void BytecodeAssembler::load(BasicType bt, u4 index) {
  switch (bt) {
    case T_BOOLEAN:
    case T_CHAR:
    case T_BYTE:
    case T_SHORT:
    case T_INT:     iload(index); break;
    case T_FLOAT:   fload(index); break;
    case T_DOUBLE:  dload(index); break;
    case T_LONG:    lload(index); break;
    case T_OBJECT:
    case T_ARRAY:   aload(index); break;
    default:
      ShouldNotReachHere();
  }
}
Exemple #2
0
// ---------------------------------------------------------------------
// LSQR
// ---------------------------------------------------------------------
void lsqr(
		int m,
		int n,
		void(*aprod)(int mode, int m, int n, double x[], double y[],
				void *UsrWrk), double damp, void *UsrWrk,
		double u[], // len = m
		double v[], // len = n
		double w[], // len = n
		double x[], // len = n
		double se[], // len at least n.  May be NULL.
		double atol, double btol, double conlim, int itnlim, FILE *nout,
		// The remaining variables are output only.
		int *istop_out, int *itn_out, double *anorm_out, double *acond_out,
		double *rnorm_out, double *arnorm_out, double *xnorm_out) {
//     ------------------------------------------------------------------
//
//     LSQR  finds a solution x to the following problems:
//
//     1. Unsymmetric equations --    solve  A*x = b
//
//     2. Linear least squares  --    solve  A*x = b
//                                    in the least-squares sense
//
//     3. Damped least squares  --    solve  (   A    )*x = ( b )
//                                           ( damp*I )     ( 0 )
//                                    in the least-squares sense
//
//     where A is a matrix with m rows and n columns, b is an
//     m-vector, and damp is a scalar.  (All quantities are real.)
//     The matrix A is intended to be large and sparse.  It is accessed
//     by means of subroutine calls of the form
//
//                aprod ( mode, m, n, x, y, UsrWrk )
//
//     which must perform the following functions:
//
//                If mode = 1, compute  y = y + A*x.
//                If mode = 2, compute  x = x + A(transpose)*y.
//
//     The vectors x and y are input parameters in both cases.
//     If  mode = 1,  y should be altered without changing x.
//     If  mode = 2,  x should be altered without changing y.
//     The parameter UsrWrk may be used for workspace as described
//     below.
//
//     The rhs vector b is input via u, and subsequently overwritten.
//
//
//     Note:  LSQR uses an iterative method to approximate the solution.
//     The number of iterations required to reach a certain accuracy
//     depends strongly on the scaling of the problem.  Poor scaling of
//     the rows or columns of A should therefore be avoided where
//     possible.
//
//     For example, in problem 1 the solution is unaltered by
//     row-scaling.  If a row of A is very small or large compared to
//     the other rows of A, the corresponding row of ( A  b ) should be
//     scaled up or down.
//
//     In problems 1 and 2, the solution x is easily recovered
//     following column-scaling.  Unless better information is known,
//     the nonzero columns of A should be scaled so that they all have
//     the same Euclidean norm (e.g., 1.0).
//
//     In problem 3, there is no freedom to re-scale if damp is
//     nonzero.  However, the value of damp should be assigned only
//     after attention has been paid to the scaling of A.
//
//     The parameter damp is intended to help regularize
//     ill-conditioned systems, by preventing the true solution from
//     being very large.  Another aid to regularization is provided by
//     the parameter acond, which may be used to terminate iterations
//     before the computed solution becomes very large.
//
//     Note that x is not an input parameter.
//     If some initial estimate x0 is known and if damp = 0,
//     one could proceed as follows:
//
//       1. Compute a residual vector     r0 = b - A*x0.
//       2. Use LSQR to solve the system  A*dx = r0.
//       3. Add the correction dx to obtain a final solution x = x0 + dx.
//
//     This requires that x0 be available before and after the call
//     to LSQR.  To judge the benefits, suppose LSQR takes k1 iterations
//     to solve A*x = b and k2 iterations to solve A*dx = r0.
//     If x0 is "good", norm(r0) will be smaller than norm(b).
//     If the same stopping tolerances atol and btol are used for each
//     system, k1 and k2 will be similar, but the final solution x0 + dx
//     should be more accurate.  The only way to reduce the total work
//     is to use a larger stopping tolerance for the second system.
//     If some value btol is suitable for A*x = b, the larger value
//     btol*norm(b)/norm(r0)  should be suitable for A*dx = r0.
//
//     Preconditioning is another way to reduce the number of iterations.
//     If it is possible to solve a related system M*x = b efficiently,
//     where M approximates A in some helpful way
//     (e.g. M - A has low rank or its elements are small relative to
//     those of A), LSQR may converge more rapidly on the system
//           A*M(inverse)*z = b,
//     after which x can be recovered by solving M*x = z.
//
//     NOTE: If A is symmetric, LSQR should not be used!
//     Alternatives are the symmetric conjugate-gradient method (cg)
//     and/or SYMMLQ.
//     SYMMLQ is an implementation of symmetric cg that applies to
//     any symmetric A and will converge more rapidly than LSQR.
//     If A is positive definite, there are other implementations of
//     symmetric cg that require slightly less work per iteration
//     than SYMMLQ (but will take the same number of iterations).
//
//
//     Notation
//     --------
//
//     The following quantities are used in discussing the subroutine
//     parameters:
//
//     Abar   =  (   A    ),          bbar  =  ( b )
//               ( damp*I )                    ( 0 )
//
//     r      =  b  -  A*x,           rbar  =  bbar  -  Abar*x
//
//     rnorm  =  sqrt( norm(r)**2  +  damp**2 * norm(x)**2 )
//            =  norm( rbar )
//
//     relpr  =  the relative precision of floating-point arithmetic
//               on the machine being used.  On most machines,
//               relpr is about 1.0e-7 and 1.0d-16 in single and double
//               precision respectively.
//
//     LSQR  minimizes the function rnorm with respect to x.
//
//
//     Parameters
//     ----------
//
//     m       input      m, the number of rows in A.
//
//     n       input      n, the number of columns in A.
//
//     aprod   external   See above.
//
//     damp    input      The damping parameter for problem 3 above.
//                        (damp should be 0.0 for problems 1 and 2.)
//                        If the system A*x = b is incompatible, values
//                        of damp in the range 0 to sqrt(relpr)*norm(A)
//                        will probably have a negligible effect.
//                        Larger values of damp will tend to decrease
//                        the norm of x and reduce the number of 
//                        iterations required by LSQR.
//
//                        The work per iteration and the storage needed
//                        by LSQR are the same for all values of damp.
//
//     rw      workspace  Transit pointer to user's workspace.
//                        Note:  LSQR  does not explicitly use this
//                        parameter, but passes it to subroutine aprod for
//                        possible use as workspace.
//
//     u(m)    input      The rhs vector b.  Beware that u is
//                        over-written by LSQR.
//
//     v(n)    workspace
//
//     w(n)    workspace
//
//     x(n)    output     Returns the computed solution x.
//
//     se(*)   output     If m .gt. n  or  damp .gt. 0,  the system is
//             (maybe)    overdetermined and the standard errors may be
//                        useful.  (See the first LSQR reference.)
//                        Otherwise (m .le. n  and  damp = 0) they do not
//                        mean much.  Some time and storage can be saved
//                        by setting  se = NULL.  In that case, se will
//                        not be touched.
//
//                        If se is not NULL, then the dimension of se must
//                        be n or more.  se(1:n) then returns standard error
//                        estimates for the components of x.
//                        For each i, se(i) is set to the value
//                           rnorm * sqrt( sigma(i,i) / t ),
//                        where sigma(i,i) is an estimate of the i-th
//                        diagonal of the inverse of Abar(transpose)*Abar
//                        and  t = 1      if  m .le. n,
//                             t = m - n  if  m .gt. n  and  damp = 0,
//                             t = m      if  damp .ne. 0.
//
//     atol    input      An estimate of the relative error in the data
//                        defining the matrix A.  For example,
//                        if A is accurate to about 6 digits, set
//                        atol = 1.0e-6 .
//
//     btol    input      An estimate of the relative error in the data
//                        defining the rhs vector b.  For example,
//                        if b is accurate to about 6 digits, set
//                        btol = 1.0e-6 .
//
//     conlim  input      An upper limit on cond(Abar), the apparent
//                        condition number of the matrix Abar.
//                        Iterations will be terminated if a computed
//                        estimate of cond(Abar) exceeds conlim.
//                        This is intended to prevent certain small or
//                        zero singular values of A or Abar from
//                        coming into effect and causing unwanted growth
//                        in the computed solution.
//
//                        conlim and damp may be used separately or
//                        together to regularize ill-conditioned systems.
//
//                        Normally, conlim should be in the range
//                        1000 to 1/relpr.
//                        Suggested value:
//                        conlim = 1/(100*relpr)  for compatible systems,
//                        conlim = 1/(10*sqrt(relpr)) for least squares.
//
//             Note:  If the user is not concerned about the parameters
//             atol, btol and conlim, any or all of them may be set
//             to zero.  The effect will be the same as the values
//             relpr, relpr and 1/relpr respectively.
//
//     itnlim  input      An upper limit on the number of iterations.
//                        Suggested value:
//                        itnlim = n/2   for well-conditioned systems
//                                       with clustered singular values,
//                        itnlim = 4*n   otherwise.
//
//     nout    input      File number for printed output.  If positive,
//                        a summary will be printed on file nout.
//
//     istop   output     An integer giving the reason for termination:
//
//                0       x = 0  is the exact solution.
//                        No iterations were performed.
//
//                1       The equations A*x = b are probably
//                        compatible.  Norm(A*x - b) is sufficiently
//                        small, given the values of atol and btol.
//
//                2       damp is zero.  The system A*x = b is probably
//                        not compatible.  A least-squares solution has
//                        been obtained that is sufficiently accurate,
//                        given the value of atol.
//
//                3       damp is nonzero.  A damped least-squares
//                        solution has been obtained that is sufficiently
//                        accurate, given the value of atol.
//
//                4       An estimate of cond(Abar) has exceeded
//                        conlim.  The system A*x = b appears to be
//                        ill-conditioned.  Otherwise, there could be an
//                        error in subroutine aprod.
//
//                5       The iteration limit itnlim was reached.
//
//     itn     output     The number of iterations performed.
//
//     anorm   output     An estimate of the Frobenius norm of  Abar.
//                        This is the square-root of the sum of squares
//                        of the elements of Abar.
//                        If damp is small and if the columns of A
//                        have all been scaled to have length 1.0,
//                        anorm should increase to roughly sqrt(n).
//                        A radically different value for anorm may
//                        indicate an error in subroutine aprod (there
//                        may be an inconsistency between modes 1 and 2).
//
//     acond   output     An estimate of cond(Abar), the condition
//                        number of Abar.  A very high value of acond
//                        may again indicate an error in aprod.
//
//     rnorm   output     An estimate of the final value of norm(rbar),
//                        the function being minimized (see notation
//                        above).  This will be small if A*x = b has
//                        a solution.
//
//     arnorm  output     An estimate of the final value of
//                        norm( Abar(transpose)*rbar ), the norm of
//                        the residual for the usual normal equations.
//                        This should be small in all cases.  (arnorm
//                        will often be smaller than the true value
//                        computed from the output vector x.)
//
//     xnorm   output     An estimate of the norm of the final
//                        solution vector x.
//
//
//     Subroutines and functions used              
//     ------------------------------
//
//     USER               aprod
//     CBLAS              dcopy, dnrm2, dscal (see Lawson et al. below)
//
//
//     References
//     ----------
//
//     C.C. Paige and M.A. Saunders,  LSQR: An algorithm for sparse
//          linear equations and sparse least squares,
//          ACM Transactions on Mathematical Software 8, 1 (March 1982),
//          pp. 43-71.
//
//     C.C. Paige and M.A. Saunders,  Algorithm 583, LSQR: Sparse
//          linear equations and least-squares problems,
//          ACM Transactions on Mathematical Software 8, 2 (June 1982),
//          pp. 195-209.
//
//     C.L. Lawson, R.J. Hanson, D.R. Kincaid and F.T. Krogh,
//          Basic linear algebra subprograms for Fortran usage,
//          ACM Transactions on Mathematical Software 5, 3 (Sept 1979),
//          pp. 308-323 and 324-325.
//     ------------------------------------------------------------------
//
//
//     LSQR development:
//     22 Feb 1982: LSQR sent to ACM TOMS to become Algorithm 583.
//     15 Sep 1985: Final F66 version.  LSQR sent to "misc" in netlib.
//     13 Oct 1987: Bug (Robert Davies, DSIR).  Have to delete
//                     if ( (one + dabs(t)) .le. one ) GO TO 200
//                  from loop 200.  The test was an attempt to reduce
//                  underflows, but caused w(i) not to be updated.
//     17 Mar 1989: First F77 version.
//     04 May 1989: Bug (David Gay, AT&T).  When the second beta is zero,
//                  rnorm = 0 and
//                  test2 = arnorm / (anorm * rnorm) overflows.
//                  Fixed by testing for rnorm = 0.
//     05 May 1989: Sent to "misc" in netlib.
//     14 Mar 1990: Bug (John Tomlin via IBM OSL testing).
//                  Setting rhbar2 = rhobar**2 + dampsq can give zero
//                  if rhobar underflows and damp = 0.
//                  Fixed by testing for damp = 0 specially.
//     15 Mar 1990: Converted to lower case.
//     21 Mar 1990: d2norm introduced to avoid overflow in numerous
//                  items like  c = sqrt( a**2 + b**2 ).
//     04 Sep 1991: wantse added as an argument to LSQR, to make
//                  standard errors optional.  This saves storage and
//                  time when se(*) is not wanted.
//     13 Feb 1992: istop now returns a value in [1,5], not [1,7].
//                  1, 2 or 3 means that x solves one of the problems
//                  Ax = b,  min norm(Ax - b)  or  damped least squares.
//                  4 means the limit on cond(A) was reached.
//                  5 means the limit on iterations was reached.
//     07 Dec 1994: Keep track of dxmax = max_k norm( phi_k * d_k ).
//                  So far, this is just printed at the end.
//                  A large value (relative to norm(x)) indicates
//                  significant cancellation in forming
//                  x  =  D*f  =  sum( phi_k * d_k ).
//                  A large column of D need NOT be serious if the
//                  corresponding phi_k is small.
//     27 Dec 1994: Include estimate of alfa_opt in iteration log.
//                  alfa_opt is the optimal scale factor for the
//                  residual in the "augmented system", as described by
//                  A. Bjorck (1992),
//                  Pivoting and stability in the augmented system method,
//                  in D. F. Griffiths and G. A. Watson (eds.),
//                  "Numerical Analysis 1991",
//                  Proceedings of the 14th Dundee Conference,
//                  Pitman Research Notes in Mathematics 260,
//                  Longman Scientific and Technical, Harlow, Essex, 1992.
//     14 Apr 2006: "Line-by-line" conversion to ISO C by
//                  Michael P. Friedlander.
//
//
//     Michael A. Saunders                  [email protected]
//     Dept of Operations Research          [email protected]
//     Stanford University
//     Stanford, CA 94305-4022              (415) 723-1875
//-----------------------------------------------------------------------

//  Local copies of output variables.  Output vars are assigned at exit.
	int istop = 0, itn = 0;
	double anorm = ZERO, acond = ZERO, rnorm = ZERO, arnorm = ZERO,
			xnorm = ZERO;

//  Local variables

	const bool extra = false, // true for extra printing below.
			damped = damp > ZERO, wantse = se != NULL;
	int i, maxdx, nconv, nstop;
	double alfopt, alpha, arnorm0, beta, bnorm, cs, cs1, cs2, ctol, delta,
			dknorm, dnorm, dxk, dxmax, gamma, gambar, phi, phibar, psi, res2,
			rho, rhobar, rhbar1, rhs, rtol, sn, sn1, sn2, t, tau, temp, test1,
			test2, test3, theta, t1, t2, t3, xnorm1, z, zbar;
	char enter[] = "Enter LSQR.  ", exit[] = "Exit  LSQR.  ", msg[6][100] = { {
			"The exact solution is  x = 0" }, {
			"A solution to Ax = b was found, given atol, btol" }, {
			"A least-squares solution was found, given atol" }, {
			"A damped least-squares solution was found, given atol" }, {
			"Cond(Abar) seems to be too large, given conlim" }, {
			"The iteration limit was reached" } };
//-----------------------------------------------------------------------

//  Format strings.
	char fmt_1000[] = " %s        Least-squares solution of  Ax = b\n"
			" The matrix  A  has %7d rows  and %7d columns\n"
			" damp   = %-22.2e    wantse = %10i\n"
			" atol   = %-22.2e    conlim = %10.2e\n"
			" btol   = %-22.2e    itnlim = %10d\n\n";
	char fmt_1200[] = "    Itn       x(1)           Function"
			"     Compatible    LS      Norm A   Cond A\n";
	char fmt_1300[] = "    Itn       x(1)           Function"
			"     Compatible    LS      Norm Abar   Cond Abar\n";
	char fmt_1400[] = "     phi    dknorm  dxk  alfa_opt\n";
	char fmt_1500_extra[] =
			" %6d %16.9e %16.9e %9.2e %9.2e %8.1e %8.1e %8.1e %7.1e %7.1e %7.1e\n";
	char fmt_1500[] = " %6d %16.9e %16.9e %9.2e %9.2e %8.1e %8.1e\n";
	char fmt_1550[] = " %6d %16.9e %16.9e %9.2e %9.2e\n";
	char fmt_1600[] = "\n";
	char fmt_2000[] = "\n"
			" %s       istop  = %-10d      itn    = %-10d\n"
			" %s       anorm  = %11.5e     acond  = %11.5e\n"
			" %s       vnorm  = %11.5e     xnorm  = %11.5e\n"
			" %s       rnorm  = %11.5e     arnorm = %11.5e\n";
	char fmt_2100[] = " %s       max dx = %7.1e occured at itn %-9d\n"
			" %s              = %7.1e*xnorm\n";
	char fmt_3000[] = " %s       %s\n";

//  Initialize.

	if (nout != NULL)
		fprintf(nout, fmt_1000, enter, m, n, damp, wantse, atol, conlim, btol,
				itnlim);

	itn = 0;
	istop = 0;
	nstop = 0;
	maxdx = 0;
	ctol = ZERO;
	if (conlim > ZERO)
		ctol = ONE / conlim;
	anorm = ZERO;
	acond = ZERO;
	dnorm = ZERO;
	dxmax = ZERO;
	res2 = ZERO;
	psi = ZERO;
	xnorm = ZERO;
	xnorm1 = ZERO;
	cs2 = -ONE;
	sn2 = ZERO;
	z = ZERO;

//  ------------------------------------------------------------------
//  Set up the first vectors u and v for the bidiagonalization.
//  These satisfy  beta*u = b,  alpha*v = A(transpose)*u.
//  ------------------------------------------------------------------
	dload(n, 0.0, v);
	dload(n, 0.0, x);

	if (wantse)
		dload(n, 0.0, se);

	alpha = ZERO;
	beta = cblas_dnrm2(m, u, 1);

	if (beta > ZERO) {
		cblas_dscal(m, (ONE / beta), u, 1);
		aprod(2, m, n, v, u, UsrWrk);
		alpha = cblas_dnrm2(n, v, 1);
	}

	if (alpha > ZERO) {
		cblas_dscal(n, (ONE / alpha), v, 1);
		cblas_dcopy(n, v, 1, w, 1);
	}

	arnorm = arnorm0 = alpha * beta;
	if (arnorm == ZERO)
		goto goto_800;

	rhobar = alpha;
	phibar = beta;
	bnorm = beta;
	rnorm = beta;

	if (nout != NULL) {
		if (damped)
			fprintf(nout, fmt_1300);
		else
			fprintf(nout, fmt_1200);

		test1 = ONE;
		test2 = alpha / beta;

		if (extra)
			fprintf(nout, fmt_1400);

		fprintf(nout, fmt_1550, itn, x[0], rnorm, test1, test2);
		fprintf(nout, fmt_1600);
	}

//  ==================================================================
//  Main iteration loop.
//  ==================================================================
	while (1) {
		itn = itn + 1;

//      ------------------------------------------------------------------
//      Perform the next step of the bidiagonalization to obtain the
//      next  beta, u, alpha, v.  These satisfy the relations
//                 beta*u  =  A*v  -  alpha*u,
//                alpha*v  =  A(transpose)*u  -  beta*v.
//      ------------------------------------------------------------------
		cblas_dscal(m, (-alpha), u, 1);
		aprod(1, m, n, v, u, UsrWrk);
		beta = cblas_dnrm2(m, u, 1);

//      Accumulate  anorm = || Bk ||
//                        =  sqrt( sum of  alpha**2 + beta**2 + damp**2 ).

		temp = d2norm(alpha, beta);
		temp = d2norm(temp, damp);
		anorm = d2norm(anorm, temp);

		if (beta > ZERO) {
			cblas_dscal(m, (ONE / beta), u, 1);
			cblas_dscal(n, (-beta), v, 1);
			aprod(2, m, n, v, u, UsrWrk);
			alpha = cblas_dnrm2(n, v, 1);
			if (alpha > ZERO) {
				cblas_dscal(n, (ONE / alpha), v, 1);
			}
		}

//      ------------------------------------------------------------------
//      Use a plane rotation to eliminate the damping parameter.
//      This alters the diagonal (rhobar) of the lower-bidiagonal matrix.
//      ------------------------------------------------------------------
		rhbar1 = rhobar;
		if (damped) {
			rhbar1 = d2norm(rhobar, damp);
			cs1 = rhobar / rhbar1;
			sn1 = damp / rhbar1;
			psi = sn1 * phibar;
			phibar = cs1 * phibar;
		}

//      ------------------------------------------------------------------
//      Use a plane rotation to eliminate the subdiagonal element (beta)
//      of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix.
//      ------------------------------------------------------------------
		rho = d2norm(rhbar1, beta);
		cs = rhbar1 / rho;
		sn = beta / rho;
		theta = sn * alpha;
		rhobar = -cs * alpha;
		phi = cs * phibar;
		phibar = sn * phibar;
		tau = sn * phi;

//      ------------------------------------------------------------------
//      Update  x, w  and (perhaps) the standard error estimates.
//      ------------------------------------------------------------------
		t1 = phi / rho;
		t2 = -theta / rho;
		t3 = ONE / rho;
		dknorm = ZERO;

		if (wantse) {
			for (i = 0; i < n; i++) {
				t = w[i];
				x[i] = t1 * t + x[i];
				w[i] = t2 * t + v[i];
				t = (t3 * t) * (t3 * t);
				se[i] = t + se[i];
				dknorm = t + dknorm;
			}
		} else {
			for (i = 0; i < n; i++) {
				t = w[i];
				x[i] = t1 * t + x[i];
				w[i] = t2 * t + v[i];
				dknorm = (t3 * t) * (t3 * t) + dknorm;
			}
		}

//      ------------------------------------------------------------------
//      Monitor the norm of d_k, the update to x.
//      dknorm = norm( d_k )
//      dnorm  = norm( D_k ),        where   D_k = (d_1, d_2, ..., d_k )
//      dxk    = norm( phi_k d_k ),  where new x = x_k + phi_k d_k.
//      ------------------------------------------------------------------
		dknorm = sqrt(dknorm);
		dnorm = d2norm(dnorm, dknorm);
		dxk = fabs(phi * dknorm);
		if (dxmax < dxk) {
			dxmax = dxk;
			maxdx = itn;
		}

//      ------------------------------------------------------------------
//      Use a plane rotation on the right to eliminate the
//      super-diagonal element (theta) of the upper-bidiagonal matrix.
//      Then use the result to estimate  norm(x).
//      ------------------------------------------------------------------
		delta = sn2 * rho;
		gambar = -cs2 * rho;
		rhs = phi - delta * z;
		zbar = rhs / gambar;
		xnorm = d2norm(xnorm1, zbar);
		gamma = d2norm(gambar, theta);
		cs2 = gambar / gamma;
		sn2 = theta / gamma;
		z = rhs / gamma;
		xnorm1 = d2norm(xnorm1, z);

//      ------------------------------------------------------------------
//      Test for convergence.
//      First, estimate the norm and condition of the matrix  Abar,
//      and the norms of  rbar  and  Abar(transpose)*rbar.
//      ------------------------------------------------------------------
		acond = anorm * dnorm;
		res2 = d2norm(res2, psi);
		rnorm = d2norm(res2, phibar);
		arnorm = alpha * fabs(tau);

//      Now use these norms to estimate certain other quantities,
//      some of which will be small near a solution.

		alfopt = sqrt(rnorm / (dnorm * xnorm));
		test1 = rnorm / bnorm;
		test2 = ZERO;
		if (rnorm > ZERO)
			test2 = arnorm / (anorm * rnorm);
//      if (arnorm0 > ZERO) test2 = arnorm / arnorm0;  //(Michael Friedlander's modification)
		test3 = ONE / acond;
		t1 = test1 / (ONE + anorm * xnorm / bnorm);
		rtol = btol + atol * anorm * xnorm / bnorm;

//      The following tests guard against extremely small values of
//      atol, btol  or  ctol.  (The user may have set any or all of
//      the parameters  atol, btol, conlim  to zero.)
//      The effect is equivalent to the normal tests using
//      atol = relpr,  btol = relpr,  conlim = 1/relpr.

		t3 = ONE + test3;
		t2 = ONE + test2;
		t1 = ONE + t1;
		if (itn >= itnlim)
			istop = 5;
		if (t3 <= ONE)
			istop = 4;
		if (t2 <= ONE)
			istop = 2;
		if (t1 <= ONE)
			istop = 1;

//      Allow for tolerances set by the user.

		if (test3 <= ctol)
			istop = 4;
		if (test2 <= atol)
			istop = 2;
		if (test1 <= rtol)
			istop = 1; //(Michael Friedlander had this commented out)

//      ------------------------------------------------------------------
//      See if it is time to print something.
//      ------------------------------------------------------------------
		if (nout == NULL)
			goto goto_600;
		if (n <= 40)
			goto goto_400;
		if (itn <= 10)
			goto goto_400;
		if (itn >= itnlim - 10)
			goto goto_400;
		if (itn % 10 == 0)
			goto goto_400;
		if (test3 <= 2.0 * ctol)
			goto goto_400;
		if (test2 <= 10.0 * atol)
			goto goto_400;
		if (test1 <= 10.0 * rtol)
			goto goto_400;
		if (istop != 0)
			goto goto_400;
		goto goto_600;

//      Print a line for this iteration.
//      "extra" is for experimental purposes.

		goto_400: if (extra) {
			fprintf(nout, fmt_1500_extra, itn, x[0], rnorm, test1, test2, anorm,
					acond, phi, dknorm, dxk, alfopt);
		} else {
			fprintf(nout, fmt_1500, itn, x[0], rnorm, test1, test2, anorm,
					acond);
		}
		if (itn % 10 == 0)
			fprintf(nout, fmt_1600);

//      ------------------------------------------------------------------
//      Stop if appropriate.
//      The convergence criteria are required to be met on  nconv
//      consecutive iterations, where  nconv  is set below.
//      Suggested value:  nconv = 1, 2  or  3.
//      ------------------------------------------------------------------
		goto_600: if (istop == 0) {
			nstop = 0;
		} else {
			nconv = 1;
			nstop = nstop + 1;
			if (nstop < nconv && itn < itnlim)
				istop = 0;
		}

		if (istop != 0)
			break;

	}
//  ==================================================================
//  End of iteration loop.
//  ==================================================================

//  Finish off the standard error estimates.

	if (wantse) {
		t = ONE;
		if (m > n)
			t = m - n;
		if (damped)
			t = m;
		t = rnorm / sqrt(t);

		for (i = 0; i < n; i++)
			se[i] = t * sqrt(se[i]);

	}

//  Decide if istop = 2 or 3.
//  Print the stopping condition.
	goto_800: if (damped && istop == 2)
		istop = 3;
	if (nout != NULL) {
		fprintf(nout, fmt_2000, exit, istop, itn, exit, anorm, acond, exit,
				bnorm, xnorm, exit, rnorm, arnorm);
		fprintf(nout, fmt_2100, exit, dxmax, maxdx, exit,
				dxmax / (xnorm + 1.0e-20));
		fprintf(nout, fmt_3000, exit, msg[istop]);
	}

//  Assign output variables from local copies.
	*istop_out = istop;
	*itn_out = itn;
	*anorm_out = anorm;
	*acond_out = acond;
	*rnorm_out = rnorm;
	*arnorm_out = test2;
	*xnorm_out = xnorm;

	return;
}