/*! \brief * * <pre> * Purpose: * ======== * Performs numeric block updates (sup-col) in topological order. * It features: col-col, 2cols-col, 3cols-col, and sup-col updates. * Special processing on the supernodal portion of L\U[*,j] * Return value: 0 - successful return * > 0 - number of bytes allocated when run out of space * </pre> */ int dcolumn_bmod ( const int jcol, /* in */ const int nseg, /* in */ double *dense, /* in */ double *tempv, /* working array */ int *segrep, /* in */ int *repfnz, /* in */ int fpanelc, /* in -- first column in the current panel */ GlobalLU_t *Glu, /* modified */ SuperLUStat_t *stat /* output */ ) { #ifdef _CRAY _fcd ftcs1 = _cptofcd("L", strlen("L")), ftcs2 = _cptofcd("N", strlen("N")), ftcs3 = _cptofcd("U", strlen("U")); #endif int incx = 1, incy = 1; double alpha, beta; /* krep = representative of current k-th supernode * fsupc = first supernodal column * nsupc = no of columns in supernode * nsupr = no of rows in supernode (used as leading dimension) * luptr = location of supernodal LU-block in storage * kfnz = first nonz in the k-th supernodal segment * no_zeros = no of leading zeros in a supernodal U-segment */ double ukj, ukj1, ukj2; int luptr, luptr1, luptr2; int fsupc, nsupc, nsupr, segsze; int nrow; /* No of rows in the matrix of matrix-vector */ int jcolp1, jsupno, k, ksub, krep, krep_ind, ksupno; register int lptr, kfnz, isub, irow, i; register int no_zeros, new_next; int ufirst, nextlu; int fst_col; /* First column within small LU update */ int d_fsupc; /* Distance between the first column of the current panel and the first column of the current snode. */ int *xsup, *supno; int *lsub, *xlsub; double *lusup; int *xlusup; int nzlumax; double *tempv1; double zero = 0.0; double one = 1.0; double none = -1.0; int mem_error; flops_t *ops = stat->ops; xsup = Glu->xsup; supno = Glu->supno; lsub = Glu->lsub; xlsub = Glu->xlsub; lusup = (double *) Glu->lusup; xlusup = Glu->xlusup; nzlumax = Glu->nzlumax; jcolp1 = jcol + 1; jsupno = supno[jcol]; /* * For each nonz supernode segment of U[*,j] in topological order */ k = nseg - 1; for (ksub = 0; ksub < nseg; ksub++) { krep = segrep[k]; k--; ksupno = supno[krep]; if ( jsupno != ksupno ) { /* Outside the rectangular supernode */ fsupc = xsup[ksupno]; fst_col = SUPERLU_MAX ( fsupc, fpanelc ); /* Distance from the current supernode to the current panel; d_fsupc=0 if fsupc > fpanelc. */ d_fsupc = fst_col - fsupc; luptr = xlusup[fst_col] + d_fsupc; lptr = xlsub[fsupc] + d_fsupc; kfnz = repfnz[krep]; kfnz = SUPERLU_MAX ( kfnz, fpanelc ); segsze = krep - kfnz + 1; nsupc = krep - fst_col + 1; nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */ nrow = nsupr - d_fsupc - nsupc; krep_ind = lptr + nsupc - 1; ops[TRSV] += segsze * (segsze - 1); ops[GEMV] += 2 * nrow * segsze; /* * Case 1: Update U-segment of size 1 -- col-col update */ if ( segsze == 1 ) { ukj = dense[lsub[krep_ind]]; luptr += nsupr*(nsupc-1) + nsupc; for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) { irow = lsub[i]; dense[irow] -= ukj*lusup[luptr]; luptr++; } } else if ( segsze <= 3 ) { ukj = dense[lsub[krep_ind]]; luptr += nsupr*(nsupc-1) + nsupc-1; ukj1 = dense[lsub[krep_ind - 1]]; luptr1 = luptr - nsupr; if ( segsze == 2 ) { /* Case 2: 2cols-col update */ ukj -= ukj1 * lusup[luptr1]; dense[lsub[krep_ind]] = ukj; for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) { irow = lsub[i]; luptr++; luptr1++; dense[irow] -= ( ukj*lusup[luptr] + ukj1*lusup[luptr1] ); } } else { /* Case 3: 3cols-col update */ ukj2 = dense[lsub[krep_ind - 2]]; luptr2 = luptr1 - nsupr; ukj1 -= ukj2 * lusup[luptr2-1]; ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2]; dense[lsub[krep_ind]] = ukj; dense[lsub[krep_ind-1]] = ukj1; for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) { irow = lsub[i]; luptr++; luptr1++; luptr2++; dense[irow] -= ( ukj*lusup[luptr] + ukj1*lusup[luptr1] + ukj2*lusup[luptr2] ); } } } else { /* * Case: sup-col update * Perform a triangular solve and block update, * then scatter the result of sup-col update to dense */ no_zeros = kfnz - fst_col; /* Copy U[*,j] segment from dense[*] to tempv[*] */ isub = lptr + no_zeros; for (i = 0; i < segsze; i++) { irow = lsub[isub]; tempv[i] = dense[irow]; ++isub; } /* Dense triangular solve -- start effective triangle */ luptr += nsupr * no_zeros + no_zeros; #ifdef USE_VENDOR_BLAS #ifdef _CRAY STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr], &nsupr, tempv, &incx ); #else dtrsv_( "L", "N", "U", &segsze, &lusup[luptr], &nsupr, tempv, &incx ); #endif luptr += segsze; /* Dense matrix-vector */ tempv1 = &tempv[segsze]; alpha = one; beta = zero; #ifdef _CRAY SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr], &nsupr, tempv, &incx, &beta, tempv1, &incy ); #else dgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr], &nsupr, tempv, &incx, &beta, tempv1, &incy ); #endif #else dlsolve ( nsupr, segsze, &lusup[luptr], tempv ); luptr += segsze; /* Dense matrix-vector */ tempv1 = &tempv[segsze]; dmatvec (nsupr, nrow , segsze, &lusup[luptr], tempv, tempv1); #endif /* Scatter tempv[] into SPA dense[] as a temporary storage */ isub = lptr + no_zeros; for (i = 0; i < segsze; i++) { irow = lsub[isub]; dense[irow] = tempv[i]; tempv[i] = zero; ++isub; } /* Scatter tempv1[] into SPA dense[] */ for (i = 0; i < nrow; i++) { irow = lsub[isub]; dense[irow] -= tempv1[i]; tempv1[i] = zero; ++isub; } } } /* if jsupno ... */ } /* for each segment... */ /* * Process the supernodal portion of L\U[*,j] */ nextlu = xlusup[jcol]; fsupc = xsup[jsupno]; /* Copy the SPA dense into L\U[*,j] */ new_next = nextlu + xlsub[fsupc+1] - xlsub[fsupc]; while ( new_next > nzlumax ) { if (mem_error = dLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu)) return (mem_error); lusup = (double *) Glu->lusup; lsub = Glu->lsub; } for (isub = xlsub[fsupc]; isub < xlsub[fsupc+1]; isub++) { irow = lsub[isub]; lusup[nextlu] = dense[irow]; dense[irow] = zero; ++nextlu; } xlusup[jcolp1] = nextlu; /* Close L\U[*,jcol] */ /* For more updates within the panel (also within the current supernode), * should start from the first column of the panel, or the first column * of the supernode, whichever is bigger. There are 2 cases: * 1) fsupc < fpanelc, then fst_col := fpanelc * 2) fsupc >= fpanelc, then fst_col := fsupc */ fst_col = SUPERLU_MAX ( fsupc, fpanelc ); if ( fst_col < jcol ) { /* Distance between the current supernode and the current panel. d_fsupc=0 if fsupc >= fpanelc. */ d_fsupc = fst_col - fsupc; lptr = xlsub[fsupc] + d_fsupc; luptr = xlusup[fst_col] + d_fsupc; nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */ nsupc = jcol - fst_col; /* Excluding jcol */ nrow = nsupr - d_fsupc - nsupc; /* Points to the beginning of jcol in snode L\U(jsupno) */ ufirst = xlusup[jcol] + d_fsupc; ops[TRSV] += nsupc * (nsupc - 1); ops[GEMV] += 2 * nrow * nsupc; #ifdef USE_VENDOR_BLAS #ifdef _CRAY STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr], &nsupr, &lusup[ufirst], &incx ); #else dtrsv_( "L", "N", "U", &nsupc, &lusup[luptr], &nsupr, &lusup[ufirst], &incx ); #endif alpha = none; beta = one; /* y := beta*y + alpha*A*x */ #ifdef _CRAY SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr, &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy ); #else dgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr, &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy ); #endif #else dlsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] ); dmatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc], &lusup[ufirst], tempv ); /* Copy updates from tempv[*] into lusup[*] */ isub = ufirst + nsupc; for (i = 0; i < nrow; i++) { lusup[isub] -= tempv[i]; tempv[i] = 0.0; ++isub; } #endif } /* if fst_col < jcol ... */ return 0; }
void dpanel_bmod ( const int m, /* in - number of rows in the matrix */ const int w, /* in */ const int jcol, /* in */ const int nseg, /* in */ double *dense, /* out, of size n by w */ double *tempv, /* working array */ int *segrep, /* in */ int *repfnz, /* in, of size n by w */ GlobalLU_t *Glu, /* modified */ SuperLUStat_t *stat /* output */ ) { /* * Purpose * ======= * * Performs numeric block updates (sup-panel) in topological order. * It features: col-col, 2cols-col, 3cols-col, and sup-col updates. * Special processing on the supernodal portion of L\U[*,j] * * Before entering this routine, the original nonzeros in the panel * were already copied into the spa[m,w]. * * Updated/Output parameters- * dense[0:m-1,w]: L[*,j:j+w-1] and U[*,j:j+w-1] are returned * collectively in the m-by-w vector dense[*]. * */ #ifdef USE_VENDOR_BLAS #ifdef _CRAY _fcd ftcs1 = _cptofcd("L", strlen("L")), ftcs2 = _cptofcd("N", strlen("N")), ftcs3 = _cptofcd("U", strlen("U")); #endif int incx = 1, incy = 1; double alpha, beta; #endif register int k, ksub; int fsupc, nsupc, nsupr, nrow; int krep, krep_ind; double ukj, ukj1, ukj2; int luptr, luptr1, luptr2; int segsze; int block_nrow; /* no of rows in a block row */ register int lptr; /* Points to the row subscripts of a supernode */ int kfnz, irow, no_zeros; register int isub, isub1, i; register int jj; /* Index through each column in the panel */ int *xsup, *supno; int *lsub, *xlsub; double *lusup; int *xlusup; int *repfnz_col; /* repfnz[] for a column in the panel */ double *dense_col; /* dense[] for a column in the panel */ double *tempv1; /* Used in 1-D update */ double *TriTmp, *MatvecTmp; /* used in 2-D update */ double zero = 0.0; double one = 1.0; register int ldaTmp; register int r_ind, r_hi; static int first = 1, maxsuper, rowblk, colblk; flops_t *ops = stat->ops; xsup = Glu->xsup; supno = Glu->supno; lsub = Glu->lsub; xlsub = Glu->xlsub; lusup = Glu->lusup; xlusup = Glu->xlusup; if ( first ) { maxsuper = sp_ienv(3); rowblk = sp_ienv(4); colblk = sp_ienv(5); first = 0; } ldaTmp = maxsuper + rowblk; /* * For each nonz supernode segment of U[*,j] in topological order */ k = nseg - 1; for (ksub = 0; ksub < nseg; ksub++) { /* for each updating supernode */ /* krep = representative of current k-th supernode * fsupc = first supernodal column * nsupc = no of columns in a supernode * nsupr = no of rows in a supernode */ krep = segrep[k--]; fsupc = xsup[supno[krep]]; nsupc = krep - fsupc + 1; nsupr = xlsub[fsupc+1] - xlsub[fsupc]; nrow = nsupr - nsupc; lptr = xlsub[fsupc]; krep_ind = lptr + nsupc - 1; repfnz_col = repfnz; dense_col = dense; if ( nsupc >= colblk && nrow > rowblk ) { /* 2-D block update */ TriTmp = tempv; /* Sequence through each column in panel -- triangular solves */ for (jj = jcol; jj < jcol + w; jj++, repfnz_col += m, dense_col += m, TriTmp += ldaTmp ) { kfnz = repfnz_col[krep]; if ( kfnz == EMPTY ) continue; /* Skip any zero segment */ segsze = krep - kfnz + 1; luptr = xlusup[fsupc]; ops[TRSV] += segsze * (segsze - 1); ops[GEMV] += 2 * nrow * segsze; /* Case 1: Update U-segment of size 1 -- col-col update */ if ( segsze == 1 ) { ukj = dense_col[lsub[krep_ind]]; luptr += nsupr*(nsupc-1) + nsupc; for (i = lptr + nsupc; i < xlsub[fsupc+1]; i++) { irow = lsub[i]; dense_col[irow] -= ukj * lusup[luptr]; ++luptr; } } else if ( segsze <= 3 ) { ukj = dense_col[lsub[krep_ind]]; ukj1 = dense_col[lsub[krep_ind - 1]]; luptr += nsupr*(nsupc-1) + nsupc-1; luptr1 = luptr - nsupr; if ( segsze == 2 ) { ukj -= ukj1 * lusup[luptr1]; dense_col[lsub[krep_ind]] = ukj; for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) { irow = lsub[i]; luptr++; luptr1++; dense_col[irow] -= (ukj*lusup[luptr] + ukj1*lusup[luptr1]); } } else { ukj2 = dense_col[lsub[krep_ind - 2]]; luptr2 = luptr1 - nsupr; ukj1 -= ukj2 * lusup[luptr2-1]; ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2]; dense_col[lsub[krep_ind]] = ukj; dense_col[lsub[krep_ind-1]] = ukj1; for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) { irow = lsub[i]; luptr++; luptr1++; luptr2++; dense_col[irow] -= ( ukj*lusup[luptr] + ukj1*lusup[luptr1] + ukj2*lusup[luptr2] ); } } } else { /* segsze >= 4 */ /* Copy U[*,j] segment from dense[*] to TriTmp[*], which holds the result of triangular solves. */ no_zeros = kfnz - fsupc; isub = lptr + no_zeros; for (i = 0; i < segsze; ++i) { irow = lsub[isub]; TriTmp[i] = dense_col[irow]; /* Gather */ ++isub; } /* start effective triangle */ luptr += nsupr * no_zeros + no_zeros; #ifdef USE_VENDOR_BLAS #ifdef _CRAY STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr], &nsupr, TriTmp, &incx ); #else dtrsv_( "L", "N", "U", &segsze, &lusup[luptr], &nsupr, TriTmp, &incx ); #endif #else dlsolve ( nsupr, segsze, &lusup[luptr], TriTmp ); #endif } /* else ... */ } /* for jj ... end tri-solves */ /* Block row updates; push all the way into dense[*] block */ for ( r_ind = 0; r_ind < nrow; r_ind += rowblk ) { r_hi = SUPERLU_MIN(nrow, r_ind + rowblk); block_nrow = SUPERLU_MIN(rowblk, r_hi - r_ind); luptr = xlusup[fsupc] + nsupc + r_ind; isub1 = lptr + nsupc + r_ind; repfnz_col = repfnz; TriTmp = tempv; dense_col = dense; /* Sequence through each column in panel -- matrix-vector */ for (jj = jcol; jj < jcol + w; jj++, repfnz_col += m, dense_col += m, TriTmp += ldaTmp) { kfnz = repfnz_col[krep]; if ( kfnz == EMPTY ) continue; /* Skip any zero segment */ segsze = krep - kfnz + 1; if ( segsze <= 3 ) continue; /* skip unrolled cases */ /* Perform a block update, and scatter the result of matrix-vector to dense[]. */ no_zeros = kfnz - fsupc; luptr1 = luptr + nsupr * no_zeros; MatvecTmp = &TriTmp[maxsuper]; #ifdef USE_VENDOR_BLAS alpha = one; beta = zero; #ifdef _CRAY SGEMV(ftcs2, &block_nrow, &segsze, &alpha, &lusup[luptr1], &nsupr, TriTmp, &incx, &beta, MatvecTmp, &incy); #else dgemv_("N", &block_nrow, &segsze, &alpha, &lusup[luptr1], &nsupr, TriTmp, &incx, &beta, MatvecTmp, &incy); #endif #else dmatvec(nsupr, block_nrow, segsze, &lusup[luptr1], TriTmp, MatvecTmp); #endif /* Scatter MatvecTmp[*] into SPA dense[*] temporarily * such that MatvecTmp[*] can be re-used for the * the next blok row update. dense[] will be copied into * global store after the whole panel has been finished. */ isub = isub1; for (i = 0; i < block_nrow; i++) { irow = lsub[isub]; dense_col[irow] -= MatvecTmp[i]; MatvecTmp[i] = zero; ++isub; } } /* for jj ... */ } /* for each block row ... */ /* Scatter the triangular solves into SPA dense[*] */ repfnz_col = repfnz; TriTmp = tempv; dense_col = dense; for (jj = jcol; jj < jcol + w; jj++, repfnz_col += m, dense_col += m, TriTmp += ldaTmp) { kfnz = repfnz_col[krep]; if ( kfnz == EMPTY ) continue; /* Skip any zero segment */ segsze = krep - kfnz + 1; if ( segsze <= 3 ) continue; /* skip unrolled cases */ no_zeros = kfnz - fsupc; isub = lptr + no_zeros; for (i = 0; i < segsze; i++) { irow = lsub[isub]; dense_col[irow] = TriTmp[i]; TriTmp[i] = zero; ++isub; } } /* for jj ... */ } else { /* 1-D block modification */ /* Sequence through each column in the panel */ for (jj = jcol; jj < jcol + w; jj++, repfnz_col += m, dense_col += m) { kfnz = repfnz_col[krep]; if ( kfnz == EMPTY ) continue; /* Skip any zero segment */ segsze = krep - kfnz + 1; luptr = xlusup[fsupc]; ops[TRSV] += segsze * (segsze - 1); ops[GEMV] += 2 * nrow * segsze; /* Case 1: Update U-segment of size 1 -- col-col update */ if ( segsze == 1 ) { ukj = dense_col[lsub[krep_ind]]; luptr += nsupr*(nsupc-1) + nsupc; for (i = lptr + nsupc; i < xlsub[fsupc+1]; i++) { irow = lsub[i]; dense_col[irow] -= ukj * lusup[luptr]; ++luptr; } } else if ( segsze <= 3 ) { ukj = dense_col[lsub[krep_ind]]; luptr += nsupr*(nsupc-1) + nsupc-1; ukj1 = dense_col[lsub[krep_ind - 1]]; luptr1 = luptr - nsupr; if ( segsze == 2 ) { ukj -= ukj1 * lusup[luptr1]; dense_col[lsub[krep_ind]] = ukj; for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) { irow = lsub[i]; ++luptr; ++luptr1; dense_col[irow] -= (ukj*lusup[luptr] + ukj1*lusup[luptr1]); } } else { ukj2 = dense_col[lsub[krep_ind - 2]]; luptr2 = luptr1 - nsupr; ukj1 -= ukj2 * lusup[luptr2-1]; ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2]; dense_col[lsub[krep_ind]] = ukj; dense_col[lsub[krep_ind-1]] = ukj1; for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) { irow = lsub[i]; ++luptr; ++luptr1; ++luptr2; dense_col[irow] -= ( ukj*lusup[luptr] + ukj1*lusup[luptr1] + ukj2*lusup[luptr2] ); } } } else { /* segsze >= 4 */ /* * Perform a triangular solve and block update, * then scatter the result of sup-col update to dense[]. */ no_zeros = kfnz - fsupc; /* Copy U[*,j] segment from dense[*] to tempv[*]: * The result of triangular solve is in tempv[*]; * The result of matrix vector update is in dense_col[*] */ isub = lptr + no_zeros; for (i = 0; i < segsze; ++i) { irow = lsub[isub]; tempv[i] = dense_col[irow]; /* Gather */ ++isub; } /* start effective triangle */ luptr += nsupr * no_zeros + no_zeros; #ifdef USE_VENDOR_BLAS #ifdef _CRAY STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr], &nsupr, tempv, &incx ); #else dtrsv_( "L", "N", "U", &segsze, &lusup[luptr], &nsupr, tempv, &incx ); #endif luptr += segsze; /* Dense matrix-vector */ tempv1 = &tempv[segsze]; alpha = one; beta = zero; #ifdef _CRAY SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr], &nsupr, tempv, &incx, &beta, tempv1, &incy ); #else dgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr], &nsupr, tempv, &incx, &beta, tempv1, &incy ); #endif #else dlsolve ( nsupr, segsze, &lusup[luptr], tempv ); luptr += segsze; /* Dense matrix-vector */ tempv1 = &tempv[segsze]; dmatvec (nsupr, nrow, segsze, &lusup[luptr], tempv, tempv1); #endif /* Scatter tempv[*] into SPA dense[*] temporarily, such * that tempv[*] can be used for the triangular solve of * the next column of the panel. They will be copied into * ucol[*] after the whole panel has been finished. */ isub = lptr + no_zeros; for (i = 0; i < segsze; i++) { irow = lsub[isub]; dense_col[irow] = tempv[i]; tempv[i] = zero; isub++; } /* Scatter the update from tempv1[*] into SPA dense[*] */ /* Start dense rectangular L */ for (i = 0; i < nrow; i++) { irow = lsub[isub]; dense_col[irow] -= tempv1[i]; tempv1[i] = zero; ++isub; } } /* else segsze>=4 ... */ } /* for each column in the panel... */ } /* else 1-D update ... */ } /* for each updating supernode ... */ }
int sp_dtrsv_dist(char *uplo, char *trans, char *diag, SuperMatrix *L, SuperMatrix *U, double *x, int *info) { /* * Purpose * ======= * * sp_dtrsv_dist() solves one of the systems of equations * A*x = b, or A'*x = b, * where b and x are n element vectors and A is a sparse unit , or * non-unit, upper or lower triangular matrix. * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * uplo - (input) char* * On entry, uplo specifies whether the matrix is an upper or * lower triangular matrix as follows: * uplo = 'U' or 'u' A is an upper triangular matrix. * uplo = 'L' or 'l' A is a lower triangular matrix. * * trans - (input) char* * On entry, trans specifies the equations to be solved as * follows: * trans = 'N' or 'n' A*x = b. * trans = 'T' or 't' A'*x = b. * trans = 'C' or 'c' A'*x = b. * * diag - (input) char* * On entry, diag specifies whether or not A is unit * triangular as follows: * diag = 'U' or 'u' A is assumed to be unit triangular. * diag = 'N' or 'n' A is not assumed to be unit * triangular. * * L - (input) SuperMatrix* * The factor L from the factorization Pr*A*Pc=L*U. Use * compressed row subscripts storage for supernodes, * i.e., L has types: Stype = SC, Dtype = D, Mtype = TRLU. * * U - (input) SuperMatrix* * The factor U from the factorization Pr*A*Pc=L*U. * U has types: Stype = NC, Dtype = D, Mtype = TRU. * * x - (input/output) double* * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * info - (output) int* * If *info = -i, the i-th argument had an illegal value. * */ #ifdef _CRAY _fcd ftcs1, ftcs2, ftcs3; #endif SCformat *Lstore; NCformat *Ustore; double *Lval, *Uval; int incx = 1, incy = 1; double alpha = 1.0, beta = 1.0; int nrow; int fsupc, nsupr, nsupc, luptr, istart, irow; int i, k, iptr, jcol; double *work; flops_t solve_ops; extern SuperLUStat_t SuperLUStat; /* Test the input parameters */ *info = 0; if ( !lsame_(uplo,"L") && !lsame_(uplo, "U") ) *info = -1; else if ( !lsame_(trans, "N") && !lsame_(trans, "T") ) *info = -2; else if ( !lsame_(diag, "U") && !lsame_(diag, "N") ) *info = -3; else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -4; else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -5; if ( *info ) { i = -(*info); xerbla_("sp_dtrsv_dist", &i); return 0; } Lstore = L->Store; Lval = Lstore->nzval; Ustore = U->Store; Uval = Ustore->nzval; solve_ops = 0; if ( !(work = doubleCalloc_dist(L->nrow)) ) ABORT("Malloc fails for work in sp_dtrsv_dist()."); if ( lsame_(trans, "N") ) { /* Form x := inv(A)*x. */ if ( lsame_(uplo, "L") ) { /* Form x := inv(L)*x */ if ( L->nrow == 0 ) return 0; /* Quick return */ for (k = 0; k <= Lstore->nsuper; k++) { fsupc = L_FST_SUPC(k); istart = L_SUB_START(fsupc); nsupr = L_SUB_START(fsupc+1) - istart; nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); nrow = nsupr - nsupc; solve_ops += nsupc * (nsupc - 1); solve_ops += 2 * nrow * nsupc; if ( nsupc == 1 ) { for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); ++iptr) { irow = L_SUB(iptr); ++luptr; x[irow] -= x[fsupc] * Lval[luptr]; } } else { #ifdef USE_VENDOR_BLAS #ifdef _CRAY ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("N", strlen("N")); ftcs3 = _cptofcd("U", strlen("U")); STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); SGEMV(ftcs2, &nrow, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &x[fsupc], &incx, &beta, &work[0], &incy); #else dtrsv_("L", "N", "U", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); dgemv_("N", &nrow, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &x[fsupc], &incx, &beta, &work[0], &incy); #endif /* _CRAY */ #else dlsolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc]); dmatvec ( nsupr, nsupr-nsupc, nsupc, &Lval[luptr+nsupc], &x[fsupc], &work[0] ); #endif iptr = istart + nsupc; for (i = 0; i < nrow; ++i, ++iptr) { irow = L_SUB(iptr); x[irow] -= work[i]; /* Scatter */ work[i] = 0.0; } } } /* for k ... */ } else { /* Form x := inv(U)*x */ if ( U->nrow == 0 ) return 0; /* Quick return */ for (k = Lstore->nsuper; k >= 0; k--) { fsupc = L_FST_SUPC(k); nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc); nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); solve_ops += nsupc * (nsupc + 1); if ( nsupc == 1 ) { x[fsupc] /= Lval[luptr]; for (i = U_NZ_START(fsupc); i < U_NZ_START(fsupc+1); ++i) { irow = U_SUB(i); x[irow] -= x[fsupc] * Uval[i]; } } else { #ifdef USE_VENDOR_BLAS #ifdef _CRAY ftcs1 = _cptofcd("U", strlen("U")); ftcs2 = _cptofcd("N", strlen("N")); STRSV(ftcs1, ftcs2, ftcs2, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #else dtrsv_("U", "N", "N", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #endif #else dusolve ( nsupr, nsupc, &Lval[luptr], &x[fsupc] ); #endif for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) { solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol)); for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++) { irow = U_SUB(i); x[irow] -= x[jcol] * Uval[i]; } } } } /* for k ... */ } } else { /* Form x := inv(A')*x */ if ( lsame_(uplo, "L") ) { /* Form x := inv(L')*x */ if ( L->nrow == 0 ) return 0; /* Quick return */ for (k = Lstore->nsuper; k >= 0; --k) { fsupc = L_FST_SUPC(k); istart = L_SUB_START(fsupc); nsupr = L_SUB_START(fsupc+1) - istart; nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); solve_ops += 2 * (nsupr - nsupc) * nsupc; for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) { iptr = istart + nsupc; for (i = L_NZ_START(jcol) + nsupc; i < L_NZ_START(jcol+1); i++) { irow = L_SUB(iptr); x[jcol] -= x[irow] * Lval[i]; iptr++; } } if ( nsupc > 1 ) { solve_ops += nsupc * (nsupc - 1); #ifdef _CRAY ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("T", strlen("T")); ftcs3 = _cptofcd("U", strlen("U")); STRSV(ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #else dtrsv_("L", "T", "U", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #endif } } } else { /* Form x := inv(U')*x */ if ( U->nrow == 0 ) return 0; /* Quick return */ for (k = 0; k <= Lstore->nsuper; k++) { fsupc = L_FST_SUPC(k); nsupr = L_SUB_START(fsupc+1) - L_SUB_START(fsupc); nsupc = L_FST_SUPC(k+1) - fsupc; luptr = L_NZ_START(fsupc); for (jcol = fsupc; jcol < L_FST_SUPC(k+1); jcol++) { solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol)); for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++) { irow = U_SUB(i); x[jcol] -= x[irow] * Uval[i]; } } solve_ops += nsupc * (nsupc + 1); if ( nsupc == 1 ) { x[fsupc] /= Lval[luptr]; } else { #ifdef _CRAY ftcs1 = _cptofcd("U", strlen("U")); ftcs2 = _cptofcd("T", strlen("T")); ftcs3 = _cptofcd("N", strlen("N")); STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #else dtrsv_("U", "T", "N", &nsupc, &Lval[luptr], &nsupr, &x[fsupc], &incx); #endif } } /* for k ... */ } } SuperLUStat.ops[SOLVE] += solve_ops; SUPERLU_FREE(work); return 0; }
/*! \brief Performs numeric block updates within the relaxed snode. */ int dsnode_bmod ( const int jcol, /* in */ const int jsupno, /* in */ const int fsupc, /* in */ double *dense, /* in */ double *tempv, /* working array */ GlobalLU_t *Glu, /* modified */ SuperLUStat_t *stat /* output */ ) { #ifdef USE_VENDOR_BLAS #ifdef _CRAY _fcd ftcs1 = _cptofcd("L", strlen("L")), ftcs2 = _cptofcd("N", strlen("N")), ftcs3 = _cptofcd("U", strlen("U")); #endif int incx = 1, incy = 1; double alpha = -1.0, beta = 1.0; #endif int luptr, nsupc, nsupr, nrow; int isub, irow, i, iptr; register int ufirst, nextlu; int *lsub, *xlsub; double *lusup; int *xlusup; flops_t *ops = stat->ops; lsub = Glu->lsub; xlsub = Glu->xlsub; lusup = Glu->lusup; xlusup = Glu->xlusup; nextlu = xlusup[jcol]; /* * Process the supernodal portion of L\U[*,j] */ for (isub = xlsub[fsupc]; isub < xlsub[fsupc+1]; isub++) { irow = lsub[isub]; lusup[nextlu] = dense[irow]; dense[irow] = 0; ++nextlu; } xlusup[jcol + 1] = nextlu; /* Initialize xlusup for next column */ if ( fsupc < jcol ) { luptr = xlusup[fsupc]; nsupr = xlsub[fsupc+1] - xlsub[fsupc]; nsupc = jcol - fsupc; /* Excluding jcol */ ufirst = xlusup[jcol]; /* Points to the beginning of column jcol in supernode L\U(jsupno). */ nrow = nsupr - nsupc; ops[TRSV] += nsupc * (nsupc - 1); ops[GEMV] += 2 * nrow * nsupc; #ifdef USE_VENDOR_BLAS #ifdef _CRAY STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr], &nsupr, &lusup[ufirst], &incx ); SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr, &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy ); #else dtrsv_( "L", "N", "U", &nsupc, &lusup[luptr], &nsupr, &lusup[ufirst], &incx ); dgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr, &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy ); #endif #else dlsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] ); dmatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc], &lusup[ufirst], &tempv[0] ); /* Scatter tempv[*] into lusup[*] */ iptr = ufirst + nsupc; for (i = 0; i < nrow; i++) { lusup[iptr++] -= tempv[i]; tempv[i] = 0.0; } #endif } return 0; }
void dgstrs(trans_t trans, SuperMatrix *L, SuperMatrix *U, int *perm_r, int *perm_c, SuperMatrix *B, Gstat_t *Gstat, int *info) { /* * -- SuperLU MT routine (version 1.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * August 15, 1997 * * Purpose * ======= * * dgstrs() solves a system of linear equations A*X=B or A'*X=B * with A sparse and B dense, using the LU factorization computed by * pdgstrf(). * * Arguments * ========= * * trans (input) Specifies the form of the system of equations: * = NOTRANS: A * X = B (No transpose) * = TRANS: A'* X = B (Transpose) * * L (input) SuperMatrix* * The factor L from the factorization Pr*A*Pc=L*U as computed by * pdgstrf(). Use compressed row subscripts storage for supernodes, * i.e., L has types: Stype = SCP, Dtype = _D, Mtype = TRLU. * * U (input) SuperMatrix* * The factor U from the factorization Pr*A*Pc=L*U as computed by * pdgstrf(). Use column-wise storage scheme, i.e., U has types: * Stype = NCP, Dtype = _D, Mtype = TRU. * * perm_r (input) int* * Row permutation vector of size L->nrow, which defines the * permutation matrix Pr; perm_r[i] = j means row i of A is in * position j in Pr*A. * * perm_c (int*) dimension A->ncol * Column permutation vector, which defines the * permutation matrix Pc; perm_c[i] = j means column i of A is * in position j in A*Pc. * * B (input/output) SuperMatrix* * B has types: Stype = DN, Dtype = _D, Mtype = GE. * On entry, the right hand side matrix. * On exit, the solution matrix if info = 0; * * Gstat (output) Gstat_t* * Record all the statistics about the triangular solves; * See Gstat_t structure defined in util.h. * * info (output) Diagnostics * = 0: successful exit * < 0: if info = -i, the i-th argument had an illegal value * */ #if ( MACH==CRAY_PVP ) _fcd ftcs1, ftcs2, ftcs3, ftcs4; #endif #ifdef USE_VENDOR_BLAS int incx = 1, incy = 1; double alpha = 1.0, beta = 1.0; #endif register int j, k, jcol, iptr, luptr, ksupno, istart, irow, bptr; register int fsupc, nsuper; int i, n, nsupc, nsupr, nrow, nrhs, ldb; int *supno; DNformat *Bstore; SCPformat *Lstore; NCPformat *Ustore; double *Lval, *Uval, *Bmat; double *work, *work_col, *rhs_work, *soln; flops_t solve_ops; void dprint_soln(); /* Test input parameters ... */ *info = 0; Bstore = B->Store; ldb = Bstore->lda; nrhs = B->ncol; if ( trans != NOTRANS && trans != TRANS ) *info = -1; else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -3; else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -4; else if ( ldb < MAX(0, L->nrow) ) *info = -6; if ( *info ) { i = -(*info); xerbla_("dgstrs", &i); return; } n = L->nrow; work = doubleCalloc(n * nrhs); if ( !work ) ABORT("Malloc fails for local work[]."); soln = doubleMalloc(n); if ( !soln ) ABORT("Malloc fails for local soln[]."); Bmat = Bstore->nzval; Lstore = L->Store; Lval = Lstore->nzval; Ustore = U->Store; Uval = Ustore->nzval; supno = Lstore->col_to_sup; nsuper = Lstore->nsuper; solve_ops = 0; if ( trans == NOTRANS ) { /* Permute right hand sides to form Pr*B */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } /* Forward solve PLy=Pb. */ /*>> for (k = 0; k < n; k += nsupc) { ksupno = supno[k]; */ for (ksupno = 0; ksupno <= nsuper; ++ksupno) { fsupc = L_FST_SUPC(ksupno); istart = L_SUB_START(fsupc); nsupr = L_SUB_END(fsupc) - istart; nsupc = L_LAST_SUPC(ksupno) - fsupc; nrow = nsupr - nsupc; solve_ops += nsupc * (nsupc - 1) * nrhs; solve_ops += 2 * nrow * nsupc * nrhs; if ( nsupc == 1 ) { for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) { rhs_work = &Bmat[bptr]; luptr = L_NZ_START(fsupc); for (iptr=istart+1; iptr < L_SUB_END(fsupc); iptr++){ irow = L_SUB(iptr); ++luptr; rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr]; } } } else { luptr = L_NZ_START(fsupc); #ifdef USE_VENDOR_BLAS #if ( MACH==CRAY_PVP ) ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("N", strlen("N")); ftcs3 = _cptofcd("U", strlen("U")); STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); SGEMM(ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #else dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #endif for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) { rhs_work = &Bmat[bptr]; work_col = &work[j*n]; iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work_col[i]; /* Scatter */ work_col[i] = 0.0; iptr++; } } #else for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) { rhs_work = &Bmat[bptr]; dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]); dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc], &rhs_work[fsupc], &work[0] ); iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work[i]; work[i] = 0.0; iptr++; } } #endif } /* if-else: nsupc == 1 ... */ } /* for L-solve */ #if ( DEBUGlevel>=2 ) printf("After L-solve: y=\n"); dprint_soln(n, nrhs, Bmat); #endif /* * Back solve Ux=y. */ /*>> for (k = n-1; k >= 0; k -= nsupc) { ksupno = supno[k]; */ for (ksupno = nsuper; ksupno >= 0; --ksupno) { fsupc = L_FST_SUPC(ksupno); istart = L_SUB_START(fsupc); nsupr = L_SUB_END(fsupc) - istart; nsupc = L_LAST_SUPC(ksupno) - fsupc; luptr = L_NZ_START(fsupc); solve_ops += nsupc * (nsupc + 1) * nrhs; /* dense triangular matrix */ if ( nsupc == 1 ) { rhs_work = &Bmat[0]; for (j = 0; j < nrhs; j++) { rhs_work[fsupc] /= Lval[luptr]; rhs_work += ldb; } } else { #ifdef USE_VENDOR_BLAS #if ( MACH==CRAY_PVP ) ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("U", strlen("U")); ftcs3 = _cptofcd("N", strlen("N")); STRSM(ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); #else dtrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); #endif #else for (j = 0, bptr = fsupc; j < nrhs; j++, bptr += ldb) { dusolve (nsupr, nsupc, &Lval[luptr], &Bmat[bptr]); } #endif } /* matrix-vector update */ for (j = 0, bptr = 0; j < nrhs; ++j, bptr += ldb) { rhs_work = &Bmat[bptr]; for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) { solve_ops += 2*(U_NZ_END(jcol) - U_NZ_START(jcol)); for (i = U_NZ_START(jcol); i < U_NZ_END(jcol); i++ ){ irow = U_SUB(i); rhs_work[irow] -= rhs_work[jcol] * Uval[i]; } } } } /* for U-solve */ #if ( DEBUGlevel>=2 ) printf("After U-solve: x=\n"); dprint_soln(n, nrhs, Bmat); #endif /* Compute the final solution X <= Pc*X. */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } } else { /* Solve A'*X=B */ /* Permute right hand sides to form Pc'*B. */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } for (k = 0; k < nrhs; ++k) { /* Multiply by inv(U'). */ sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], info); /* Multiply by inv(L'). */ sp_dtrsv("L", "T", "U", L, U, &Bmat[k*ldb], info); } /* Compute the final solution X <= Pr'*X (=inv(Pr)*X) */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } } /* if-else trans */ Gstat->ops[TRISOLVE] = solve_ops; SUPERLU_FREE(work); SUPERLU_FREE(soln); }
int dfgmr(int n, void (*dmatvec) (double, double[], double, double[]), void (*dpsolve) (int, double[], double[]), double *rhs, double *sol, double tol, int im, int *itmax, FILE * fits) { /*---------------------------------------------------------------------- | *** Preconditioned FGMRES *** +----------------------------------------------------------------------- | This is a simple version of the ARMS preconditioned FGMRES algorithm. +----------------------------------------------------------------------- | Y. S. Dec. 2000. -- Apr. 2008 +----------------------------------------------------------------------- | on entry: |---------- | | rhs = real vector of length n containing the right hand side. | sol = real vector of length n containing an initial guess to the | solution on input. | tol = tolerance for stopping iteration | im = Krylov subspace dimension | (itmax) = max number of iterations allowed. | fits = NULL: no output | != NULL: file handle to output " resid vs time and its" | | on return: |---------- | fgmr int = 0 --> successful return. | int = 1 --> convergence not achieved in itmax iterations. | sol = contains an approximate solution (upon successful return). | itmax = has changed. It now contains the number of steps required | to converge -- +----------------------------------------------------------------------- | internal work arrays: |---------- | vv = work array of length [im+1][n] (used to store the Arnoldi | basis) | hh = work array of length [im][im+1] (Householder matrix) | z = work array of length [im][n] to store preconditioned vectors +----------------------------------------------------------------------- | subroutines called : | matvec - matrix-vector multiplication operation | psolve - (right) preconditionning operation | psolve can be a NULL pointer (GMRES without preconditioner) +---------------------------------------------------------------------*/ int maxits = *itmax; int i, i1, ii, j, k, k1, its, retval, i_1 = 1, i_2 = 2; double beta, eps1 = 0.0, t, t0, gam; double **hh, *c, *s, *rs; double **vv, **z, tt; double zero = 0.0; double one = 1.0; its = 0; vv = (double **)SUPERLU_MALLOC((im + 1) * sizeof(double *)); for (i = 0; i <= im; i++) vv[i] = doubleMalloc(n); z = (double **)SUPERLU_MALLOC(im * sizeof(double *)); hh = (double **)SUPERLU_MALLOC(im * sizeof(double *)); for (i = 0; i < im; i++) { hh[i] = doubleMalloc(i + 2); z[i] = doubleMalloc(n); } c = doubleMalloc(im); s = doubleMalloc(im); rs = doubleMalloc(im + 1); /*---- outer loop starts here ----*/ do { /*---- compute initial residual vector ----*/ dmatvec(one, sol, zero, vv[0]); for (j = 0; j < n; j++) vv[0][j] = rhs[j] - vv[0][j]; /* vv[0]= initial residual */ beta = dnrm2_(&n, vv[0], &i_1); /*---- print info if fits != null ----*/ if (fits != NULL && its == 0) fprintf(fits, "%8d %10.2e\n", its, beta); /*if ( beta <= tol * dnrm2_(&n, rhs, &i_1) )*/ if ( !(beta > tol * dnrm2_(&n, rhs, &i_1)) ) break; t = 1.0 / beta; /*---- normalize: vv[0] = vv[0] / beta ----*/ for (j = 0; j < n; j++) vv[0][j] = vv[0][j] * t; if (its == 0) eps1 = tol * beta; /*---- initialize 1-st term of rhs of hessenberg system ----*/ rs[0] = beta; for (i = 0; i < im; i++) { its++; i1 = i + 1; /*------------------------------------------------------------ | (Right) Preconditioning Operation z_{j} = M^{-1} v_{j} +-----------------------------------------------------------*/ if (dpsolve) dpsolve(n, z[i], vv[i]); else dcopy_(&n, vv[i], &i_1, z[i], &i_1); /*---- matvec operation w = A z_{j} = A M^{-1} v_{j} ----*/ dmatvec(one, z[i], zero, vv[i1]); /*------------------------------------------------------------ | modified gram - schmidt... | h_{i,j} = (w,v_{i}) | w = w - h_{i,j} v_{i} +------------------------------------------------------------*/ t0 = dnrm2_(&n, vv[i1], &i_1); for (j = 0; j <= i; j++) { double negt; tt = ddot_(&n, vv[j], &i_1, vv[i1], &i_1); hh[i][j] = tt; negt = -tt; daxpy_(&n, &negt, vv[j], &i_1, vv[i1], &i_1); } /*---- h_{j+1,j} = ||w||_{2} ----*/ t = dnrm2_(&n, vv[i1], &i_1); while (t < 0.5 * t0) { t0 = t; for (j = 0; j <= i; j++) { double negt; tt = ddot_(&n, vv[j], &i_1, vv[i1], &i_1); hh[i][j] += tt; negt = -tt; daxpy_(&n, &negt, vv[j], &i_1, vv[i1], &i_1); } t = dnrm2_(&n, vv[i1], &i_1); } hh[i][i1] = t; if (t != 0.0) { /*---- v_{j+1} = w / h_{j+1,j} ----*/ t = 1.0 / t; for (k = 0; k < n; k++) vv[i1][k] = vv[i1][k] * t; } /*--------------------------------------------------- | done with modified gram schimdt and arnoldi step | now update factorization of hh +--------------------------------------------------*/ /*-------------------------------------------------------- | perform previous transformations on i-th column of h +-------------------------------------------------------*/ for (k = 1; k <= i; k++) { k1 = k - 1; tt = hh[i][k1]; hh[i][k1] = c[k1] * tt + s[k1] * hh[i][k]; hh[i][k] = -s[k1] * tt + c[k1] * hh[i][k]; } gam = sqrt(pow(hh[i][i], 2) + pow(hh[i][i1], 2)); /*--------------------------------------------------- | if gamma is zero then any small value will do | affect only residual estimate +--------------------------------------------------*/ /* if (gam == 0.0) gam = epsmac; */ /*---- get next plane rotation ---*/ if (gam == 0.0) { c[i] = one; s[i] = zero; } else { c[i] = hh[i][i] / gam; s[i] = hh[i][i1] / gam; } rs[i1] = -s[i] * rs[i]; rs[i] = c[i] * rs[i]; /*---------------------------------------------------- | determine residual norm and test for convergence +---------------------------------------------------*/ hh[i][i] = c[i] * hh[i][i] + s[i] * hh[i][i1]; beta = fabs(rs[i1]); if (fits != NULL) fprintf(fits, "%8d %10.2e\n", its, beta); if (beta <= eps1 || its >= maxits) break; } if (i == im) i--; /*---- now compute solution. 1st, solve upper triangular system ----*/ rs[i] = rs[i] / hh[i][i]; for (ii = 1; ii <= i; ii++) { k = i - ii; k1 = k + 1; tt = rs[k]; for (j = k1; j <= i; j++) tt = tt - hh[j][k] * rs[j]; rs[k] = tt / hh[k][k]; } /*---- linear combination of v[i]'s to get sol. ----*/ for (j = 0; j <= i; j++) { tt = rs[j]; for (k = 0; k < n; k++) sol[k] += tt * z[j][k]; } /* calculate the residual and output */ dmatvec(one, sol, zero, vv[0]); for (j = 0; j < n; j++) vv[0][j] = rhs[j] - vv[0][j]; /* vv[0]= initial residual */ /*---- print info if fits != null ----*/ beta = dnrm2_(&n, vv[0], &i_1); /*---- restart outer loop if needed ----*/ /*if (beta >= eps1 / tol)*/ if ( !(beta < eps1 / tol) ) { its = maxits + 10; break; } if (beta <= eps1) break; } while(its < maxits); retval = (its >= maxits); for (i = 0; i <= im; i++) SUPERLU_FREE(vv[i]); SUPERLU_FREE(vv); for (i = 0; i < im; i++) { SUPERLU_FREE(hh[i]); SUPERLU_FREE(z[i]); } SUPERLU_FREE(hh); SUPERLU_FREE(z); SUPERLU_FREE(c); SUPERLU_FREE(s); SUPERLU_FREE(rs); *itmax = its; return retval; } /*----end of fgmr ----*/
int pdgstrf_column_bmod( const int pnum, /* process number */ const int jcol, /* current column in the panel */ const int fpanelc,/* first column in the panel */ const int nseg, /* number of s-nodes to update jcol */ int *segrep,/* in */ int *repfnz,/* in */ double *dense, /* modified */ double *tempv, /* working array */ pxgstrf_shared_t *pxgstrf_shared, /* modified */ Gstat_t *Gstat /* modified */ ) { /* * -- SuperLU MT routine (version 1.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * August 15, 1997 * * Purpose: * ======== * Performs numeric block updates (sup-col) in topological order. * It features: col-col, 2cols-col, 3cols-col, and sup-col updates. * Special processing on the supernodal portion of L\U[*,j]. * * Return value: * ============= * 0 - successful return * > 0 - number of bytes allocated when run out of space * */ #if ( MACH==CRAY_PVP ) _fcd ftcs1 = _cptofcd("L", strlen("L")), ftcs2 = _cptofcd("N", strlen("N")), ftcs3 = _cptofcd("U", strlen("U")); #endif #ifdef USE_VENDOR_BLAS int incx = 1, incy = 1; double alpha, beta; #endif GlobalLU_t *Glu = pxgstrf_shared->Glu; /* modified */ /* krep = representative of current k-th supernode * fsupc = first supernodal column * nsupc = no of columns in supernode * nsupr = no of rows in supernode (used as leading dimension) * luptr = location of supernodal LU-block in storage * kfnz = first nonz in the k-th supernodal segment * no_zeros = no of leading zeros in a supernodal U-segment */ register double ukj, ukj1, ukj2; register int lptr, kfnz, isub, irow, i, no_zeros; register int luptr, luptr1, luptr2; int fsupc, nsupc, nsupr, segsze; int nrow; /* No of rows in the matrix of matrix-vector */ int jsupno, k, ksub, krep, krep_ind, ksupno; int ufirst, nextlu; int fst_col; /* First column within small LU update */ int d_fsupc; /* Distance between the first column of the current panel and the first column of the current snode.*/ int *xsup, *supno; int *lsub, *xlsub, *xlsub_end; double *lusup; int *xlusup, *xlusup_end; double *tempv1; int mem_error; register float flopcnt; xsup = Glu->xsup; supno = Glu->supno; lsub = Glu->lsub; xlsub = Glu->xlsub; xlsub_end = Glu->xlsub_end; lusup = Glu->lusup; xlusup = Glu->xlusup; xlusup_end = Glu->xlusup_end; jsupno = supno[jcol]; /* * For each nonz supernode segment of U[*,j] in topological order */ k = nseg - 1; for (ksub = 0; ksub < nseg; ksub++) { krep = segrep[k]; k--; ksupno = supno[krep]; #if ( DEBUGlvel>=2 ) if (jcol==BADCOL) printf("(%d) pdgstrf_column_bmod[1]: %d, nseg %d, krep %d, jsupno %d, ksupno %d\n", pnum, jcol, nseg, krep, jsupno, ksupno); #endif if ( jsupno != ksupno ) { /* Outside the rectangular supernode */ fsupc = xsup[ksupno]; fst_col = MAX ( fsupc, fpanelc ); /* Distance from the current supernode to the current panel; d_fsupc=0 if fsupc >= fpanelc. */ d_fsupc = fst_col - fsupc; luptr = xlusup[fst_col] + d_fsupc; lptr = xlsub[fsupc] + d_fsupc; kfnz = repfnz[krep]; kfnz = MAX ( kfnz, fpanelc ); segsze = krep - kfnz + 1; nsupc = krep - fst_col + 1; nsupr = xlsub_end[fsupc] - xlsub[fsupc]; /* Leading dimension */ nrow = nsupr - d_fsupc - nsupc; krep_ind = lptr + nsupc - 1; flopcnt = segsze * (segsze - 1) + 2 * nrow * segsze; Gstat->procstat[pnum].fcops += flopcnt; #if ( DEBUGlevel>=2 ) if (jcol==BADCOL) printf("(%d) pdgstrf_column_bmod[2]: %d, krep %d, kfnz %d, segsze %d, d_fsupc %d,\ fsupc %d, nsupr %d, nsupc %d\n", pnum, jcol, krep, kfnz, segsze, d_fsupc, fsupc, nsupr, nsupc); #endif /* * Case 1: Update U-segment of size 1 -- col-col update */ if ( segsze == 1 ) { ukj = dense[lsub[krep_ind]]; luptr += nsupr*(nsupc-1) + nsupc; for (i = lptr + nsupc; i < xlsub_end[fsupc]; ++i) { irow = lsub[i]; dense[irow] -= ukj*lusup[luptr]; luptr++; } } else if ( segsze <= 3 ) { ukj = dense[lsub[krep_ind]]; luptr += nsupr*(nsupc-1) + nsupc-1; ukj1 = dense[lsub[krep_ind - 1]]; luptr1 = luptr - nsupr; if ( segsze == 2 ) { /* Case 2: 2cols-col update */ ukj -= ukj1 * lusup[luptr1]; dense[lsub[krep_ind]] = ukj; for (i = lptr + nsupc; i < xlsub_end[fsupc]; ++i) { irow = lsub[i]; luptr++; luptr1++; dense[irow] -= ( ukj*lusup[luptr] + ukj1*lusup[luptr1] ); } } else { /* Case 3: 3cols-col update */ ukj2 = dense[lsub[krep_ind - 2]]; luptr2 = luptr1 - nsupr; ukj1 -= ukj2 * lusup[luptr2-1]; ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2]; dense[lsub[krep_ind]] = ukj; dense[lsub[krep_ind-1]] = ukj1; for (i = lptr + nsupc; i < xlsub_end[fsupc]; ++i) { irow = lsub[i]; luptr++; luptr1++; luptr2++; dense[irow] -= ( ukj*lusup[luptr] + ukj1*lusup[luptr1] + ukj2*lusup[luptr2] ); } } } else { /* * Case: sup-col update * Perform a triangular solve and block update, * then scatter the result of sup-col update to dense */ no_zeros = kfnz - fst_col; /* Copy U[*,j] segment from dense[*] to tempv[*] */ isub = lptr + no_zeros; for (i = 0; i < segsze; i++) { irow = lsub[isub]; tempv[i] = dense[irow]; ++isub; } /* Dense triangular solve -- start effective triangle */ luptr += nsupr * no_zeros + no_zeros; #ifdef USE_VENDOR_BLAS #if ( MACH==CRAY_PVP ) STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr], &nsupr, tempv, &incx ); #else dtrsv_( "L", "N", "U", &segsze, &lusup[luptr], &nsupr, tempv, &incx ); #endif luptr += segsze; /* Dense matrix-vector */ tempv1 = &tempv[segsze]; alpha = 1.0; beta = 0.0; #if ( MACH==CRAY_PVP ) SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr], &nsupr, tempv, &incx, &beta, tempv1, &incy ); #else dgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr], &nsupr, tempv, &incx, &beta, tempv1, &incy ); #endif #else dlsolve ( nsupr, segsze, &lusup[luptr], tempv ); luptr += segsze; /* Dense matrix-vector */ tempv1 = &tempv[segsze]; dmatvec (nsupr, nrow , segsze, &lusup[luptr], tempv, tempv1); #endif /* Scatter tempv[] into SPA dense[*] */ isub = lptr + no_zeros; for (i = 0; i < segsze; i++) { irow = lsub[isub]; dense[irow] = tempv[i]; /* Scatter */ tempv[i] = 0.0; isub++; } /* Scatter tempv1[] into SPA dense[*] */ for (i = 0; i < nrow; i++) { irow = lsub[isub]; dense[irow] -= tempv1[i]; /* Scatter-add */ tempv1[i] = 0.0; ++isub; } } /* else segsze >= 4 */ } /* if jsupno ... */ } /* for each segment... */ /* ------------------------------------------ Process the supernodal portion of L\U[*,j] ------------------------------------------ */ fsupc = SUPER_FSUPC (jsupno); nsupr = xlsub_end[fsupc] - xlsub[fsupc]; if ( (mem_error = Glu_alloc(pnum, jcol, nsupr, LUSUP, &nextlu, pxgstrf_shared)) ) return mem_error; xlusup[jcol] = nextlu; lusup = Glu->lusup; /* Gather the nonzeros from SPA dense[*,j] into L\U[*,j] */ for (isub = xlsub[fsupc]; isub < xlsub_end[fsupc]; ++isub) { irow = lsub[isub]; lusup[nextlu] = dense[irow]; dense[irow] = 0.0; #ifdef DEBUG if (jcol == -1) printf("(%d) pdgstrf_column_bmod[lusup] jcol %d, irow %d, lusup %.10e\n", pnum, jcol, irow, lusup[nextlu]); #endif ++nextlu; } xlusup_end[jcol] = nextlu; /* close L\U[*,jcol] */ #if ( DEBUGlevel>=2 ) if (jcol == -1) { nrow = xlusup_end[jcol] - xlusup[jcol]; print_double_vec("before sup-col update", nrow, &lsub[xlsub[fsupc]], &lusup[xlusup[jcol]]); } #endif /* * For more updates within the panel (also within the current supernode), * should start from the first column of the panel, or the first column * of the supernode, whichever is bigger. There are 2 cases: * (1) fsupc < fpanelc, then fst_col := fpanelc * (2) fsupc >= fpanelc, then fst_col := fsupc */ fst_col = MAX ( fsupc, fpanelc ); if ( fst_col < jcol ) { /* distance between the current supernode and the current panel; d_fsupc=0 if fsupc >= fpanelc. */ d_fsupc = fst_col - fsupc; lptr = xlsub[fsupc] + d_fsupc; luptr = xlusup[fst_col] + d_fsupc; nsupr = xlsub_end[fsupc] - xlsub[fsupc]; /* Leading dimension */ nsupc = jcol - fst_col; /* Excluding jcol */ nrow = nsupr - d_fsupc - nsupc; /* points to the beginning of jcol in supernode L\U[*,jsupno] */ ufirst = xlusup[jcol] + d_fsupc; #if ( DEBUGlevel>=2 ) if (jcol==BADCOL) printf("(%d) pdgstrf_column_bmod[3] jcol %d, fsupc %d, nsupr %d, nsupc %d, nrow %d\n", pnum, jcol, fsupc, nsupr, nsupc, nrow); #endif flopcnt = nsupc * (nsupc - 1) + 2 * nrow * nsupc; Gstat->procstat[pnum].fcops += flopcnt; /* ops[TRSV] += nsupc * (nsupc - 1); ops[GEMV] += 2 * nrow * nsupc; */ #ifdef USE_VENDOR_BLAS alpha = -1.0; beta = 1.0; /* y := beta*y + alpha*A*x */ #if ( MACH==CRAY_PVP ) STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr], &nsupr, &lusup[ufirst], &incx ); SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr, &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy ); #else dtrsv_( "L", "N", "U", &nsupc, &lusup[luptr], &nsupr, &lusup[ufirst], &incx ); dgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr, &lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy ); #endif #else dlsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] ); dmatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc], &lusup[ufirst], tempv ); /* Copy updates from tempv[*] into lusup[*] */ isub = ufirst + nsupc; for (i = 0; i < nrow; i++) { lusup[isub] -= tempv[i]; /* Scatter-add */ tempv[i] = 0.0; ++isub; } #endif } /* if fst_col < jcol ... */ return 0; }
void dgstrsL(char *trans, SuperMatrix *L, int *perm_r, SuperMatrix *B, int *info) { /* * Purpose * ======= * * DGSTRSL only performs the L-solve using the LU factorization computed * by DGSTRF. * * See supermatrix.h for the definition of 'SuperMatrix' structure. * * Arguments * ========= * * trans (input) char* * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A'* X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * L (input) SuperMatrix* * The factor L from the factorization Pr*A*Pc=L*U as computed by * dgstrf(). Use compressed row subscripts storage for supernodes, * i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU. * * U (input) SuperMatrix* * The factor U from the factorization Pr*A*Pc=L*U as computed by * dgstrf(). Use column-wise storage scheme, i.e., U has types: * Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU. * * perm_r (input) int*, dimension (L->nrow) * Row permutation vector, which defines the permutation matrix Pr; * perm_r[i] = j means row i of A is in position j in Pr*A. * * B (input/output) SuperMatrix* * B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE. * On entry, the right hand side matrix. * On exit, the solution matrix if info = 0; * * info (output) int* * = 0: successful exit * < 0: if info = -i, the i-th argument had an illegal value * */ #ifdef _CRAY _fcd ftcs1, ftcs2, ftcs3, ftcs4; #endif int incx = 1, incy = 1; double alpha = 1.0, beta = 1.0; DNformat *Bstore; double *Bmat; SCformat *Lstore; double *Lval, *Uval; int nrow, notran; int fsupc, nsupr, nsupc, luptr, istart, irow; int i, j, k, iptr, jcol, n, ldb, nrhs; double *work, *work_col, *rhs_work, *soln; flops_t solve_ops; extern SuperLUStat_t SuperLUStat; void dprint_soln(); /* Test input parameters ... */ *info = 0; Bstore = B->Store; ldb = Bstore->lda; nrhs = B->ncol; notran = lsame_(trans, "N"); if ( !notran && !lsame_(trans, "T") && !lsame_(trans, "C") ) *info = -1; else if ( L->nrow != L->ncol || L->nrow < 0 || L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU ) *info = -2; else if ( ldb < SUPERLU_MAX(0, L->nrow) || B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE ) *info = -4; if ( *info ) { i = -(*info); xerbla_("dgstrsL", &i); return; } n = L->nrow; work = doubleCalloc(n * nrhs); if ( !work ) ABORT("Malloc fails for local work[]."); soln = doubleMalloc(n); if ( !soln ) ABORT("Malloc fails for local soln[]."); Bmat = Bstore->nzval; Lstore = L->Store; Lval = Lstore->nzval; solve_ops = 0; if ( notran ) { /* Permute right hand sides to form Pr*B */ for (i = 0; i < nrhs; i++) { rhs_work = &Bmat[i*ldb]; for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } /* Forward solve PLy=Pb. */ for (k = 0; k <= Lstore->nsuper; k++) { fsupc = L_FST_SUPC(k); istart = L_SUB_START(fsupc); nsupr = L_SUB_START(fsupc+1) - istart; nsupc = L_FST_SUPC(k+1) - fsupc; nrow = nsupr - nsupc; solve_ops += nsupc * (nsupc - 1) * nrhs; solve_ops += 2 * nrow * nsupc * nrhs; if ( nsupc == 1 ) { for (j = 0; j < nrhs; j++) { rhs_work = &Bmat[j*ldb]; luptr = L_NZ_START(fsupc); for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){ irow = L_SUB(iptr); ++luptr; rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr]; } } } else { luptr = L_NZ_START(fsupc); #ifdef USE_VENDOR_BLAS #ifdef _CRAY ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("N", strlen("N")); ftcs3 = _cptofcd("U", strlen("U")); STRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); SGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #else dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #endif for (j = 0; j < nrhs; j++) { rhs_work = &Bmat[j*ldb]; work_col = &work[j*n]; iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work_col[i]; /* Scatter */ work_col[i] = 0.0; iptr++; } } #else for (j = 0; j < nrhs; j++) { rhs_work = &Bmat[j*ldb]; dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]); dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc], &rhs_work[fsupc], &work[0] ); iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work[i]; work[i] = 0.0; iptr++; } } #endif } /* else ... */ } /* for L-solve */ #ifdef DEBUG printf("After L-solve: y=\n"); dprint_soln(n, nrhs, Bmat); #endif SuperLUStat.ops[SOLVE] = solve_ops; } else { printf("Transposed solve not implemented.\n"); exit(0); } SUPERLU_FREE(work); SUPERLU_FREE(soln); }
/*! \brief * * <pre> * Purpose * ======= * * dgstrsL only performs the L-solve using the LU factorization computed * by DGSTRF. * * See supermatrix.h for the definition of 'SuperMatrix' structure. * * Arguments * ========= * * trans (input) char* * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A'* X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * L (input) SuperMatrix* * The factor L from the factorization Pr*A*Pc=L*U as computed by * dgstrf(). Use compressed row subscripts storage for supernodes, * i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU. * * U (input) SuperMatrix* * The factor U from the factorization Pr*A*Pc=L*U as computed by * dgstrf(). Use column-wise storage scheme, i.e., U has types: * Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU. * * perm_r (input) int*, dimension (L->nrow) * Row permutation vector, which defines the permutation matrix Pr; * perm_r[i] = j means row i of A is in position j in Pr*A. * * B (input/output) SuperMatrix* * B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE. * On entry, the right hand side matrix. * On exit, the solution matrix if info = 0; * * info (output) int* * = 0: successful exit * < 0: if info = -i, the i-th argument had an illegal value * </pre> */ void dgstrsL(char *trans, SuperMatrix *L, int *perm_r, SuperMatrix *B, int *info) { #ifdef _CRAY _fcd ftcs1, ftcs2, ftcs3, ftcs4; #endif int incx = 1, incy = 1; double alpha = 1.0, beta = 1.0; DNformat *Bstore; double *Bmat; SCformat *Lstore; double *Lval, *Uval; int nrow, notran; int fsupc, nsupr, nsupc, luptr, istart, irow; int i, j, k, iptr, jcol, n, ldb, nrhs; double *work, *work_col, *rhs_work, *soln; flops_t solve_ops; extern SuperLUStat_t SuperLUStat; void dprint_soln(); /* Test input parameters ... */ *info = 0; Bstore = B->Store; ldb = Bstore->lda; nrhs = B->ncol; notran = lsame_(trans, "N"); if ( !notran && !lsame_(trans, "T") && !lsame_(trans, "C") ) *info = -1; else if ( L->nrow != L->ncol || L->nrow < 0 || L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU ) *info = -2; else if ( ldb < SUPERLU_MAX(0, L->nrow) || B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE ) *info = -4; if ( *info ) { i = -(*info); xerbla_("dgstrsL", &i); return; } n = L->nrow; work = doubleCalloc(n * nrhs); if ( !work ) ABORT("Malloc fails for local work[]."); soln = doubleMalloc(n); if ( !soln ) ABORT("Malloc fails for local soln[]."); Bmat = Bstore->nzval; Lstore = L->Store; Lval = Lstore->nzval; solve_ops = 0; if ( notran ) { /* Permute right hand sides to form Pr*B */ for (i = 0; i < nrhs; i++) { rhs_work = &Bmat[i*ldb]; for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } /* Forward solve PLy=Pb. */ for (k = 0; k <= Lstore->nsuper; k++) { fsupc = L_FST_SUPC(k); istart = L_SUB_START(fsupc); nsupr = L_SUB_START(fsupc+1) - istart; nsupc = L_FST_SUPC(k+1) - fsupc; nrow = nsupr - nsupc; solve_ops += nsupc * (nsupc - 1) * nrhs; solve_ops += 2 * nrow * nsupc * nrhs; if ( nsupc == 1 ) { for (j = 0; j < nrhs; j++) { rhs_work = &Bmat[j*ldb]; luptr = L_NZ_START(fsupc); for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){ irow = L_SUB(iptr); ++luptr; rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr]; } } } else { luptr = L_NZ_START(fsupc); #ifdef USE_VENDOR_BLAS #ifdef _CRAY ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("N", strlen("N")); ftcs3 = _cptofcd("U", strlen("U")); STRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); SGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #else dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #endif for (j = 0; j < nrhs; j++) { rhs_work = &Bmat[j*ldb]; work_col = &work[j*n]; iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work_col[i]; /* Scatter */ work_col[i] = 0.0; iptr++; } } #else for (j = 0; j < nrhs; j++) { rhs_work = &Bmat[j*ldb]; dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]); dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc], &rhs_work[fsupc], &work[0] ); iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work[i]; work[i] = 0.0; iptr++; } } #endif } /* else ... */ } /* for L-solve */ #ifdef DEBUG printf("After L-solve: y=\n"); dprint_soln(n, nrhs, Bmat); #endif SuperLUStat.ops[SOLVE] = solve_ops; } else { printf("Transposed solve not implemented.\n"); exit(0); } SUPERLU_FREE(work); SUPERLU_FREE(soln); }