void distanceRecurse(DistanceTraversalNodeBase* node, int bv_node1_id, int bv_node2_id, BVHFrontList* front_list)
{
  bool is_first_node_leaf = node->isFirstNodeLeaf(bv_node1_id);
  bool is_second_node_leaf = node->isSecondNodeLeaf(bv_node2_id);

  if(is_first_node_leaf && is_second_node_leaf)
  {
    updateFrontList(front_list, bv_node1_id, bv_node2_id);

    node->leafTesting(bv_node1_id, bv_node2_id);
    return;
  }

  // BVNodes distance pairs
  int a1, a2, c1, c2;

  if(node->firstOverSecond(bv_node1_id, bv_node2_id))
  {
    a1 = node->getFirstLeftChild(bv_node1_id);
    a2 = bv_node2_id;
    c1 = node->getFirstRightChild(bv_node1_id);
    c2 = bv_node2_id;
  }
  else
  {
    a1 = bv_node1_id;
    a2 = node->getSecondLeftChild(bv_node2_id);
    c1 = bv_node1_id;
    c2 = node->getSecondRightChild(bv_node2_id);
  }

  FCL_REAL distance_a = node->BVTesting(a1, a2);
  FCL_REAL distance_c = node->BVTesting(c1, c2);

  if(distance_c < distance_a)
  {
    if(!node->canStop(distance_c))
      distanceRecurse(node, c1, c2, front_list);
    else
      updateFrontList(front_list, c1, c2);

    if(!node->canStop(distance_a))
      distanceRecurse(node, a1, a2, front_list);
    else
      updateFrontList(front_list, a1, a2);
  }
  else
  {
    if(!node->canStop(distance_a))
      distanceRecurse(node, a1, a2, front_list);
    else
      updateFrontList(front_list, a1, a2);

    if(!node->canStop(distance_c))
      distanceRecurse(node, c1, c2, front_list);
    else
      updateFrontList(front_list, c1, c2);
  }
}
void distanceRecurse(DistanceTraversalNodeBase* node, int b1, int b2, BVHFrontList* front_list)
{
  bool l1 = node->isFirstNodeLeaf(b1);
  bool l2 = node->isSecondNodeLeaf(b2);

  if(l1 && l2)
  {
    updateFrontList(front_list, b1, b2);

    node->leafTesting(b1, b2);
    return;
  }

  int a1, a2, c1, c2;

  if(node->firstOverSecond(b1, b2))
  {
    a1 = node->getFirstLeftChild(b1);
    a2 = b2;
    c1 = node->getFirstRightChild(b1);
    c2 = b2;
  }
  else
  {
    a1 = b1;
    a2 = node->getSecondLeftChild(b2);
    c1 = b1;
    c2 = node->getSecondRightChild(b2);
  }

  FCL_REAL d1 = node->BVTesting(a1, a2);
  FCL_REAL d2 = node->BVTesting(c1, c2);

  if(d2 < d1)
  {
    if(!node->canStop(d2))
      distanceRecurse(node, c1, c2, front_list);
    else
      updateFrontList(front_list, c1, c2);

    if(!node->canStop(d1))
      distanceRecurse(node, a1, a2, front_list);
    else
      updateFrontList(front_list, a1, a2);
  }
  else
  {
    if(!node->canStop(d1))
      distanceRecurse(node, a1, a2, front_list);
    else
      updateFrontList(front_list, a1, a2);

    if(!node->canStop(d2))
      distanceRecurse(node, c1, c2, front_list);
    else
      updateFrontList(front_list, c1, c2);
  }
}
Exemple #3
0
void distance(MeshDistanceTraversalNodeRSS* node, BVHFrontList* front_list, int qsize)
{
  Triangle last_tri1 = node->tri_indices1[node->last_tri_id1];
  Triangle last_tri2 = node->tri_indices2[node->last_tri_id2];

  Vec3f last_tri1_points[3];
  Vec3f last_tri2_points[3];

  last_tri1_points[0] = node->vertices1[last_tri1[0]];
  last_tri1_points[1] = node->vertices1[last_tri1[1]];
  last_tri1_points[2] = node->vertices1[last_tri1[2]];

  last_tri2_points[0] = node->vertices2[last_tri2[0]];
  last_tri2_points[1] = node->vertices2[last_tri2[1]];
  last_tri2_points[2] = node->vertices2[last_tri2[2]];

  Vec3f last_tri_P, last_tri_Q;

  node->min_distance = TriangleDistance::triDistance(last_tri1_points[0], last_tri1_points[1], last_tri1_points[2],
                                                     last_tri2_points[0], last_tri2_points[1], last_tri2_points[2],
                                                     node->R, node->T, last_tri_P, last_tri_Q);
  node->p1 = last_tri_P;
  node->p2 = matTransMulVec(node->R, last_tri_Q - node->T);


  if(qsize <= 2)
    distanceRecurse(node, 0, 0, front_list);
  else
    distanceQueueRecurse(node, 0, 0, front_list, qsize);

  Vec3f u = node->p2 - node->T;
  node->p2 = matTransMulVec(node->R, u);
}
Exemple #4
0
void distance(DistanceTraversalNodeBase* node, BVHFrontList* front_list, int qsize)
{
  if(qsize <= 2)
    distanceRecurse(node, 0, 0, front_list);
  else
    distanceQueueRecurse(node, 0, 0, front_list, qsize);
}
void distance(DistanceTraversalNodeBase* node, BVHFrontList* front_list, int qsize)
{
  node->preprocess();
  
  if(qsize <= 2)
    distanceRecurse(node, 0, 0, front_list);
  else
    distanceQueueRecurse(node, 0, 0, front_list, qsize);

  node->postprocess();
}
int conservativeAdvancement(const CollisionGeometry* o1,
                            const MotionBase* motion1,
                            const CollisionGeometry* o2,
                            const MotionBase* motion2,
                            const CollisionRequest& request,
                            CollisionResult& result,
                            FCL_REAL& toc)
{
  if(request.num_max_contacts == 0)
  {
    std::cerr << "Warning: should stop early as num_max_contact is " << request.num_max_contacts << " !" << std::endl;
    return 0;
  }

  const OBJECT_TYPE object_type1 = o1->getObjectType();
  const NODE_TYPE node_type1 = o1->getNodeType();

  const OBJECT_TYPE object_type2 = o2->getObjectType();
  const NODE_TYPE node_type2 = o2->getNodeType();

  if(object_type1 != OT_BVH || object_type2 != OT_BVH)
    return 0;

  if(node_type1 != BV_RSS || node_type2 != BV_RSS)
    return 0;


  const BVHModel<BV>* model1 = static_cast<const BVHModel<BV>*>(o1);
  const BVHModel<BV>* model2 = static_cast<const BVHModel<BV>*>(o2);

  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  // whether the first start configuration is in collision
  CollisionNode cnode;
  if(!initialize(cnode, *model1, tf1, *model2, tf2, request, result))
    std::cout << "initialize error" << std::endl;

  relativeTransform(tf1.getRotation(), tf1.getTranslation(), tf2.getRotation(), tf2.getTranslation(), cnode.R, cnode.T);

  cnode.enable_statistics = false;
  cnode.request = request;

  collide(&cnode);

  int b = result.numContacts();

  if(b > 0)
  {
    toc = 0;
    // std::cout << "zero collide" << std::endl;
    return b;
  }
  
  ConservativeAdvancementNode node;

  initialize(node, *model1, tf1, *model2, tf2);

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    Matrix3f R1_t, R2_t;
    Vec3f T1_t, T2_t;

    node.motion1->getCurrentTransform(R1_t, T1_t);
    node.motion2->getCurrentTransform(R2_t, T2_t);

    // compute the transformation from 1 to 2
    relativeTransform(R1_t, T1_t, R2_t, T2_t, node.R, node.T);

    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      // std::cout << node.delta_t << " " << node.t_err << std::endl;
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);
  }
  while(1);

  toc = node.toc;

  if(node.toc < 1)
    return 1;

  return 0;
}
bool conservativeAdvancement(const BVHModel<BV>& o1,
                             const MotionBase* motion1,
                             const BVHModel<BV>& o2,
                             const MotionBase* motion2,
                             const CollisionRequest& request,
                             CollisionResult& result,
                             FCL_REAL& toc)
{
  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  // whether the first start configuration is in collision
  if(collide(&o1, tf1, &o2, tf2, request, result))
  {
    toc = 0;
    return true;
  }


  BVHModel<BV>* o1_tmp = new BVHModel<BV>(o1);
  BVHModel<BV>* o2_tmp = new BVHModel<BV>(o2);
  
  
  MeshConservativeAdvancementTraversalNode<BV> node;

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    // repeatedly update mesh to global coordinate, so time consuming
    initialize(node, *o1_tmp, tf1, *o2_tmp, tf2);
    
    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      // std::cout << node.delta_t << " " << node.t_err << std::endl;
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);

    motion1->getCurrentTransform(tf1);
    motion2->getCurrentTransform(tf2);
  }
  while(1);

  delete o1_tmp;
  delete o2_tmp;

  toc = node.toc;

  if(node.toc < 1)
    return true;

  return false;
}
bool conservativeAdvancementShapeMeshOriented(const S& o1,
                                              const MotionBase* motion1,
                                              const BVHModel<BV>& o2,
                                              const MotionBase* motion2,
                                              const NarrowPhaseSolver* nsolver,
                                              const CollisionRequest& request,
                                              CollisionResult& result,
                                              FCL_REAL& toc)
{
  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  if(collide(&o1, tf1, &o2, tf2, request, result))
  {
    toc = 0;
    return true;
  }

  ConservativeAdvancementOrientedNode node;

  initialize(node, o1, tf1, o2, tf2, nsolver);

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    node.motion1->getCurrentTransform(tf1);
    node.motion2->getCurrentTransform(tf2);

    node.tf1 = tf1;
    node.tf2 = tf2;
    
    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);
  }
  while(1);

  toc = node.toc;

  if(node.toc < 1)
    return true;

  return false;
}
bool conservativeAdvancement(const S& o1,
                             const MotionBase* motion1,
                             const BVHModel<BV>& o2,
                             const MotionBase* motion2,
                             const NarrowPhaseSolver* nsolver,
                             const CollisionRequest& request,
                             CollisionResult& result,
                             FCL_REAL& toc)
{
  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  if(collide(&o1, tf1, &o2, tf2, request, result))
  {
    toc = 0;
    return true;
  }

  BVHModel<BV>* o2_tmp = new BVHModel<BV>(o2);

  ShapeMeshConservativeAdvancementTraversalNode<S, BV, NarrowPhaseSolver> node;

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    // initialize update mesh to global coordinate, so time consuming
    initialize(node, o1, tf1, *o2_tmp, tf2, nsolver);

    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);

    motion1->getCurrentTransform(tf1);
    motion2->getCurrentTransform(tf2);
  }
  while(1);

  delete o2_tmp;

  toc = node.toc;

  if(node.toc < 1)
    return true;

  return false;  
}
bool conservativeAdvancement(const S1& o1,
                             const MotionBase* motion1,
                             const S2& o2,
                             const MotionBase* motion2,
                             const NarrowPhaseSolver* solver,
                             const CollisionRequest& request,
                             CollisionResult& result,
                             FCL_REAL& toc)
{
  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  // whether the first start configuration is in collision
  if(collide(&o1, tf1, &o2, tf2, request, result))
  {
    toc = 0;
    return true;
  }

  ShapeConservativeAdvancementTraversalNode<S1, S2, NarrowPhaseSolver> node;

  initialize(node, o1, tf1, o2, tf2, solver);

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    motion1->getCurrentTransform(tf1);
    motion2->getCurrentTransform(tf2);
    node.tf1 = tf1;
    node.tf2 = tf2;
    
    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      // std::cout << node.delta_t << " " << node.t_err << std::endl;
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);
  }
  while(1);

  toc = node.toc;

  if(node.toc < 1)
    return true;

  return false;
}
bool conservativeAdvancementMeshOriented(const BVHModel<BV>& o1,
                                         const MotionBase* motion1,
                                         const BVHModel<BV>& o2,
                                         const MotionBase* motion2,
                                         const CollisionRequest& request,
                                         CollisionResult& result,
                                         FCL_REAL& toc)
{
  Transform3f tf1, tf2;
  motion1->getCurrentTransform(tf1);
  motion2->getCurrentTransform(tf2);

  // whether the first start configuration is in collision
  if(collide(&o1, tf1, &o2, tf2, request, result))
  {
    toc = 0;
    return true;
  }
  
  
  ConservativeAdvancementOrientedNode node;

  initialize(node, o1, tf1, o2, tf2);

  node.motion1 = motion1;
  node.motion2 = motion2;

  do
  {
    node.motion1->getCurrentTransform(tf1);
    node.motion2->getCurrentTransform(tf2);

    // compute the transformation from 1 to 2
    Transform3f tf;
    relativeTransform(tf1, tf2, tf);
    node.R = tf.getRotation();
    node.T = tf.getTranslation();
    
    node.delta_t = 1;
    node.min_distance = std::numeric_limits<FCL_REAL>::max();

    distanceRecurse(&node, 0, 0, NULL);

    if(node.delta_t <= node.t_err)
    {
      // std::cout << node.delta_t << " " << node.t_err << std::endl;
      break;
    }

    node.toc += node.delta_t;
    if(node.toc > 1)
    {
      node.toc = 1;
      break;
    }

    node.motion1->integrate(node.toc);
    node.motion2->integrate(node.toc);
  }
  while(1);

  toc = node.toc;

  if(node.toc < 1)
    return true;

  return false;
}