// format disk track static void disk_1305(struct bregs *regs, struct drive_s *drive_g) { debug_stub(regs); u16 nlc, nlh, nlspt; fillLCHS(drive_g, &nlc, &nlh, &nlspt); u8 num_sectors = regs->al; u8 head = regs->dh; if (head >= nlh || num_sectors == 0 || num_sectors > nlspt) { disk_ret(regs, DISK_RET_EPARAM); return; } struct disk_op_s dop; dop.drive_g = drive_g; dop.command = CMD_FORMAT; dop.lba = head; dop.count = num_sectors; dop.buf_fl = MAKE_FLATPTR(regs->es, regs->bx); int status = send_disk_op(&dop); disk_ret(regs, status); }
static void handle_legacy_disk(struct bregs *regs, u8 extdrive) { if (! CONFIG_DRIVES) { // XXX - support handle_1301 anyway? disk_ret(regs, DISK_RET_EPARAM); return; } if (extdrive < EXTSTART_HD) { struct drive_s *drive_g = getDrive(EXTTYPE_FLOPPY, extdrive); if (!drive_g) goto fail; floppy_13(regs, drive_g); return; } struct drive_s *drive_g; if (extdrive >= EXTSTART_CD) drive_g = getDrive(EXTTYPE_CD, extdrive - EXTSTART_CD); else drive_g = getDrive(EXTTYPE_HD, extdrive - EXTSTART_HD); if (!drive_g) goto fail; disk_13(regs, drive_g); return; fail: // XXX - support 1301/1308/1315 anyway? disk_ret(regs, DISK_RET_EPARAM); }
// format disk track static void noinline disk_1305(struct bregs *regs, struct drive_s *drive_gf) { debug_stub(regs); struct chs_s chs = getLCHS(drive_gf); u16 nlc=chs.cylinder, nlh=chs.head, nls=chs.sector; u8 count = regs->al; u8 cylinder = regs->ch; u8 head = regs->dh; if (cylinder >= nlc || head >= nlh || count == 0 || count > nls) { disk_ret(regs, DISK_RET_EPARAM); return; } struct disk_op_s dop; dop.drive_gf = drive_gf; dop.command = CMD_FORMAT; dop.lba = (((u32)cylinder * (u32)nlh) + (u32)head) * (u32)nls; dop.count = count; dop.buf_fl = MAKE_FLATPTR(regs->es, regs->bx); int status = send_disk_op(&dop); disk_ret(regs, status); }
// Perform read/write/verify using new-style "int13ext" accesses. static void noinline extended_access(struct bregs *regs, struct drive_s *drive_g, u16 command) { struct disk_op_s dop; // Get lba and check. dop.lba = GET_INT13EXT(regs, lba); dop.command = command; dop.drive_g = drive_g; if (dop.lba >= GET_GLOBAL(drive_g->sectors)) { warn_invalid(regs); disk_ret(regs, DISK_RET_EPARAM); return; } dop.buf_fl = SEGOFF_TO_FLATPTR(GET_INT13EXT(regs, data)); dop.count = GET_INT13EXT(regs, count); if (! dop.count) { // Nothing to do. disk_ret(regs, DISK_RET_SUCCESS); return; } int status = send_disk_op(&dop); SET_INT13EXT(regs, count, dop.count); disk_ret(regs, status); }
// IBM/MS eject media static void disk_1346(struct bregs *regs, struct drive_s *drive_g) { if (regs->dl < EXTSTART_CD) { // Volume Not Removable disk_ret(regs, DISK_RET_ENOTREMOVABLE); return; } int cdid = regs->dl - EXTSTART_CD; u8 locks = GET_EBDA(cdrom_locks[cdid]); if (locks != 0) { disk_ret(regs, DISK_RET_ELOCKED); return; } // FIXME should handle 0x31 no media in device // FIXME should handle 0xb5 valid request failed // Call removable media eject struct bregs br; memset(&br, 0, sizeof(br)); br.ah = 0x52; call16_int(0x15, &br); if (br.ah || br.flags & F_CF) { disk_ret(regs, DISK_RET_ELOCKED); return; } disk_ret(regs, DISK_RET_SUCCESS); }
// Perform read/write/verify using new-style "int13ext" accesses. static void noinline extended_access(struct bregs *regs, struct drive_s *drive_gf, u16 command) { struct disk_op_s dop; struct int13ext_s *param_far = (struct int13ext_s*)(regs->si+0); // Get lba and check. dop.lba = GET_FARVAR(regs->ds, param_far->lba); dop.command = command; dop.drive_gf = drive_gf; if (dop.lba >= GET_GLOBALFLAT(drive_gf->sectors)) { warn_invalid(regs); disk_ret(regs, DISK_RET_EPARAM); return; } dop.buf_fl = SEGOFF_TO_FLATPTR(GET_FARVAR(regs->ds, param_far->data)); dop.count = GET_FARVAR(regs->ds, param_far->count); if (! dop.count) { // Nothing to do. disk_ret(regs, DISK_RET_SUCCESS); return; } int status = send_disk_op(&dop); SET_FARVAR(regs->ds, param_far->count, dop.count); disk_ret(regs, status); }
static void disk_1316(struct bregs *regs, struct drive_s *drive_g) { if (regs->dl >= EXTSTART_HD) { // Hard drive disk_ret(regs, DISK_RET_EPARAM); return; } disk_ret(regs, DISK_RET_ECHANGED); }
// read disk drive parameters static void noinline disk_1308(struct bregs *regs, struct drive_s *drive_g) { u16 ebda_seg = get_ebda_seg(); // Get logical geometry from table u16 nlc, nlh, nlspt; fillLCHS(drive_g, &nlc, &nlh, &nlspt); nlc--; nlh--; u8 count; if (regs->dl < EXTSTART_HD) { // Floppy count = GET_GLOBAL(FloppyCount); if (CONFIG_CDROM_EMU && drive_g == GLOBALFLAT2GLOBAL(GET_GLOBAL(cdemu_drive_gf))) regs->bx = GET_EBDA2(ebda_seg, cdemu.media) * 2; else regs->bx = GET_GLOBAL(drive_g->floppy_type); // set es & di to point to 11 byte diskette param table in ROM regs->es = SEG_BIOS; regs->di = (u32)&diskette_param_table2; } else if (regs->dl < EXTSTART_CD) { // Hard drive count = GET_BDA(hdcount); nlc--; // last sector reserved } else { // Not supported on CDROM disk_ret(regs, DISK_RET_EPARAM); return; } if (CONFIG_CDROM_EMU && GET_EBDA2(ebda_seg, cdemu.active)) { u8 emudrive = GET_EBDA2(ebda_seg, cdemu.emulated_extdrive); if (((emudrive ^ regs->dl) & 0x80) == 0) // Note extra drive due to emulation. count++; if (regs->dl < EXTSTART_HD && count > 2) // Max of two floppy drives. count = 2; } regs->al = 0; regs->ch = nlc & 0xff; regs->cl = ((nlc >> 2) & 0xc0) | (nlspt & 0x3f); regs->dh = nlh; disk_ret(regs, DISK_RET_SUCCESS); regs->dl = count; }
// lock static void disk_134500(struct bregs *regs, struct drive_s *drive_gf) { int cdid = regs->dl - EXTSTART_CD; u8 locks = GET_LOW(CDRom_locks[cdid]); if (locks == 0xff) { regs->al = 1; disk_ret(regs, DISK_RET_ETOOMANYLOCKS); return; } SET_LOW(CDRom_locks[cdid], locks + 1); regs->al = 1; disk_ret(regs, DISK_RET_SUCCESS); }
// lock static void disk_134500(struct bregs *regs, struct drive_s *drive_g) { u16 ebda_seg = get_ebda_seg(); int cdid = regs->dl - EXTSTART_CD; u8 locks = GET_EBDA2(ebda_seg, cdrom_locks[cdid]); if (locks == 0xff) { regs->al = 1; disk_ret(regs, DISK_RET_ETOOMANYLOCKS); return; } SET_EBDA2(ebda_seg, cdrom_locks[cdid], locks + 1); regs->al = 1; disk_ret(regs, DISK_RET_SUCCESS); }
// unlock static void disk_134501(struct bregs *regs, struct drive_s *drive_gf) { int cdid = regs->dl - EXTSTART_CD; u8 locks = GET_LOW(CDRom_locks[cdid]); if (locks == 0x00) { regs->al = 0; disk_ret(regs, DISK_RET_ENOTLOCKED); return; } locks--; SET_LOW(CDRom_locks[cdid], locks); regs->al = (locks ? 1 : 0); disk_ret(regs, DISK_RET_SUCCESS); }
// ElTorito - Terminate disk emu void cdemu_134b(struct bregs *regs) { // FIXME ElTorito Hardcoded SET_INT13ET(regs, size, 0x13); SET_INT13ET(regs, media, GET_LOW(CDEmu.media)); SET_INT13ET(regs, emulated_drive, GET_LOW(CDEmu.emulated_extdrive)); struct drive_s *drive_gf = GET_LOW(CDEmu.emulated_drive_gf); u8 cntl_id = 0; if (drive_gf) cntl_id = GET_GLOBALFLAT(drive_gf->cntl_id); SET_INT13ET(regs, controller_index, cntl_id / 2); SET_INT13ET(regs, device_spec, cntl_id % 2); SET_INT13ET(regs, ilba, GET_LOW(CDEmu.ilba)); SET_INT13ET(regs, buffer_segment, GET_LOW(CDEmu.buffer_segment)); SET_INT13ET(regs, load_segment, GET_LOW(CDEmu.load_segment)); SET_INT13ET(regs, sector_count, GET_LOW(CDEmu.sector_count)); SET_INT13ET(regs, cylinders, GET_LOW(CDEmu.lchs.cylinders)); SET_INT13ET(regs, sectors, GET_LOW(CDEmu.lchs.spt)); SET_INT13ET(regs, heads, GET_LOW(CDEmu.lchs.heads)); // If we have to terminate emulation if (regs->al == 0x00) { // FIXME ElTorito Various. Should be handled accordingly to spec SET_LOW(CDEmu.active, 0x00); // bye bye // XXX - update floppy/hd count. } disk_ret(regs, DISK_RET_SUCCESS); }
// unlock static void disk_134501(struct bregs *regs, struct drive_s *drive_g) { u16 ebda_seg = get_ebda_seg(); int cdid = regs->dl - EXTSTART_CD; u8 locks = GET_EBDA2(ebda_seg, cdrom_locks[cdid]); if (locks == 0x00) { regs->al = 0; disk_ret(regs, DISK_RET_ENOTLOCKED); return; } locks--; SET_EBDA2(ebda_seg, cdrom_locks[cdid], locks); regs->al = (locks ? 1 : 0); disk_ret(regs, DISK_RET_SUCCESS); }
// IBM/MS installation check static void disk_1341(struct bregs *regs, struct drive_s *drive_g) { regs->bx = 0xaa55; // install check regs->cx = 0x0007; // ext disk access and edd, removable supported disk_ret(regs, DISK_RET_SUCCESS); regs->ah = 0x30; // EDD 3.0 }
// status static void disk_134502(struct bregs *regs, struct drive_s *drive_g) { int cdid = regs->dl - EXTSTART_CD; u8 locks = GET_EBDA(cdrom_locks[cdid]); regs->al = (locks ? 1 : 0); disk_ret(regs, DISK_RET_SUCCESS); }
// disk controller reset static void disk_1300(struct bregs *regs, struct drive_s *drive_g) { struct disk_op_s dop; dop.drive_g = drive_g; dop.command = CMD_RESET; int status = send_disk_op(&dop); disk_ret(regs, status); }
// Perform read/write/verify using old-style chs accesses static void basic_access(struct bregs *regs, struct drive_s *drive_g, u16 command) { struct disk_op_s dop; dop.drive_g = drive_g; dop.command = command; u8 count = regs->al; u16 cylinder = regs->ch | ((((u16)regs->cl) << 2) & 0x300); u16 sector = regs->cl & 0x3f; u16 head = regs->dh; if (count > 128 || count == 0 || sector == 0) { dprintf(1, "int13_harddisk: function %02x, parameter out of range!\n" , regs->ah); disk_ret(regs, DISK_RET_EPARAM); return; } dop.count = count; u16 nlc, nlh, nlspt; fillLCHS(drive_g, &nlc, &nlh, &nlspt); // sanity check on cyl heads, sec if (cylinder >= nlc || head >= nlh || sector > nlspt) { dprintf(1, "int13_harddisk: function %02x, parameters out of" " range %04x/%04x/%04x!\n" , regs->ah, cylinder, head, sector); disk_ret(regs, DISK_RET_EPARAM); return; } // translate lchs to lba dop.lba = (((((u32)cylinder * (u32)nlh) + (u32)head) * (u32)nlspt) + (u32)sector - 1); dop.buf_fl = MAKE_FLATPTR(regs->es, regs->bx); int status = send_disk_op(&dop); regs->al = dop.count; disk_ret(regs, status); }
// check drive ready static void disk_1310(struct bregs *regs, struct drive_s *drive_g) { // should look at 40:8E also??? struct disk_op_s dop; dop.drive_g = drive_g; dop.command = CMD_ISREADY; int status = send_disk_op(&dop); disk_ret(regs, status); }
// Perform read/write/verify using old-style chs accesses static void noinline basic_access(struct bregs *regs, struct drive_s *drive_g, u16 command) { struct disk_op_s dop; dop.drive_g = drive_g; dop.command = command; u8 count = regs->al; u16 cylinder = regs->ch | ((((u16)regs->cl) << 2) & 0x300); u16 sector = regs->cl & 0x3f; u16 head = regs->dh; if (count > 128 || count == 0 || sector == 0) { warn_invalid(regs); disk_ret(regs, DISK_RET_EPARAM); return; } dop.count = count; u16 nlc, nlh, nlspt; fillLCHS(drive_g, &nlc, &nlh, &nlspt); // sanity check on cyl heads, sec if (cylinder >= nlc || head >= nlh || sector > nlspt) { warn_invalid(regs); disk_ret(regs, DISK_RET_EPARAM); return; } // translate lchs to lba dop.lba = (((((u32)cylinder * (u32)nlh) + (u32)head) * (u32)nlspt) + (u32)sector - 1); dop.buf_fl = MAKE_FLATPTR(regs->es, regs->bx); int status = send_disk_op(&dop); regs->al = dop.count; disk_ret(regs, status); }
// IBM/MS extended media change static void disk_1349(struct bregs *regs, struct drive_s *drive_g) { if (regs->dl < EXTSTART_CD) { // Always success for HD disk_ret(regs, DISK_RET_SUCCESS); return; } set_invalid(regs); // always send changed ?? regs->ah = DISK_RET_ECHANGED; }
// ElTorito - Terminate disk emu static void cdemu_134b(struct bregs *regs) { memcpy_far(regs->ds, (void*)(regs->si+0), SEG_LOW, &CDEmu, sizeof(CDEmu)); // If we have to terminate emulation if (regs->al == 0x00) { // FIXME ElTorito Various. Should be handled accordingly to spec SET_LOW(CDEmu.media, 0x00); // bye bye // XXX - update floppy/hd count. } disk_ret(regs, DISK_RET_SUCCESS); }
// Perform read/write/verify using new-style "int13ext" accesses. static void extended_access(struct bregs *regs, struct drive_s *drive_g, u16 command) { struct disk_op_s dop; // Get lba and check. dop.lba = GET_INT13EXT(regs, lba); dop.command = command; dop.drive_g = drive_g; if (dop.lba >= GET_GLOBAL(drive_g->sectors)) { dprintf(1, "int13_harddisk: function %02x. LBA out of range\n" , regs->ah); disk_ret(regs, DISK_RET_EPARAM); return; } dop.buf_fl = SEGOFF_TO_FLATPTR(GET_INT13EXT(regs, data)); dop.count = GET_INT13EXT(regs, count); int status = send_disk_op(&dop); SET_INT13EXT(regs, count, dop.count); disk_ret(regs, status); }
// IBM/MS lock/unlock drive static void disk_1345(struct bregs *regs, struct drive_s *drive_g) { if (regs->dl < EXTSTART_CD) { // Always success for HD disk_ret(regs, DISK_RET_SUCCESS); return; } switch (regs->al) { case 0x00: disk_134500(regs, drive_g); break; case 0x01: disk_134501(regs, drive_g); break; case 0x02: disk_134502(regs, drive_g); break; default: disk_1345XX(regs, drive_g); break; } }
// read disk drive size static void noinline disk_1315(struct bregs *regs, struct drive_s *drive_gf) { disk_ret(regs, DISK_RET_SUCCESS); if (regs->dl < EXTSTART_HD || regs->dl >= EXTSTART_CD) { // Floppy or cdrom regs->ah = 1; return; } // Hard drive // Get logical geometry from table struct chs_s chs = getLCHS(drive_gf); u16 nlc=chs.cylinder, nlh=chs.head, nls=chs.sector; // Compute sector count seen by int13 u32 lba = (u32)(nlc - 1) * (u32)nlh * (u32)nls; regs->cx = lba >> 16; regs->dx = lba & 0xffff; regs->ah = 3; // hard disk accessible }
// read disk drive size static void disk_1315(struct bregs *regs, struct drive_s *drive_g) { disk_ret(regs, DISK_RET_SUCCESS); if (regs->dl < EXTSTART_HD || regs->dl >= EXTSTART_CD) { // Floppy or cdrom regs->ah = 1; return; } // Hard drive // Get logical geometry from table u16 nlc, nlh, nlspt; fillLCHS(drive_g, &nlc, &nlh, &nlspt); // Compute sector count seen by int13 u32 lba = (u32)(nlc - 1) * (u32)nlh * (u32)nlspt; regs->cx = lba >> 16; regs->dx = lba & 0xffff; regs->ah = 3; // hard disk accessible }
// IBM/MS get drive parameters static void disk_1348(struct bregs *regs, struct drive_s *drive_gf) { int ret = fill_edd(SEGOFF(regs->ds, regs->si), drive_gf); disk_ret(regs, ret); }
static void disk_134eXX(struct bregs *regs, struct drive_s *drive_g) { disk_ret(regs, DISK_RET_EPARAM); }
static void disk_134e06(struct bregs *regs, struct drive_s *drive_g) { disk_ret(regs, DISK_RET_SUCCESS); }
// IBM/MS get drive parameters static void disk_1348(struct bregs *regs, struct drive_s *drive_g) { u16 size = GET_INT13DPT(regs, size); // Buffer is too small if (size < 26) { disk_ret(regs, DISK_RET_EPARAM); return; } // EDD 1.x u8 type = GET_GLOBAL(drive_g->type); u16 npc = GET_GLOBAL(drive_g->pchs.cylinders); u16 nph = GET_GLOBAL(drive_g->pchs.heads); u16 npspt = GET_GLOBAL(drive_g->pchs.spt); u64 lba = GET_GLOBAL(drive_g->sectors); u16 blksize = GET_GLOBAL(drive_g->blksize); dprintf(DEBUG_HDL_13, "disk_1348 size=%d t=%d chs=%d,%d,%d lba=%d bs=%d\n" , size, type, npc, nph, npspt, (u32)lba, blksize); SET_INT13DPT(regs, size, 26); if (type == DTYPE_ATAPI) { // 0x74 = removable, media change, lockable, max values SET_INT13DPT(regs, infos, 0x74); SET_INT13DPT(regs, cylinders, 0xffffffff); SET_INT13DPT(regs, heads, 0xffffffff); SET_INT13DPT(regs, spt, 0xffffffff); SET_INT13DPT(regs, sector_count, (u64)-1); } else { if (lba > (u64)npspt*nph*0x3fff) { SET_INT13DPT(regs, infos, 0x00); // geometry is invalid SET_INT13DPT(regs, cylinders, 0x3fff); } else { SET_INT13DPT(regs, infos, 0x02); // geometry is valid SET_INT13DPT(regs, cylinders, (u32)npc); } SET_INT13DPT(regs, heads, (u32)nph); SET_INT13DPT(regs, spt, (u32)npspt); SET_INT13DPT(regs, sector_count, lba); } SET_INT13DPT(regs, blksize, blksize); if (size < 30 || (type != DTYPE_ATA && type != DTYPE_ATAPI)) { disk_ret(regs, DISK_RET_SUCCESS); return; } // EDD 2.x u16 ebda_seg = get_ebda_seg(); SET_INT13DPT(regs, size, 30); SET_INT13DPT(regs, dpte_segment, ebda_seg); SET_INT13DPT(regs, dpte_offset , offsetof(struct extended_bios_data_area_s, dpte)); // Fill in dpte u8 ataid = GET_GLOBAL(drive_g->cntl_id); u8 channel = ataid / 2; u8 slave = ataid % 2; u16 iobase1 = GET_GLOBAL(ATA_channels[channel].iobase1); u16 iobase2 = GET_GLOBAL(ATA_channels[channel].iobase2); u8 irq = GET_GLOBAL(ATA_channels[channel].irq); u16 options = 0; if (type == DTYPE_ATA) { u8 translation = GET_GLOBAL(drive_g->translation); if (translation != TRANSLATION_NONE) { options |= 1<<3; // CHS translation if (translation == TRANSLATION_LBA) options |= 1<<9; if (translation == TRANSLATION_RECHS) options |= 3<<9; } } else { // ATAPI options |= 1<<5; // removable device options |= 1<<6; // atapi device } options |= 1<<4; // lba translation if (CONFIG_ATA_PIO32) options |= 1<<7; SET_EBDA2(ebda_seg, dpte.iobase1, iobase1); SET_EBDA2(ebda_seg, dpte.iobase2, iobase2 + ATA_CB_DC); SET_EBDA2(ebda_seg, dpte.prefix, ((slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0) | ATA_CB_DH_LBA)); SET_EBDA2(ebda_seg, dpte.unused, 0xcb); SET_EBDA2(ebda_seg, dpte.irq, irq); SET_EBDA2(ebda_seg, dpte.blkcount, 1); SET_EBDA2(ebda_seg, dpte.dma, 0); SET_EBDA2(ebda_seg, dpte.pio, 0); SET_EBDA2(ebda_seg, dpte.options, options); SET_EBDA2(ebda_seg, dpte.reserved, 0); SET_EBDA2(ebda_seg, dpte.revision, 0x11); u8 sum = checksum_far( ebda_seg, (void*)offsetof(struct extended_bios_data_area_s, dpte), 15); SET_EBDA2(ebda_seg, dpte.checksum, -sum); if (size < 66) { disk_ret(regs, DISK_RET_SUCCESS); return; } // EDD 3.x SET_INT13DPT(regs, key, 0xbedd); SET_INT13DPT(regs, dpi_length, 36); SET_INT13DPT(regs, reserved1, 0); SET_INT13DPT(regs, reserved2, 0); int bdf = GET_GLOBAL(ATA_channels[channel].pci_bdf); if (bdf != -1) { SET_INT13DPT(regs, host_bus[0], 'P'); SET_INT13DPT(regs, host_bus[1], 'C'); SET_INT13DPT(regs, host_bus[2], 'I'); SET_INT13DPT(regs, host_bus[3], 0); u32 path = (pci_bdf_to_bus(bdf) | (pci_bdf_to_dev(bdf) << 8) | (pci_bdf_to_fn(bdf) << 16)); SET_INT13DPT(regs, iface_path, path); } else { // ISA SET_INT13DPT(regs, host_bus[0], 'I'); SET_INT13DPT(regs, host_bus[1], 'S'); SET_INT13DPT(regs, host_bus[2], 'A'); SET_INT13DPT(regs, host_bus[3], 0); SET_INT13DPT(regs, iface_path, iobase1); } SET_INT13DPT(regs, iface_type[0], 'A'); SET_INT13DPT(regs, iface_type[1], 'T'); SET_INT13DPT(regs, iface_type[2], 'A'); SET_INT13DPT(regs, iface_type[3], 0); SET_INT13DPT(regs, iface_type[4], 0); SET_INT13DPT(regs, iface_type[5], 0); SET_INT13DPT(regs, iface_type[6], 0); SET_INT13DPT(regs, iface_type[7], 0); SET_INT13DPT(regs, device_path, slave); SET_INT13DPT(regs, checksum , -checksum_far(regs->ds, (void*)(regs->si+30), 35)); disk_ret(regs, DISK_RET_SUCCESS); }
// IBM/MS get drive parameters static void disk_1348(struct bregs *regs, struct drive_s *drive_g) { u16 size = GET_INT13DPT(regs, size); u16 t13 = size == 74; // Buffer is too small if (size < 26) { disk_ret(regs, DISK_RET_EPARAM); return; } // EDD 1.x u8 type = GET_GLOBAL(drive_g->type); u16 npc = GET_GLOBAL(drive_g->pchs.cylinders); u16 nph = GET_GLOBAL(drive_g->pchs.heads); u16 npspt = GET_GLOBAL(drive_g->pchs.spt); u64 lba = GET_GLOBAL(drive_g->sectors); u16 blksize = GET_GLOBAL(drive_g->blksize); dprintf(DEBUG_HDL_13, "disk_1348 size=%d t=%d chs=%d,%d,%d lba=%d bs=%d\n" , size, type, npc, nph, npspt, (u32)lba, blksize); SET_INT13DPT(regs, size, 26); if (type == DTYPE_ATAPI) { // 0x74 = removable, media change, lockable, max values SET_INT13DPT(regs, infos, 0x74); SET_INT13DPT(regs, cylinders, 0xffffffff); SET_INT13DPT(regs, heads, 0xffffffff); SET_INT13DPT(regs, spt, 0xffffffff); SET_INT13DPT(regs, sector_count, (u64)-1); } else { if (lba > (u64)npspt*nph*0x3fff) { SET_INT13DPT(regs, infos, 0x00); // geometry is invalid SET_INT13DPT(regs, cylinders, 0x3fff); } else { SET_INT13DPT(regs, infos, 0x02); // geometry is valid SET_INT13DPT(regs, cylinders, (u32)npc); } SET_INT13DPT(regs, heads, (u32)nph); SET_INT13DPT(regs, spt, (u32)npspt); SET_INT13DPT(regs, sector_count, lba); } SET_INT13DPT(regs, blksize, blksize); if (size < 30 || (type != DTYPE_ATA && type != DTYPE_ATAPI && type != DTYPE_VIRTIO_BLK && type != DTYPE_VIRTIO_SCSI)) { disk_ret(regs, DISK_RET_SUCCESS); return; } // EDD 2.x int bdf; u16 iobase1 = 0; u64 device_path = 0; u8 channel = 0; SET_INT13DPT(regs, size, 30); if (type == DTYPE_ATA || type == DTYPE_ATAPI) { u16 ebda_seg = get_ebda_seg(); SET_INT13DPT(regs, dpte_segment, ebda_seg); SET_INT13DPT(regs, dpte_offset , offsetof(struct extended_bios_data_area_s, dpte)); // Fill in dpte struct atadrive_s *adrive_g = container_of( drive_g, struct atadrive_s, drive); struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf); u8 slave = GET_GLOBAL(adrive_g->slave); u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2); u8 irq = GET_GLOBALFLAT(chan_gf->irq); iobase1 = GET_GLOBALFLAT(chan_gf->iobase1); bdf = GET_GLOBALFLAT(chan_gf->pci_bdf); device_path = slave; channel = GET_GLOBALFLAT(chan_gf->chanid); u16 options = 0; if (type == DTYPE_ATA) { u8 translation = GET_GLOBAL(drive_g->translation); if (translation != TRANSLATION_NONE) { options |= 1<<3; // CHS translation if (translation == TRANSLATION_LBA) options |= 1<<9; if (translation == TRANSLATION_RECHS) options |= 3<<9; } } else { // ATAPI options |= 1<<5; // removable device options |= 1<<6; // atapi device } options |= 1<<4; // lba translation if (CONFIG_ATA_PIO32) options |= 1<<7; SET_EBDA2(ebda_seg, dpte.iobase1, iobase1); SET_EBDA2(ebda_seg, dpte.iobase2, iobase2 + ATA_CB_DC); SET_EBDA2(ebda_seg, dpte.prefix, ((slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0) | ATA_CB_DH_LBA)); SET_EBDA2(ebda_seg, dpte.unused, 0xcb); SET_EBDA2(ebda_seg, dpte.irq, irq); SET_EBDA2(ebda_seg, dpte.blkcount, 1); SET_EBDA2(ebda_seg, dpte.dma, 0); SET_EBDA2(ebda_seg, dpte.pio, 0); SET_EBDA2(ebda_seg, dpte.options, options); SET_EBDA2(ebda_seg, dpte.reserved, 0); SET_EBDA2(ebda_seg, dpte.revision, 0x11); u8 sum = checksum_far( ebda_seg, (void*)offsetof(struct extended_bios_data_area_s, dpte), 15); SET_EBDA2(ebda_seg, dpte.checksum, -sum); } else {