/* Subroutine */ int dlamc2_(int *beta, int *t, int *rnd, double *eps, int *emin, double *rmin, int *emax, double *rmax) { /* -- LAPACK auxiliary routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1992 Purpose ======= DLAMC2 determines the machine parameters specified in its argument list. Arguments ========= BETA (output) INT The base of the machine. T (output) INT The number of ( BETA ) digits in the mantissa. RND (output) INT Specifies whether proper rounding ( RND = .TRUE. ) or chopping ( RND = .FALSE. ) occurs in addition. This may not be a reliable guide to the way in which the machine performs its arithmetic. EPS (output) DOUBLE PRECISION The smallest positive number such that fl( 1.0 - EPS ) .LT. 1.0, where fl denotes the computed value. EMIN (output) INT The minimum exponent before (gradual) underflow occurs. RMIN (output) DOUBLE PRECISION The smallest normalized number for the machine, given by BASE**( EMIN - 1 ), where BASE is the floating point value of BETA. EMAX (output) INT The maximum exponent before overflow occurs. RMAX (output) DOUBLE PRECISION The largest positive number for the machine, given by BASE**EMAX * ( 1 - EPS ), where BASE is the floating point value of BETA. Further Details =============== The computation of EPS is based on a routine PARANOIA by W. Kahan of the University of California at Berkeley. ===================================================================== */ /* Table of constant values */ static int c__1 = 1; /* Initialized data */ static int first = TRUE_; static int iwarn = FALSE_; /* System generated locals */ int i__1; double d__1, d__2, d__3, d__4, d__5; /* Builtin functions */ double pow_di(double *, int *); /* Local variables */ static int ieee; static double half; static int lrnd; static double leps, zero, a, b, c; static int i, lbeta; static double rbase; static int lemin, lemax, gnmin; static double small; static int gpmin; static double third, lrmin, lrmax, sixth; extern /* Subroutine */ int dlamc1_(int *, int *, int *, int *); extern double dlamc3_(double *, double *); static int lieee1; extern /* Subroutine */ int dlamc4_(int *, double *, int *), dlamc5_(int *, int *, int *, int *, int *, double *); static int lt, ngnmin, ngpmin; static double one, two; if (first) { first = FALSE_; zero = 0.; one = 1.; two = 2.; /* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of BETA, T, RND, EPS, EMIN and RMIN. Throughout this routine we use the function DLAMC3 to ens ure that relevant values are stored and not held in registers, or are not affected by optimizers. DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. */ dlamc1_(&lbeta, <, &lrnd, &lieee1); /* Start to find EPS. */ b = (double) lbeta; i__1 = -lt; a = pow_di(&b, &i__1); leps = a; /* Try some tricks to see whether or not this is the correct E PS. */ b = two / 3; half = one / 2; d__1 = -half; sixth = dlamc3_(&b, &d__1); third = dlamc3_(&sixth, &sixth); d__1 = -half; b = dlamc3_(&third, &d__1); b = dlamc3_(&b, &sixth); b = abs(b); if (b < leps) { b = leps; } leps = 1.; /* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */ L10: if (leps > b && b > zero) { leps = b; d__1 = half * leps; /* Computing 5th power */ d__3 = two, d__4 = d__3, d__3 *= d__3; /* Computing 2nd power */ d__5 = leps; d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5); c = dlamc3_(&d__1, &d__2); d__1 = -c; c = dlamc3_(&half, &d__1); b = dlamc3_(&half, &c); d__1 = -b; c = dlamc3_(&half, &d__1); b = dlamc3_(&half, &c); goto L10; } /* + END WHILE */ if (a < leps) { leps = a; } /* Computation of EPS complete. Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3 )). Keep dividing A by BETA until (gradual) underflow occurs. T his is detected when we cannot recover the previous A. */ rbase = one / lbeta; small = one; for (i = 1; i <= 3; ++i) { d__1 = small * rbase; small = dlamc3_(&d__1, &zero); /* L20: */ } a = dlamc3_(&one, &small); dlamc4_(&ngpmin, &one, &lbeta); d__1 = -one; dlamc4_(&ngnmin, &d__1, &lbeta); dlamc4_(&gpmin, &a, &lbeta); d__1 = -a; dlamc4_(&gnmin, &d__1, &lbeta); ieee = FALSE_; if (ngpmin == ngnmin && gpmin == gnmin) { if (ngpmin == gpmin) { lemin = ngpmin; /* ( Non twos-complement machines, no gradual under flow; e.g., VAX ) */ } else if (gpmin - ngpmin == 3) { lemin = ngpmin - 1 + lt; ieee = TRUE_; /* ( Non twos-complement machines, with gradual und erflow; e.g., IEEE standard followers ) */ } else { lemin = min(ngpmin,gpmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } } else if (ngpmin == gpmin && ngnmin == gnmin) { if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) { lemin = max(ngpmin,ngnmin); /* ( Twos-complement machines, no gradual underflow ; e.g., CYBER 205 ) */ } else { lemin = min(ngpmin,ngnmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } } else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin) { if (gpmin - min(ngpmin,ngnmin) == 3) { lemin = max(ngpmin,ngnmin) - 1 + lt; /* ( Twos-complement machines with gradual underflo w; no known machine ) */ } else { lemin = min(ngpmin,ngnmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } } else { /* Computing MIN */ i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin); lemin = min(i__1,gnmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } /* ** Comment out this if block if EMIN is ok */ if (iwarn) { first = TRUE_; printf("\n\n WARNING. The value EMIN may be incorrect:- "); printf("EMIN = %8i\n",lemin); printf("If, after inspection, the value EMIN looks acceptable"); printf("please comment out \n the IF block as marked within the"); printf("code of routine DLAMC2, \n otherwise supply EMIN"); printf("explicitly.\n"); } /* ** Assume IEEE arithmetic if we found denormalised numbers abo ve, or if arithmetic seems to round in the IEEE style, determi ned in routine DLAMC1. A true IEEE machine should have both thi ngs true; however, faulty machines may have one or the other. */ ieee = ieee || lieee1; /* Compute RMIN by successive division by BETA. We could comp ute RMIN as BASE**( EMIN - 1 ), but some machines underflow dur ing this computation. */ lrmin = 1.; i__1 = 1 - lemin; for (i = 1; i <= 1-lemin; ++i) { d__1 = lrmin * rbase; lrmin = dlamc3_(&d__1, &zero); /* L30: */ } /* Finally, call DLAMC5 to compute EMAX and RMAX. */ dlamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax); } *beta = lbeta; *t = lt; *rnd = lrnd; *eps = leps; *emin = lemin; *rmin = lrmin; *emax = lemax; *rmax = lrmax; return 0; /* End of DLAMC2 */ } /* dlamc2_ */
/* Subroutine */ int dlamc2_(integer* beta, integer* t, logical* rnd, doublereal* eps, integer* emin, doublereal* rmin, integer* emax, doublereal* rmax) { /* Initialized data */ static logical first = TRUE_; static logical iwarn = FALSE_; /* Format strings */ static char fmt_9999[] = "(//\002 WARNING. The value EMIN may be incorre" "ct:-\002,\002 EMIN = \002,i8,/\002 If, after inspection, the va" "lue EMIN looks\002,\002 acceptable please comment out \002,/\002" " the IF block as marked within the code of routine\002,\002 DLAM" "C2,\002,/\002 otherwise supply EMIN explicitly.\002,/)"; /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3, d__4, d__5; /* Builtin functions */ double pow_di(doublereal*, integer*); //integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ doublereal a, b, c__; integer i__; static integer lt; doublereal one, two; logical ieee; doublereal half; logical lrnd; static doublereal leps; doublereal zero; static integer lbeta; doublereal rbase; static integer lemin, lemax; integer gnmin; doublereal small; integer gpmin; doublereal third; static doublereal lrmin, lrmax; doublereal sixth; extern /* Subroutine */ int dlamc1_(integer*, integer*, logical*, logical*); extern doublereal dlamc3_(doublereal*, doublereal*); logical lieee1; extern /* Subroutine */ int dlamc4_(integer*, doublereal*, integer*), dlamc5_(integer*, integer*, integer*, logical*, integer*, doublereal*); integer ngnmin, ngpmin; /* Fortran I/O blocks */ static cilist io___58 = { 0, 6, 0, fmt_9999, 0 }; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAMC2 determines the machine parameters specified in its argument */ /* list. */ /* Arguments */ /* ========= */ /* BETA (output) INTEGER */ /* The base of the machine. */ /* T (output) INTEGER */ /* The number of ( BETA ) digits in the mantissa. */ /* RND (output) LOGICAL */ /* Specifies whether proper rounding ( RND = .TRUE. ) or */ /* chopping ( RND = .FALSE. ) occurs in addition. This may not */ /* be a reliable guide to the way in which the machine performs */ /* its arithmetic. */ /* EPS (output) DOUBLE PRECISION */ /* The smallest positive number such that */ /* fl( 1.0 - EPS ) .LT. 1.0, */ /* where fl denotes the computed value. */ /* EMIN (output) INTEGER */ /* The minimum exponent before (gradual) underflow occurs. */ /* RMIN (output) DOUBLE PRECISION */ /* The smallest normalized number for the machine, given by */ /* BASE**( EMIN - 1 ), where BASE is the floating point value */ /* of BETA. */ /* EMAX (output) INTEGER */ /* The maximum exponent before overflow occurs. */ /* RMAX (output) DOUBLE PRECISION */ /* The largest positive number for the machine, given by */ /* BASE**EMAX * ( 1 - EPS ), where BASE is the floating point */ /* value of BETA. */ /* Further Details */ /* =============== */ /* The computation of EPS is based on a routine PARANOIA by */ /* W. Kahan of the University of California at Berkeley. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Save statement .. */ /* .. */ /* .. Data statements .. */ /* .. */ /* .. Executable Statements .. */ if (first) { zero = 0.; one = 1.; two = 2.; /* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of */ /* BETA, T, RND, EPS, EMIN and RMIN. */ /* Throughout this routine we use the function DLAMC3 to ensure */ /* that relevant values are stored and not held in registers, or */ /* are not affected by optimizers. */ /* DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. */ dlamc1_(&lbeta, <, &lrnd, &lieee1); /* Start to find EPS. */ b = (doublereal) lbeta; i__1 = -lt; a = pow_di(&b, &i__1); leps = a; /* Try some tricks to see whether or not this is the correct EPS. */ b = two / 3; half = one / 2; d__1 = -half; sixth = dlamc3_(&b, &d__1); third = dlamc3_(&sixth, &sixth); d__1 = -half; b = dlamc3_(&third, &d__1); b = dlamc3_(&b, &sixth); b = abs(b); if (b < leps) { b = leps; } leps = 1.; /* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */ L10: if (leps > b && b > zero) { leps = b; d__1 = half * leps; /* Computing 5th power */ d__3 = two, d__4 = d__3, d__3 *= d__3; /* Computing 2nd power */ d__5 = leps; d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5); c__ = dlamc3_(&d__1, &d__2); d__1 = -c__; c__ = dlamc3_(&half, &d__1); b = dlamc3_(&half, &c__); d__1 = -b; c__ = dlamc3_(&half, &d__1); b = dlamc3_(&half, &c__); goto L10; } /* + END WHILE */ if (a < leps) { leps = a; } /* Computation of EPS complete. */ /* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)). */ /* Keep dividing A by BETA until (gradual) underflow occurs. This */ /* is detected when we cannot recover the previous A. */ rbase = one / lbeta; small = one; for (i__ = 1; i__ <= 3; ++i__) { d__1 = small * rbase; small = dlamc3_(&d__1, &zero); /* L20: */ } a = dlamc3_(&one, &small); dlamc4_(&ngpmin, &one, &lbeta); d__1 = -one; dlamc4_(&ngnmin, &d__1, &lbeta); dlamc4_(&gpmin, &a, &lbeta); d__1 = -a; dlamc4_(&gnmin, &d__1, &lbeta); ieee = FALSE_; if (ngpmin == ngnmin && gpmin == gnmin) { if (ngpmin == gpmin) { lemin = ngpmin; /* ( Non twos-complement machines, no gradual underflow; */ /* e.g., VAX ) */ } else if (gpmin - ngpmin == 3) { lemin = ngpmin - 1 + lt; ieee = TRUE_; /* ( Non twos-complement machines, with gradual underflow; */ /* e.g., IEEE standard followers ) */ } else { lemin = min(ngpmin, gpmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } } else if (ngpmin == gpmin && ngnmin == gnmin) { if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) { lemin = max(ngpmin, ngnmin); /* ( Twos-complement machines, no gradual underflow; */ /* e.g., CYBER 205 ) */ } else { lemin = min(ngpmin, ngnmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } } else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin) { if (gpmin - min(ngpmin, ngnmin) == 3) { lemin = max(ngpmin, ngnmin) - 1 + lt; /* ( Twos-complement machines with gradual underflow; */ /* no known machine ) */ } else { lemin = min(ngpmin, ngnmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } } else { /* Computing MIN */ i__1 = min(ngpmin, ngnmin), i__1 = min(i__1, gpmin); lemin = min(i__1, gnmin); /* ( A guess; no known machine ) */ iwarn = TRUE_; } first = FALSE_; /* ** */ /* Comment out this if block if EMIN is ok */ if (iwarn) { first = TRUE_; printf("\n\n WARNING. The value EMIN may be incorrect:- "); printf("EMIN = %8i\n", lemin); printf("If, after inspection, the value EMIN looks acceptable"); printf("please comment out \n the IF block as marked within the"); printf("code of routine DLAMC2, \n otherwise supply EMIN"); printf("explicitly.\n"); /* s_wsfe(&io___58); do_fio(&c__1, (char *)&lemin, (ftnlen)sizeof(integer)); e_wsfe(); */ } /* ** */ /* Assume IEEE arithmetic if we found denormalised numbers above, */ /* or if arithmetic seems to round in the IEEE style, determined */ /* in routine DLAMC1. A true IEEE machine should have both things */ /* true; however, faulty machines may have one or the other. */ ieee = ieee || lieee1; /* Compute RMIN by successive division by BETA. We could compute */ /* RMIN as BASE**( EMIN - 1 ), but some machines underflow during */ /* this computation. */ lrmin = 1.; i__1 = 1 - lemin; for (i__ = 1; i__ <= i__1; ++i__) { d__1 = lrmin * rbase; lrmin = dlamc3_(&d__1, &zero); /* L30: */ } /* Finally, call DLAMC5 to compute EMAX and RMAX. */ dlamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax); } *beta = lbeta; *t = lt; *rnd = lrnd; *eps = leps; *emin = lemin; *rmin = lrmin; *emax = lemax; *rmax = lrmax; return 0; /* End of DLAMC2 */ } /* dlamc2_ */