereal *d__, 
	doublereal *df, doublereal *x, doublereal *work, integer *lwork, 
	doublereal *rwork, doublereal *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, bf_dim1, 
	    bf_offset;

    /* Local variables */
    integer info;
    extern /* Subroutine */ int dget02_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
	     integer *, doublereal *, doublereal *), dcopy_(integer *, 
	     doublereal *, integer *, doublereal *, integer *), dgglse_(
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *), dlacpy_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */

/*  Purpose */
/*  ======= */

/*  DLSETS tests DGGLSE - a subroutine for solving linear equality */
/*  constrained least square problem (LSE). */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  P       (input) INTEGER */
/*          The number of rows of the matrix B.  P >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrices A and B.  N >= 0. */

/*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
/*          The M-by-N matrix A. */

/*  AF      (workspace) DOUBLE PRECISION array, dimension (LDA,N) */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the arrays A, AF, Q and R. */
/*          LDA >= max(M,N). */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,N) */
/*          The P-by-N matrix A. */

/*  BF      (workspace) DOUBLE PRECISION array, dimension (LDB,N) */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the arrays B, BF, V and S. */
/*          LDB >= max(P,N). */

/*  C       (input) DOUBLE PRECISION array, dimension( M ) */
/*          the vector C in the LSE problem. */

/*  CF      (workspace) DOUBLE PRECISION array, dimension( M ) */

/*  D       (input) DOUBLE PRECISION array, dimension( P ) */
/*          the vector D in the LSE problem. */

/*  DF      (workspace) DOUBLE PRECISION array, dimension( P ) */

/*  X       (output) DOUBLE PRECISION array, dimension( N ) */
/*          solution vector X in the LSE problem. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M) */

/*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
/*          The test ratios: */
/*            RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS */
/*            RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS */

/*  ==================================================================== */

/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Copy the matrices A and B to the arrays AF and BF, */
/*     and the vectors C and D to the arrays CF and DF, */

    /* Parameter adjustments */
    af_dim1 = *lda;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    bf_dim1 = *ldb;
    bf_offset = 1 + bf_dim1;
    bf -= bf_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --c__;
    --cf;
    --d__;
    --df;
    --x;
    --work;
    --rwork;
    --result;

    /* Function Body */
    dlacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);
    dlacpy_("Full", p, n, &b[b_offset], ldb, &bf[bf_offset], ldb);
    dcopy_(m, &c__[1], &c__1, &cf[1], &c__1);
    dcopy_(p, &d__[1], &c__1, &df[1], &c__1);

/*     Solve LSE problem */

    dgglse_(m, n, p, &af[af_offset], lda, &bf[bf_offset], ldb, &cf[1], &df[1], 
	     &x[1], &work[1], lwork, &info);

/*     Test the residual for the solution of LSE */

/*     Compute RESULT(1) = norm( A*x - c ) / norm(A)*norm(X)*EPS */

    dcopy_(m, &c__[1], &c__1, &cf[1], &c__1);
    dcopy_(p, &d__[1], &c__1, &df[1], &c__1);
    dget02_("No transpose", m, n, &c__1, &a[a_offset], lda, &x[1], n, &cf[1], 
	    m, &rwork[1], &result[1]);

/*     Compute result(2) = norm( B*x - d ) / norm(B)*norm(X)*EPS */

    dget02_("No transpose", p, n, &c__1, &b[b_offset], ldb, &x[1], n, &df[1], 
	    p, &rwork[1], &result[2]);

    return 0;

/*     End of DLSETS */

} /* dlsets_ */