void TBlockingSpiDmaJob::Run() { TaskId = TScheduler::GetCurrentTaskId(); CurrentJob = this; const uint32_t spi = FLASH_SPI_CHANNEL; const uint32_t dma = DMA1; assert(SPI_SR(spi) & SPI_SR_TXE); assert(~SPI_SR(spi) & SPI_SR_BSY); assert(!(SPI_SR(spi) & SPI_SR_RXNE)); { const uint32_t channel = FLASH_DMA_TX_CHANNEL; dma_channel_reset(dma, channel); dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi))); dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(Out)); dma_set_number_of_data(dma, channel, Len); dma_set_read_from_memory(dma, channel); dma_enable_memory_increment_mode(dma, channel); dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT); dma_set_priority(dma, channel, DMA_CCR_PL_LOW); // dma_enable_transfer_complete_interrupt(dma, channel); dma_enable_channel(dma, channel); } { const uint32_t channel = FLASH_DMA_RX_CHANNEL; dma_channel_reset(dma, channel); dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi))); dma_set_number_of_data(dma, channel, Len); if (In != 0) { dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(In)); dma_enable_memory_increment_mode(dma, channel); } else { dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(&DummyPosition)); } dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT); dma_set_priority(dma, channel, DMA_CCR_PL_LOW); dma_enable_transfer_complete_interrupt(dma, channel); dma_enable_channel(dma, channel); } // Kick off the transfer spi_enable_rx_dma(spi); spi_enable_tx_dma(spi); // Wait for completion TScheduler::BlockUntil(&Finished); }
void hal_uart_dma_receive_block(uint8_t *data, uint16_t size){ // hal_uart_manual_rts_clear(); gpio_clear(GPIOB, GPIO_DEBUG_1); /* * USART3_RX is on DMA_CHANNEL3 */ // printf("hal_uart_dma_receive_block req size %u\n", size); /* Reset DMA channel*/ dma_channel_reset(DMA1, DMA_CHANNEL3); dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&USART3_DR); dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)data); dma_set_number_of_data(DMA1, DMA_CHANNEL3, size); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL3); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3); dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3); dma_enable_channel(DMA1, DMA_CHANNEL3); usart_enable_rx_dma(USART3); }
void init_adc_sensor(){ // we will use ADC1 channel 0 for IR sensor & ADC1 channel 1 for laser's photoresistor uint8_t adc_channel_array[ADC_CHANNEL_NUMBER] = {0,1,6}; // Make sure the ADC doesn't run during config adc_off(ADC1); // enable ADC & PA0/PA1 clocking rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN | RCC_APB2ENR_IOPAEN); rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV4); gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO0 | GPIO1); rcc_periph_clock_enable(RCC_DMA1); // enable DMA for ADC values storing // Configure ADC as continuous scan mode with DMA ADC1_CR1 = ADC_CR1_SCAN; // enable scan mode // set sample time on channels 1&2: 239.5 cycles for better results ADC1_SMPR2 = 0x3f; dma_channel_reset(DMA1, DMA_CHANNEL1); DMA1_CPAR1 = (uint32_t) &(ADC_DR(ADC1)); DMA1_CMAR1 = (uint32_t) ADC_value; DMA1_CNDTR1 = ADC_CHANNEL_NUMBER; DMA1_CCR1 = DMA_CCR_MINC | DMA_CCR_PSIZE_16BIT | DMA_CCR_MSIZE_16BIT | DMA_CCR_CIRC | DMA_CCR_PL_HIGH | DMA_CCR_EN; // continuous conv, enable ADC & DMA ADC1_CR2 = ADC_CR2_CONT | ADC_CR2_ADON | ADC_CR2_DMA; // set channels adc_set_regular_sequence(ADC1, ADC_CHANNEL_NUMBER, adc_channel_array); // reset calibration registers & start calibration ADC1_CR2 |= ADC_CR2_RSTCAL; while(ADC1_CR2 & ADC_CR2_RSTCAL); // wait for registers reset ADC1_CR2 |= ADC_CR2_CAL; while(ADC1_CR2 & ADC_CR2_CAL); // wait for calibration ends nvic_enable_irq(NVIC_ADC1_2_IRQ); ADC1_CR2 |= ADC_CR2_SWSTART; // turn on ADC - to do it we need set ADC_CR2_ADON again! ADC1_CR2 |= ADC_CR2_ADON; }
/* Receive data using DMA. */ void rx_spi(void *data, uint16_t size){ if(DmaCleanupNeeded)cleanup_dma_spi(); /* This byte is sent continuously when rx_spi() receives data. */ static const uint8_t RxSpiDummyByte = 0x00; spi_enable_rx_dma(SPI3); dma_channel_reset(DMA1, DMA_CHANNEL2); dma_disable_channel(DMA1, DMA_CHANNEL2); dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t) &(SPI_DR(SPI3))); dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t) data); dma_set_number_of_data(DMA1, DMA_CHANNEL2, size); dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_HIGH); dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT); dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2); dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL2); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2); dma_enable_channel(DMA1, DMA_CHANNEL2); /* The SPI peripheral is driven by transmitted bytes, so dummy bytes * must be sent in order to receive data. This is accomplished with DMA * by simply not incrementing the memory address. */ dma_channel_reset(DMA1, DMA_CHANNEL3); dma_disable_channel(DMA1, DMA_CHANNEL3); dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t) &(SPI_DR(SPI3))); dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t) &RxSpiDummyByte); dma_set_number_of_data(DMA1, DMA_CHANNEL3, size); dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT); dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3); dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL3); dma_set_read_from_memory(DMA1, DMA_CHANNEL3); dma_enable_channel(DMA1, DMA_CHANNEL3); spi_enable_tx_dma(SPI3); spi_enable(SPI3); DmaCleanupNeeded = true; }
/* Simultaneously transmit and receive data using DMA. */ void rxtx_spi(void *rxdata, const void *txdata, uint16_t size){ if(DmaCleanupNeeded)cleanup_dma_spi(); spi_enable_rx_dma(SPI3); dma_channel_reset(DMA1, DMA_CHANNEL2); dma_disable_channel(DMA1, DMA_CHANNEL2); dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t) &(SPI_DR(SPI3))); dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t) rxdata); dma_set_number_of_data(DMA1, DMA_CHANNEL2, size); dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_HIGH); dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT); dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2); dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL2); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2); dma_enable_channel(DMA1, DMA_CHANNEL2); dma_channel_reset(DMA1, DMA_CHANNEL3); dma_disable_channel(DMA1, DMA_CHANNEL3); dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t) &(SPI_DR(SPI3))); dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t) txdata); dma_set_number_of_data(DMA1, DMA_CHANNEL3, size); dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3); dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL3); dma_set_read_from_memory(DMA1, DMA_CHANNEL3); dma_enable_channel(DMA1, DMA_CHANNEL3); spi_enable_tx_dma(SPI3); spi_enable(SPI3); DmaCleanupNeeded = true; }
/* SPI transmit completed with DMA */ void dma1_channel3_isr(void) { gpio_set(GPIOB,GPIO1); if ((DMA1_ISR &DMA_ISR_TCIF3) != 0) { DMA1_IFCR |= DMA_IFCR_CTCIF3; } dma_disable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3); spi_disable_tx_dma(SPI1); dma_disable_channel(DMA1, DMA_CHANNEL3); /* If tx_len < rx_len, create a dummy transfer to clock in the remaining * rx data */ if (rx_buf_remainder > 0) { dma_channel_reset(DMA1, DMA_CHANNEL3); dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR); dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)(&dummy_tx_buf)); // Change here dma_set_number_of_data(DMA1, DMA_CHANNEL3, rx_buf_remainder); // Change here dma_set_read_from_memory(DMA1, DMA_CHANNEL3); dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3); // Change here #if USE_16BIT_TRANSFERS dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT); #else dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); #endif dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); rx_buf_remainder = 0; // Clear the buffer remainder to disable this section later dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3); dma_enable_channel(DMA1, DMA_CHANNEL3); spi_enable_tx_dma(SPI1); } else { /* Increment the status to indicate one of the transfers is complete */ transceive_status++; } gpio_clear(GPIOB,GPIO1); }
/** * \brief Test the error handling of the module * * \note Test error handling by disabling a channel which is in use * * \param test Current test */ static void run_dma_error_handling_test(const struct test_case *test) { /* Enable DMA */ dma_enable(); /* Reset the channel */ dma_channel_reset(DMA_CHANNEL_0); /* Set up channel 0 to do some work, check that is it busy, * change some settings and verify a transfer error */ dma_channel_write_burst_length(DMA_CHANNEL_0, DMA_CH_BURSTLEN_1BYTE_gc); dma_channel_write_transfer_count(DMA_CHANNEL_0, MEMORY_BLOCK_SIZE); dma_channel_write_source(DMA_CHANNEL_0, (uint16_t)(uintptr_t)memory_block_src); dma_channel_write_destination(DMA_CHANNEL_0, (uint16_t)(uintptr_t)memory_block_dest); /* Enable the channel */ dma_channel_enable(DMA_CHANNEL_0); /* Start a block transfer */ dma_channel_trigger_block_transfer(DMA_CHANNEL_0); /* Wait for the channel to become busy */ while (!dma_channel_is_busy(DMA_CHANNEL_0)) { /* Intentionally left empty */ } /* Disable the channel while it is busy */ if (dma_channel_is_busy(DMA_CHANNEL_0)) { dma_channel_disable(DMA_CHANNEL_0); } /* Test whether the channel is in error */ test_assert_true(test, dma_get_channel_status( DMA_CHANNEL_0) == DMA_CH_TRANSFER_ERROR, "DMA channel not in error after disabling during transfer" " write"); dma_disable(); }
u8 UART_Send(u8 *data, u16 len) { if (busy) return 1; busy = 1; dma_channel_reset(_USART_DMA, _USART_DMA_CHANNEL); dma_set_peripheral_address(_USART_DMA, _USART_DMA_CHANNEL,(u32) &_USART_DR); /* send data to the USART data register */ dma_set_memory_address(_USART_DMA, _USART_DMA_CHANNEL, (u32) data); dma_set_number_of_data(_USART_DMA, _USART_DMA_CHANNEL, len); dma_set_read_from_memory(_USART_DMA, _USART_DMA_CHANNEL); /* direction is from memory to usart */ dma_enable_memory_increment_mode(_USART_DMA, _USART_DMA_CHANNEL); /* memory pointer increments, peripheral no */ dma_set_peripheral_size(_USART_DMA, _USART_DMA_CHANNEL, DMA_CCR_PSIZE_8BIT); /* USART_DR is 8bit wide in this mode */ dma_set_memory_size(_USART_DMA, _USART_DMA_CHANNEL, DMA_CCR_MSIZE_8BIT); /* destination memory is also 8 bit wide */ dma_set_priority(_USART_DMA, _USART_DMA_CHANNEL, DMA_CCR_PL_LOW); dma_enable_transfer_complete_interrupt(_USART_DMA, _USART_DMA_CHANNEL); dma_enable_channel(_USART_DMA, _USART_DMA_CHANNEL); /* dma ready to go */ usart_enable_tx_dma(_USART); return 0; }
/*--------------------------------------------------------------------*/ void dma_setup(void) { /* DAC channel 1 shares DMA controller 2 Channel 3. */ /* Enable DMA2 clock and IRQ */ rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_DMA2EN); nvic_enable_irq(NVIC_DMA2_CHANNEL3_IRQ); dma_channel_reset(DMA2,DMA_CHANNEL3); dma_set_priority(DMA2,DMA_CHANNEL3,DMA_CCR_PL_LOW); dma_set_memory_size(DMA2,DMA_CHANNEL3,DMA_CCR_MSIZE_8BIT); dma_set_peripheral_size(DMA2,DMA_CHANNEL3,DMA_CCR_PSIZE_8BIT); dma_enable_memory_increment_mode(DMA2,DMA_CHANNEL3); dma_enable_circular_mode(DMA2,DMA_CHANNEL3); dma_set_read_from_memory(DMA2,DMA_CHANNEL3); /* The register to target is the DAC1 8-bit right justified data register */ dma_set_peripheral_address(DMA2,DMA_CHANNEL3,(uint32_t) &DAC_DHR8R1); /* The array v[] is filled with the waveform data to be output */ dma_set_memory_address(DMA2,DMA_CHANNEL3,(uint32_t) v); dma_set_number_of_data(DMA2,DMA_CHANNEL3,256); dma_enable_transfer_complete_interrupt(DMA2, DMA_CHANNEL3); dma_enable_channel(DMA2,DMA_CHANNEL3); }
void dma_transmit_setup(void) { dma_channel_reset(DMA1, DMA_CHANNEL4); nvic_enable_irq(NVIC_DMA1_CHANNEL4_5_IRQ); dma_set_peripheral_address(DMA1, DMA_CHANNEL4, (uint32_t) &USART2_TDR); dma_set_read_from_memory(DMA1, DMA_CHANNEL4); dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT); dma_set_priority(DMA1, DMA_CHANNEL4, DMA_CCR_PL_VERY_HIGH); dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL4); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL4); dma_disable_transfer_error_interrupt(DMA1, DMA_CHANNEL4); dma_disable_half_transfer_interrupt(DMA1, DMA_CHANNEL4); dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL4); }
/****************************************************************************** * * Helpers for SPI transactions with DMA * *****************************************************************************/ static void spi_configure_dma(uint32_t dma, uint8_t chan, uint32_t periph_addr, uint32_t buf_addr, uint16_t len, enum SPIDataSizeSelect dss, bool_t increment) { dma_channel_reset(dma, chan); dma_set_peripheral_address(dma, chan, periph_addr); dma_set_memory_address(dma, chan, buf_addr); dma_set_number_of_data(dma, chan, len); /* Set the dma transfer size based on SPI transaction DSS */ if (dss == SPIDss8bit) { dma_set_peripheral_size(dma, chan, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(dma, chan, DMA_CCR_MSIZE_8BIT); } else { dma_set_peripheral_size(dma, chan, DMA_CCR_PSIZE_16BIT); dma_set_memory_size(dma, chan, DMA_CCR_MSIZE_16BIT); } if (increment) dma_enable_memory_increment_mode(dma, chan); else dma_disable_memory_increment_mode(dma, chan); }
void acq_init() { /* Initialize amplifier control GPIO */ gpio_mode_setup(BANK_AMP, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_AMP); gpio_clear(BANK_AMP, GPIO_AMP); gpio_mode_setup(BANK_LED, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_LED); gpio_clear(BANK_LED, GPIO_LED); /* Initialize SPI GPIOs */ gpio_mode_setup(BANK_CS, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_CS); gpio_mode_setup(BANK_SCLK, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_SCLK); gpio_mode_setup(BANK_DOUT, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_DOUT); gpio_set_af(BANK_CS, GPIO_AF6, GPIO_CS); gpio_set_af(BANK_SCLK, GPIO_AF6, GPIO_SCLK); gpio_set_af(BANK_DOUT, GPIO_AF6, GPIO_DOUT); rcc_periph_clock_enable(RCC_SPI3); acq_spi_init(SPI_C1); rcc_periph_clock_enable(RCC_DMA1); dma_channel_reset(DMA1, DMA_CHANNEL2); dma_disable_channel(DMA1, DMA_CHANNEL2); dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t)&SPI_DR(SPI_C1)); dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t)&acq_channel.buff); dma_set_number_of_data(DMA1, DMA_CHANNEL2, BUFFER_SIZE); dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_MEDIUM); dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_16BIT); dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_16BIT); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2); dma_enable_circular_mode(DMA1, DMA_CHANNEL2); nvic_set_priority(NVIC_DMA1_CHANNEL2_IRQ, PRIO_ACQ); }
void hal_uart_dma_send_block(const uint8_t *data, uint16_t size){ // printf("hal_uart_dma_send_block size %u\n", size); /* * USART3_TX Using DMA_CHANNEL2 */ /* Reset DMA channel*/ dma_channel_reset(DMA1, DMA_CHANNEL2); dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t)&USART3_DR); dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t)data); dma_set_number_of_data(DMA1, DMA_CHANNEL2, size); dma_set_read_from_memory(DMA1, DMA_CHANNEL2); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2); dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT); dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_VERY_HIGH); dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL2); dma_enable_channel(DMA1, DMA_CHANNEL2); usart_enable_tx_dma(USART3); }
static int timer_dma(uint8_t *tx_buf, int tx_len) { dma_int_enable(); /* Reset DMA channels*/ dma_channel_reset(DMA1, DMA_CHANNEL3); /* Set up tx dma */ dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&TIM_CCR2(TIM3)); dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)tx_buf); dma_set_number_of_data(DMA1, DMA_CHANNEL3, tx_len); dma_set_read_from_memory(DMA1, DMA_CHANNEL3); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3); dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_32BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); dma_enable_circular_mode(DMA1, DMA_CHANNEL3); dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3); dma_enable_half_transfer_interrupt(DMA1, DMA_CHANNEL3); dma_enable_channel(DMA1, DMA_CHANNEL3); return 0; }
static int spi_dma_transceive(uint8_t *tx_buf, int tx_len, uint8_t *rx_buf, int rx_len) #endif { /* Check for 0 length in both tx and rx */ if ((rx_len < 1) && (tx_len < 1)) { /* return -1 as error */ return -1; } /* Reset DMA channels*/ dma_channel_reset(DMA1, DMA_CHANNEL4); dma_channel_reset(DMA1, DMA_CHANNEL5); /* Reset SPI data and status registers. * Here we assume that the SPI peripheral is NOT * busy any longer, i.e. the last activity was verified * complete elsewhere in the program. */ volatile uint8_t temp_data __attribute__ ((unused)); while (SPI_SR(SPI2) & (SPI_SR_RXNE | SPI_SR_OVR)) { temp_data = SPI_DR(SPI2); } /* Reset status flag appropriately (both 0 case caught above) */ transceive_status = NONE; if (rx_len < 1) { transceive_status = ONE; } if (tx_len < 1) { transceive_status = ONE; } /* Set up rx dma, note it has higher priority to avoid overrun */ if (rx_len > 0) { dma_set_peripheral_address(DMA1, DMA_CHANNEL4, (uint32_t)&SPI2_DR); dma_set_memory_address(DMA1, DMA_CHANNEL4, (uint32_t)rx_buf); dma_set_number_of_data(DMA1, DMA_CHANNEL4, rx_len); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL4); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL4); #if USE_16BIT_TRANSFERS dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_16BIT); dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_16BIT); #else dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT); #endif dma_set_priority(DMA1, DMA_CHANNEL4, DMA_CCR_PL_VERY_HIGH); } /* Set up tx dma */ if (tx_len > 0) { dma_set_peripheral_address(DMA1, DMA_CHANNEL5, (uint32_t)&SPI2_DR); dma_set_memory_address(DMA1, DMA_CHANNEL5, (uint32_t)tx_buf); dma_set_number_of_data(DMA1, DMA_CHANNEL5, tx_len); dma_set_read_from_memory(DMA1, DMA_CHANNEL5); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL5); #if USE_16BIT_TRANSFERS dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_16BIT); dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_16BIT); #else dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_8BIT); #endif dma_set_priority(DMA1, DMA_CHANNEL5, DMA_CCR_PL_HIGH); } /* Enable dma transfer complete interrupts */ if (rx_len > 0) { dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL4); } if (tx_len > 0) { dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL5); } /* Activate dma channels */ if (rx_len > 0) { dma_enable_channel(DMA1, DMA_CHANNEL4); } if (tx_len > 0) { dma_enable_channel(DMA1, DMA_CHANNEL5); } /* Enable the spi transfer via dma * This will immediately start the transmission, * after which when the receive is complete, the * receive dma will activate */ if (rx_len > 0) { spi_enable_rx_dma(SPI2); } if (tx_len > 0) { spi_enable_tx_dma(SPI2); } return 0; }
bool TSpiDmaQueue::TryStartJob() { // Start the next DMA job in the queue if the SPI interface is // available (TXE=1 and BSY=0) // We treat both SPI busses (flash and display) as one, so no concurrent jobs // are allowed. const uint32_t spi = LCD_SPI_CHANNEL; if ((SPI_SR(spi) & SPI_SR_TXE) && (~SPI_SR(spi) & SPI_SR_BSY)) { if (Jobs.Empty()) { return false; } const TSpiDmaJob& job = Jobs.First(); const TBuffer& buffer = job.GetBuffer(); // SPI receive register should be empty here! assert(!(SPI_SR(spi) & SPI_SR_RXNE)); const uint32_t dma = DMA1; { const uint32_t channel = (job.GetChip() == TSpiDmaJob::CS_LCD) ? LCD_DMA_TX_CHANNEL : FLASH_DMA_TX_CHANNEL; dma_channel_reset(dma, channel); dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi))); dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(buffer.GetData())); dma_set_number_of_data(dma, channel, buffer.GetLength()); dma_set_read_from_memory(dma, channel); dma_enable_memory_increment_mode(dma, channel); dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT); dma_set_priority(dma, channel, DMA_CCR_PL_LOW); //dma_enable_transfer_complete_interrupt(dma, channel); dma_enable_channel(dma, channel); } { const uint32_t channel = (job.GetChip() == TSpiDmaJob::CS_LCD) ? LCD_DMA_RX_CHANNEL : FLASH_DMA_RX_CHANNEL; dma_channel_reset(dma, channel); dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi))); dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(buffer.GetData())); dma_set_number_of_data(dma, channel, buffer.GetLength()); dma_enable_memory_increment_mode(dma, channel); dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT); dma_set_priority(dma, channel, DMA_CCR_PL_LOW); dma_enable_transfer_complete_interrupt(dma, channel); dma_enable_channel(dma, channel); } // Set CS and LCD_A0 lines Pin_lcd_cs.Clear(); if (job.GetLcdData()) { Pin_lcd_a0.Set(); } else { Pin_lcd_a0.Clear(); } // Kick off the transfer spi_enable_rx_dma(spi); spi_enable_tx_dma(spi); return true; } return false; }
static void setup_i2c_port(enum I2C_FREQ I2C_speed) { // Disable I2C if it happens to be enabled i2c_peripheral_disable(I2C_PORT); dma_channel_reset(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); i2c_disable_interrupt(I2C_PORT, (I2C_CR2_ITEVTEN | I2C_CR2_ITERREN)); DISABLE_I2C_INTERRUPT(); reset_i2c_pins(); // set: Source, Destination, and Amount (DMA channel must be disabled) dma_set_peripheral_address(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, (uint32_t)&I2C_DR(I2C_PORT)); dma_set_memory_address(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, 0); dma_set_number_of_data(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, 0); // set the DMA Configuration (DMA_CCRx) // (BIT 14) mem2mem_mode disabled dma_set_priority(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, DMA_CCR_PL_HIGH); // (BIT 12:13) dma_set_memory_size(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, DMA_CCR_MSIZE_8BIT); // (BIT 10:11) dma_set_peripheral_size(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, DMA_CCR_PSIZE_8BIT); // (BIT 8:9) dma_enable_memory_increment_mode(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 7) dma_disable_peripheral_increment_mode(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 6) // (BIT 5) Circular mode is disabled dma_set_read_from_memory(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 4) dma_enable_transfer_error_interrupt(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 3) dma_disable_half_transfer_interrupt(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 2) dma_enable_transfer_complete_interrupt(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 1) // This is the slave address when not transmitting data i2c_set_own_7bit_slave_address(I2C_PORT, 0x32); // do not respond to the specified slave address i2c_disable_ack(I2C_PORT); // Use DMA to send I2C data i2c_enable_dma(I2C_PORT); // set which interrupts I2C uses i2c_enable_interrupt(I2C_PORT, (I2C_CR2_ITEVTEN | I2C_CR2_ITERREN)); // APB1 is running at 36MHz = T(PCLK1) = 1/36000000 sec. i2c_set_clock_frequency(I2C_PORT, I2C_CR2_FREQ_36MHZ); // Set up the hardware for the particular speed switch (I2C_speed) { // Values found on Internet for the I2C standard // STANDARD : SCL max rise time = 1000ns = 1000/1000000000 sec // FAST : SCL max rise time = 300ns = 300/1000000000 sec // // DATASHEET Function: // TRISE = (T(MAX_SCL_RISE) / T(PCLK1)) + 1 // // DATASHEET Functions: // STANDARD : // T(high) = CCR * T(PCLK1) // T(low) = CCR * T(PCLK1) // FAST (DUTY=I2C_CCR_DUTY_DIV2) // T(high) = CCR * T(PCLK1) // T(low) = 2 * CCR * T(PCLK1) // FAST (DUTY=I2C_CCR_DUTY_16_DIV_9) [To reach 400KHz] // T(high) = 9 * CCR * T(PCLK1) // T(low) = 16 * CCR * T(PCLK1) // // I2C PERIOD: // STANDARD // PERIOD = T(high) + T(low) = (2 * CCR * T(PCLK1)) // FAST (DUTY=I2C_CCR_DUTY_DIV2) // PERIOD = T(high) + T(low) = (3 * CCR * T(PCLK1)) // FAST (DUTY=I2C_CCR_DUTY_16_DIV_9) // PERIOD = T(high) + T(low) = (25 * CCR * T(PCLK1)) case I2C_400KHz: // I2C PERIOD: 400KHz = 400000Hz = 1/400000 sec. i2c_set_fast_mode(I2C_PORT); // I2C_CCR_DUTY_DIV2 or I2C_CCR_DUTY_16_DIV_9 i2c_set_dutycycle(I2C_PORT, I2C_CCR_DUTY_16_DIV_9); // CCR = PERIOD / (25 * T(PCLK1)) // CCR = (1/400000) / (25/36000000) = 18/5 = 3.6 // CCR = 4 => I2C PERIOD = 360kHz // CCR = 3 => I2C PERIOD = 480kHz i2c_set_ccr(I2C_PORT, 4); // Only fast mode can have a value less than 0x04 // TRISE = ( (300/1000000000) / (1/36000000) ) + 1 = 59/5 = 11.8 // TRISE = 12 => SCL max rise time ~= 305.555ns // TRISE = 11 => SCL max rise time ~= 277.777ns i2c_set_trise(I2C_PORT, 11); break; case I2C_100KHz: // I2C PERIOD: 100KHz = 100000Hz = 1/100000 sec. i2c_set_standard_mode(I2C_PORT); // I2C_CCR_DUTY_DIV2 or I2C_CCR_DUTY_16_DIV_9 i2c_set_dutycycle(I2C_PORT, I2C_CCR_DUTY_DIV2); // CCR = PERIOD / (2 * T(PCLK1)) // CCR = (1/100000) / (2/36000000) = 180 i2c_set_ccr(I2C_PORT, 180); // TRISE = ( (1000/1000000000) / (1/36000000) ) + 1 = 37 i2c_set_trise(I2C_PORT, 37); break; case I2C_53KHz: // ~= 52.91kHz is the slowest I could get to work // CCR value of 341 works but not 342 or higher case I2C_50KHz: default: // I2C PERIOD: 50KHz = 50000Hz = 1/50000 sec. i2c_set_standard_mode(I2C_PORT); // I2C_CCR_DUTY_DIV2 or I2C_CCR_DUTY_16_DIV_9 i2c_set_dutycycle(I2C_PORT, I2C_CCR_DUTY_DIV2); // CCR = PERIOD / (2 * T(PCLK1)) // CCR = (1/50000) / (2/36000000) = 360 // (341 works but not 342 or higher) i2c_set_ccr(I2C_PORT, 341); // TRISE = ( (1000/1000000000) / (1/36000000) ) + 1 = 37 i2c_set_trise(I2C_PORT, 37); break; } i2c_peripheral_enable(I2C_PORT); // set the priorities for the interrupts nvic_set_priority(I2C_EV_IRQ, IRQ_PRI_I2C); nvic_set_priority(I2C_ER_IRQ, IRQ_PRI_ER_I2C); nvic_set_priority(I2C_DMA_IRQ, IRQ_PRI_DMA_I2C); }
/** * \brief Test different directions on all channels * * \note This test copies the source memory block into the destination block * in different ways. * * \param test Current test */ static void run_dma_direction_test(const struct test_case *test) { struct dma_channel_config config_params; uint8_t channel_index; bool success = true; /* Assume everything goes well */ /* Fill the source block with our known pattern */ set_buffer(memory_block_src, 0x00); block_fill(memory_block_src, MEMORY_BLOCK_SIZE); /* Null out the config params */ memset(&config_params, 0, sizeof(config_params)); /* Enable DMA */ dma_enable(); /* No reload on source and destination */ dma_channel_set_src_reload_mode(&config_params, DMA_CH_SRCRELOAD_NONE_gc); dma_channel_set_dest_reload_mode(&config_params, DMA_CH_DESTRELOAD_NONE_gc); dma_channel_set_transfer_count(&config_params, MEMORY_BLOCK_SIZE); dma_channel_set_burst_length(&config_params, DMA_CH_BURSTLEN_1BYTE_gc); /* Test a memory transfer on all channels */ for (channel_index = 0; channel_index < DMA_NUMBER_OF_CHANNELS; channel_index++) { /* Reset channel and write the configuration */ dma_channel_reset(channel_index); /* Increment source, increment destination */ dma_channel_set_src_dir_mode(&config_params, DMA_CH_SRCDIR_INC_gc); dma_channel_set_dest_dir_mode(&config_params, DMA_CH_DESTDIR_INC_gc); /* Data starts from the first byte */ dma_channel_set_source_address(&config_params, (uint16_t)(uintptr_t)memory_block_src); dma_channel_set_destination_address(&config_params, (uint16_t)(uintptr_t)memory_block_dest); /* Write the config */ dma_channel_write_config(channel_index, &config_params); /* Clear destination */ set_buffer(memory_block_dest, 0x00); /* Enable channel, transfer, and disable it */ dma_channel_enable(channel_index); dma_transfer_block(channel_index); dma_channel_disable(channel_index); /* Check that source and destination are equal */ success = block_compare(memory_block_src, memory_block_dest, MEMORY_BLOCK_SIZE); if (!success) { break; } /* Reset channel and write the configuration */ dma_channel_reset(channel_index); /* Decrement source, increment destination */ dma_channel_set_src_dir_mode(&config_params, DMA_CH_SRCDIR_DEC_gc); dma_channel_set_dest_dir_mode(&config_params, DMA_CH_DESTDIR_INC_gc); /* Data starts from the first byte */ dma_channel_set_source_address(&config_params, (uint16_t)(uintptr_t) (memory_block_src + MEMORY_BLOCK_SIZE - 1)); dma_channel_set_destination_address(&config_params, (uint16_t)(uintptr_t)memory_block_dest); /* Write the config */ dma_channel_write_config(channel_index, &config_params); /* Clear destination */ set_buffer(memory_block_dest, 0x00); /* Enable channel, transfer, and disable it */ dma_channel_enable(channel_index); dma_transfer_block(channel_index); dma_channel_disable(channel_index); /* Check that destination is the reverse of source */ success = block_compare_reverse(memory_block_src, memory_block_dest, MEMORY_BLOCK_SIZE); if (!success) { break; } /* Reset channel and write the configuration */ dma_channel_reset(channel_index); /* Decrement source, increment destination */ dma_channel_set_src_dir_mode(&config_params, DMA_CH_SRCDIR_INC_gc); dma_channel_set_dest_dir_mode(&config_params, DMA_CH_DESTDIR_DEC_gc); /* Data starts from the first byte */ dma_channel_set_source_address(&config_params, (uint16_t)(uintptr_t)memory_block_src); dma_channel_set_destination_address(&config_params, (uint16_t)(uintptr_t) (memory_block_dest + MEMORY_BLOCK_SIZE - 1)); /* Write the config */ dma_channel_write_config(channel_index, &config_params); /* Clear destination */ set_buffer(memory_block_dest, 0x00); /* Enable channel, transfer, and disable it */ dma_channel_enable(channel_index); dma_transfer_block(channel_index); dma_channel_disable(channel_index); /* Check that destination is the reverse of source */ success = block_compare_reverse(memory_block_src, memory_block_dest, MEMORY_BLOCK_SIZE); if (!success) { break; } /* Reset channel and write the configuration */ dma_channel_reset(channel_index); /* Decrement source, Decrement destination */ dma_channel_set_src_dir_mode(&config_params, DMA_CH_SRCDIR_DEC_gc); dma_channel_set_dest_dir_mode(&config_params, DMA_CH_DESTDIR_DEC_gc); /* Data starts from the first byte */ dma_channel_set_source_address(&config_params, (uint16_t)(uintptr_t) (memory_block_src + MEMORY_BLOCK_SIZE - 1)); dma_channel_set_destination_address(&config_params, (uint16_t)(uintptr_t) (memory_block_dest + MEMORY_BLOCK_SIZE - 1)); /* Write the config */ dma_channel_write_config(channel_index, &config_params); /* Clear destination */ set_buffer(memory_block_dest, 0x00); /* Enable channel, transfer, and disable it */ dma_channel_enable(channel_index); dma_transfer_block(channel_index); dma_channel_disable(channel_index); /* Check that source and destination are equal */ success = block_compare(memory_block_src, memory_block_dest, MEMORY_BLOCK_SIZE); if (!success) { break; } } /* Disable DMA */ dma_disable(); test_assert_true(test, success, "DMA direction copy test failed on channel %d", channel_index); }
void ws2812_init( void ) { uint32_t i,j; for( i = 0; i < WS2812_BUFFERSIZE; i++ ) { bitframe_pattern[i] = 0; bitframe_pattern_draw[i] = 0; } for( i=0; i < (3*NR_OF_LEDS_PER_CH*NR_OF_ROWS); i++) { frame_pattern[i] = 0; } /* configure the GPIOs */ /* Enable GPIOC clock */ rcc_periph_clock_enable(RCC_GPIOB); /* Setup GPIO pin GPIO8/9 on GPIO port C for LEDs. */ gpio_mode_setup(GPIOB, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLDOWN, GPIO0); gpio_set_output_options( GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_HIGH, GPIO0); /* configure the DMA */ rcc_periph_clock_enable(RCC_DMA); /* configure DMA for sending high constant pattern to port on begin of cycle * send unrolled bitframe on Timer OC1 event * send low on Timer OC3 event */ dma_channel_reset( DMA1, DMA_CHANNEL3); dma_set_peripheral_address( DMA1, DMA_CHANNEL3, (uint32_t)&GPIOB_ODR); dma_set_memory_address( DMA1, DMA_CHANNEL3, (uint32_t)&high_pattern); dma_set_peripheral_size( DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT); dma_set_memory_size( DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); dma_disable_peripheral_increment_mode( DMA1, DMA_CHANNEL3 ); dma_disable_memory_increment_mode( DMA1, DMA_CHANNEL3 ); dma_set_priority( DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); dma_set_read_from_memory(DMA1, DMA_CHANNEL3); dma_channel_reset( DMA1, DMA_CHANNEL4); dma_set_peripheral_address( DMA1, DMA_CHANNEL4, (uint32_t)&GPIOB_ODR); dma_set_memory_address( DMA1, DMA_CHANNEL4, (uint32_t)actual_bitframe); dma_set_peripheral_size( DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT); dma_set_memory_size( DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT); dma_disable_peripheral_increment_mode( DMA1, DMA_CHANNEL4 ); dma_enable_memory_increment_mode( DMA1, DMA_CHANNEL4 ); dma_set_priority( DMA1, DMA_CHANNEL4, DMA_CCR_PL_HIGH); dma_set_read_from_memory(DMA1, DMA_CHANNEL4); dma_channel_reset( DMA1, DMA_CHANNEL2); dma_set_peripheral_address( DMA1, DMA_CHANNEL2, (uint32_t)&GPIOB_ODR); dma_set_memory_address( DMA1, DMA_CHANNEL2, (uint32_t)&low_pattern); dma_set_peripheral_size( DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT); dma_set_memory_size( DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT); dma_disable_peripheral_increment_mode( DMA1, DMA_CHANNEL2 ); dma_disable_memory_increment_mode( DMA1, DMA_CHANNEL2 ); dma_set_priority( DMA1, DMA_CHANNEL2, DMA_CCR_PL_HIGH); dma_set_read_from_memory(DMA1, DMA_CHANNEL2); nvic_set_priority(NVIC_DMA1_CHANNEL2_3_IRQ, 0); nvic_enable_irq(NVIC_DMA1_CHANNEL2_3_IRQ); dma_enable_transfer_complete_interrupt( DMA1, DMA_CHANNEL2); /* configure timer */ rcc_periph_clock_enable(RCC_TIM3); /* configure the timer for 800kHz overall frequency */ timer_reset( TIM3 ); timer_set_mode( TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); timer_set_period( TIM3, 60); timer_set_repetition_counter( TIM3, 0); timer_disable_preload( TIM3 ); /* timer compare section 1 for low coding */ timer_set_oc_mode( TIM3, TIM_OC1,TIM_OCM_FROZEN); timer_set_oc_value( TIM3, TIM_OC1, 19); timer_disable_oc_preload( TIM3, TIM_OC1); /* timer compare section 3 for high coding */ timer_set_oc_mode( TIM3, TIM_OC3,TIM_OCM_FROZEN); timer_set_oc_value( TIM3, TIM_OC3, 41); timer_disable_oc_preload( TIM3, TIM_OC3); nvic_set_priority( NVIC_TIM3_IRQ,1); nvic_set_priority( NVIC_PENDSV_IRQ, 2); nvic_enable_irq(NVIC_TIM3_IRQ); nvic_enable_irq(NVIC_PENDSV_IRQ); /* start the sending process */ ws2812_send(); }
/** * \brief Test read from fixed location, trigger from timer and callback * * \note This test sets up a timer to trigger the DMA module, * which in turn reads the timer_overflow_counter variable and writes * it to memory sequentially. It then checks to see that the memory block * written is sequential according to the overflow count. * * \param test Current test */ static void run_dma_triggered_with_callback(const struct test_case *test) { struct dma_channel_config config_params; bool success; /* Null the buffer */ set_buffer(dest_block_tc, 0x0000); /* Null out the config parameter struct */ memset(&config_params, 0, sizeof(config_params)); /* * Enable the timer, and set it to count up. * When it overflows, it triggers the DMA to * read timer_overflow_counter. */ tc_enable(&TIMER); tc_set_direction(&TIMER, TC_UP); tc_write_period(&TIMER, TIMER_PERIOD); tc_set_resolution(&TIMER, TIMER_RESOLUTION); tc_set_overflow_interrupt_level(&TIMER, PMIC_LVL_LOW); tc_set_overflow_interrupt_callback(&TIMER, timer_overflow_callback); /* Enable the DMA module */ dma_enable(); /* Set callback for transfer done */ dma_set_callback(DMA_CHANNEL_0, dma_transfer_is_complete); /* Set low interrupt level */ dma_channel_set_interrupt_level(&config_params, PMIC_LVL_LOW); /* Set up the DMA to read the timer value * * - Single shot transfer mode * - Two byte (16-bit) burst length * - Increment on source and destination * - Reload on burst for source * - No reload for destination */ dma_channel_set_single_shot(&config_params); dma_channel_set_burst_length(&config_params, DMA_CH_BURSTLEN_1BYTE_gc); dma_channel_set_src_reload_mode(&config_params, DMA_CH_SRCRELOAD_BURST_gc); dma_channel_set_src_dir_mode(&config_params, DMA_CH_SRCDIR_FIXED_gc); dma_channel_set_dest_reload_mode(&config_params, DMA_CH_DESTRELOAD_NONE_gc); dma_channel_set_dest_dir_mode(&config_params, DMA_CH_DESTDIR_INC_gc); /* Set trigger source to TCC0's overflow */ dma_channel_set_trigger_source(&config_params, DMA_CH_TRIGSRC_TCC0_OVF_gc); /* Transfer DEST_BLOCK_TC_SIZE bytes */ dma_channel_set_transfer_count(&config_params, DEST_BLOCK_TC_SIZE); /* Set address */ dma_channel_set_source_address(&config_params, (uint16_t)(uintptr_t)&timer_overflow_counter); dma_channel_set_destination_address(&config_params, (uint16_t)(uintptr_t)dest_block_tc); /* Reset the channel */ dma_channel_reset(DMA_CHANNEL_0); /* Write the config */ dma_channel_write_config(DMA_CHANNEL_0, &config_params); /* Enable the channel */ dma_channel_enable(DMA_CHANNEL_0); /* Wait for transfer to finish */ while (!dma_has_completed) { /* Intentionally left empty */ } /* Disable DMA */ dma_disable(); /* Verify that the result is as expected */ success = block_compare(dest_block_tc, expected_result_tc, DEST_BLOCK_TC_SIZE); test_assert_true(test, success, "Result is not as expected"); }
/** * * \brief Set DMA configuration, and read it back * * \note This function writes a configuration to the DMA * controller, and reads it back to verify settings have * been correctly set. * * \param test Current test case */ static void run_dma_config_interface_test(const struct test_case *test) { struct dma_channel_config config_params; struct dma_channel_config read_config; const uint16_t transfer_count = 1024; const uint8_t repeats = 64; uint8_t channel_index; #ifdef CONFIG_HAVE_HUGEMEM hugemem_ptr_t dest_huge_addr = HUGEMEM_NULL; hugemem_ptr_t src_huge_addr = HUGEMEM_NULL; hugemem_write32(dest_huge_addr, 0xABCD1234); hugemem_write32(src_huge_addr, 0xAAAABBBB); #else const uint16_t dest_addr = 0xBEEF; const uint16_t src_addr = 0xABCD; #endif memset(&config_params, 0, sizeof(config_params)); dma_enable(); /* Apply some parameters */ dma_channel_set_burst_length(&config_params, DMA_CH_BURSTLEN_4BYTE_gc); dma_channel_set_single_shot(&config_params); dma_channel_set_interrupt_level(&config_params, PMIC_LVL_HIGH); dma_channel_set_src_reload_mode(&config_params, DMA_CH_SRCRELOAD_BLOCK_gc); dma_channel_set_dest_reload_mode(&config_params, DMA_CH_DESTRELOAD_BURST_gc); dma_channel_set_src_dir_mode(&config_params, DMA_CH_SRCDIR_DEC_gc); dma_channel_set_dest_dir_mode(&config_params, DMA_CH_DESTDIR_DEC_gc); dma_channel_set_trigger_source(&config_params, DMA_CH_TRIGSRC_TCC0_CCA_gc); dma_channel_set_transfer_count(&config_params, transfer_count); dma_channel_set_repeats(&config_params, repeats); #ifdef CONFIG_HAVE_HUGEMEM dma_channel_set_destination_hugemem(&config_params, dest_huge_addr); dma_channel_set_source_hugemem(&config_params, src_huge_addr); #else dma_channel_set_destination_address(&config_params, dest_addr); dma_channel_set_source_address(&config_params, src_addr); #endif /* Loop through all channels, read back config from them, and verify */ for (channel_index = 0; channel_index < DMA_NUMBER_OF_CHANNELS; channel_index++) { dma_channel_write_config(channel_index, &config_params); /* Null out the read_config struct */ memset(&read_config, 0, sizeof(read_config)); /* Read the config back from the module */ dma_channel_read_config(channel_index, &read_config); test_assert_true(test, read_config.addrctrl == config_params.addrctrl, "CH %d: Address control register does not match configuration", channel_index); test_assert_true(test, read_config.ctrla == config_params.ctrla, "CH %d: Control register A does not match configuration", channel_index); test_assert_true(test, read_config.repcnt == config_params.repcnt, "CH %d: Repeat counter register does not match configuration", channel_index); test_assert_true(test, read_config.trfcnt == config_params.trfcnt, "CH %d: Transfer counter register does not" " match configuration", channel_index); test_assert_true(test, read_config.trigsrc == config_params.trigsrc, "CH %d: Trigger source register does not match configuration", channel_index); #ifdef CONFIG_HAVE_HUGEMEM test_assert_true(test, read_config.destaddr == config_params.destaddr, "CH %d: Destination address register does not" " match configuration", channel_index); test_assert_true(test, read_config.srcaddr == config_params.srcaddr, "CH %d: Source address register does not match configuration", channel_index); #else test_assert_true(test, read_config.destaddr16 == config_params.destaddr16, "CH %d: DESTADDR16 does not match configuration", channel_index); test_assert_true(test, read_config.srcaddr16 == config_params.srcaddr16, "CH %d: SRCADDR16 does not match configuration"); #endif } /* Reset the channel */ dma_channel_reset(DMA_CHANNEL_0); /* Check set and unset single shot */ memset(&config_params, 0, sizeof(config_params)); memset(&read_config, 0, sizeof(read_config)); dma_channel_set_single_shot(&config_params); dma_channel_write_config(DMA_CHANNEL_0, &config_params); dma_channel_read_config(DMA_CHANNEL_0, &read_config); test_assert_true(test, read_config.ctrla == config_params.ctrla, "Single shot mode not set correctly"); memset(&config_params, 0, sizeof(config_params)); dma_channel_unset_single_shot(&config_params); dma_channel_write_config(DMA_CHANNEL_0, &config_params); dma_channel_read_config(DMA_CHANNEL_0, &read_config); test_assert_true(test, read_config.ctrla == config_params.ctrla, "Single shot mode not unset correctly"); /* Reset it again, and test the direct configuration functions */ memset(&read_config, 0, sizeof(read_config)); dma_channel_write_burst_length(DMA_CHANNEL_0, DMA_CH_BURSTLEN_4BYTE_gc); dma_channel_write_transfer_count(DMA_CHANNEL_0, transfer_count); dma_channel_write_repeats(DMA_CHANNEL_0, repeats); #ifdef CONFIG_HAVE_HUGEMEM dma_channel_write_source_hugemem(DMA_CHANNEL_0, src_huge_addr); dma_channel_write_destination_hugemem(DMA_CHANNEL_0, dest_huge_addr); #else dma_channel_write_source(DMA_CHANNEL_0, src_addr); dma_channel_write_destination(DMA_CHANNEL_0, dest_addr); #endif /* Verify that settings have been set correctly */ dma_channel_read_config(DMA_CHANNEL_0, &read_config); test_assert_true(test, (read_config.ctrla & DMA_CH_BURSTLEN_gm) == DMA_CH_BURSTLEN_4BYTE_gc, "Read burst length does not match configuration"); test_assert_true(test, read_config.trfcnt == transfer_count, "Read transfer count does not match configuration"); test_assert_true(test, read_config.repcnt == repeats, "Read repeat value does not match configuration"); #ifdef CONFIG_HAVE_HUGEMEM test_assert_true(test, read_config.srcaddr == src_huge_addr, "Read source address does not match configuration"); test_assert_true(test, read_config.destaddr == dest_huge_addr, "Read destination address does not match configuration"); #else test_assert_true(test, read_config.srcaddr16 == src_addr, "Read source address does not match configuration"); test_assert_true(test, read_config.destaddr16 == dest_addr, "Read destination address does not match configuration"); #endif dma_disable(); }
static int spi_dma_transceive(uint8_t *tx_buf, int tx_len, uint8_t *rx_buf, int rx_len) #endif { /* Check for 0 length in both tx and rx */ if ((rx_len < 1) && (tx_len < 1)) { /* return -1 as error */ return -1; } /* Reset DMA channels*/ dma_channel_reset(DMA1, DMA_CHANNEL2); dma_channel_reset(DMA1, DMA_CHANNEL3); /* Reset SPI data and status registers. * Here we assume that the SPI peripheral is NOT * busy any longer, i.e. the last activity was verified * complete elsewhere in the program. */ volatile uint8_t temp_data __attribute__ ((unused)); while (SPI_SR(SPI1) & (SPI_SR_RXNE | SPI_SR_OVR)) { temp_data = SPI_DR(SPI1); } /* Reset status flag appropriately (both 0 case caught above) */ transceive_status = NONE; if (rx_len < 1) { transceive_status = ONE; } /* Determine tx length case to change behaviour * If tx_len >= rx_len, then normal case, run both DMAs with normal settings * If rx_len == 0, just don't run the rx DMA at all * If tx_len == 0, use a dummy buf and set the tx dma to transfer the same * amount as the rx_len, to ensure everything is clocked in * If 0 < tx_len < rx_len, first do a normal case, then on the tx finished * interrupt, set up a new dummyy buf tx dma transfer for the remaining * required clock cycles (handled in tx dma complete interrupt) */ if ((tx_len > 0) && (tx_len < rx_len)) { rx_buf_remainder = rx_len - tx_len; } /* Set up rx dma, note it has higher priority to avoid overrun */ if (rx_len > 0) { dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t)&SPI1_DR); dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t)rx_buf); dma_set_number_of_data(DMA1, DMA_CHANNEL2, rx_len); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2); #if USE_16BIT_TRANSFERS dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_16BIT); dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_16BIT); #else dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT); #endif dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_VERY_HIGH); } /* Set up tx dma (must always run tx to get clock signal) */ if (tx_len > 0) { /* Here we have a regular tx transfer */ dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR); dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)tx_buf); dma_set_number_of_data(DMA1, DMA_CHANNEL3, tx_len); dma_set_read_from_memory(DMA1, DMA_CHANNEL3); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3); #if USE_16BIT_TRANSFERS dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT); #else dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); #endif dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); } else { /* Here we aren't transmitting any real data, use the dummy buffer * and set the length to the rx_len to get all rx data in, while * not incrementing the memory pointer */ dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR); dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)(&dummy_tx_buf)); // Change here dma_set_number_of_data(DMA1, DMA_CHANNEL3, rx_len); // Change here dma_set_read_from_memory(DMA1, DMA_CHANNEL3); dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3); // Change here #if USE_16BIT_TRANSFERS dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT); #else dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT); dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT); #endif dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH); } /* Enable dma transfer complete interrupts */ if (rx_len > 0) { dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL2); } dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3); /* Activate dma channels */ if (rx_len > 0) { dma_enable_channel(DMA1, DMA_CHANNEL2); } dma_enable_channel(DMA1, DMA_CHANNEL3); /* Enable the spi transfer via dma * This will immediately start the transmission, * after which when the receive is complete, the * receive dma will activate */ if (rx_len > 0) { spi_enable_rx_dma(SPI1); } spi_enable_tx_dma(SPI1); return 0; }
/** * Initialize analog to digital converter */ void adc_init(adc_callback_t half_transfer_callback, adc_callback_t transfer_complete_callback) { /* Reset adc_state. */ adc_state.dma_transfer_error_counter = 0; adc_state.half_transfer_callback = half_transfer_callback; adc_state.transfer_complete_callback = transfer_complete_callback; /* Initialize peripheral clocks. */ rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_DMA1EN); rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN); rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN); rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC2EN); /* Initialize the ADC input GPIO. */ /* WARNING: this code is written to work with strip. On the strip * hardware we are lucky and all the ADC channels are on the same bank * so we can initialize all of them in one go. This code will need to be * changed/improved if we ever have to support hardware that has the * ADC's spread over more then one bank. */ gpio_set_mode(ADC_BANK, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, ADC_PORT_U_VOLTAGE | ADC_PORT_V_VOLTAGE | ADC_PORT_W_VOLTAGE | ADC_PORT_V_BATT | ADC_PORT_CURRENT); /* Configure DMA for data aquisition. */ /* Channel 1 reacts to: ADC1, TIM2_CH3 and TIM4_CH1 */ dma_channel_reset(DMA1, DMA_CHANNEL1); dma_set_peripheral_address(DMA1, DMA_CHANNEL1, (uint32_t)&ADC1_DR); dma_set_memory_address(DMA1, DMA_CHANNEL1, (uint32_t)adc_state.raw_data); dma_set_number_of_data(DMA1, DMA_CHANNEL1, ADC_RAW_SAMPLE_COUNT/2); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL1); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL1); dma_enable_circular_mode(DMA1, DMA_CHANNEL1); dma_set_peripheral_size(DMA1, DMA_CHANNEL1, DMA_CCR_PSIZE_32BIT); dma_set_memory_size(DMA1, DMA_CHANNEL1, DMA_CCR_MSIZE_32BIT); dma_set_priority(DMA1, DMA_CHANNEL1, DMA_CCR_PL_VERY_HIGH); dma_enable_half_transfer_interrupt(DMA1, DMA_CHANNEL1); dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL1); dma_enable_transfer_error_interrupt(DMA1, DMA_CHANNEL1); dma_enable_channel(DMA1, DMA_CHANNEL1); /* Configure interrupts in NVIC. */ nvic_set_priority(NVIC_DMA1_CHANNEL1_IRQ, 0); nvic_enable_irq(NVIC_DMA1_CHANNEL1_IRQ); /* Disable ADC's. */ adc_off(ADC1); adc_off(ADC2); /* Enable dualmode. */ adc_set_dual_mode(ADC_CR1_DUALMOD_RSM); /* Dualmode regular only. */ /* Configure the adc channels. */ adc_config(ADC1, adc1_channel_array); adc_config(ADC2, adc2_channel_array); /* Start converting. */ adc_start_conversion_regular(ADC1); }