/** * Inser canonical owner name into buffer. * @param buf: buffer to insert into at current position. * @param k: rrset with its owner name. * @param sig: signature with signer name and label count. * must be length checked, at least 18 bytes long. * @param can_owner: position in buffer returned for future use. * @param can_owner_len: length of canonical owner name. */ static void insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k, uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len) { int rrsig_labels = (int)sig[3]; int fqdn_labels = dname_signame_label_count(k->rk.dname); *can_owner = sldns_buffer_current(buf); if(rrsig_labels == fqdn_labels) { /* no change */ sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len); query_dname_tolower(*can_owner); *can_owner_len = k->rk.dname_len; return; } log_assert(rrsig_labels < fqdn_labels); /* *. | fqdn(rightmost rrsig_labels) */ if(rrsig_labels < fqdn_labels) { int i; uint8_t* nm = k->rk.dname; size_t len = k->rk.dname_len; /* so skip fqdn_labels-rrsig_labels */ for(i=0; i<fqdn_labels-rrsig_labels; i++) { dname_remove_label(&nm, &len); } *can_owner_len = len+2; sldns_buffer_write(buf, (uint8_t*)"\001*", 2); sldns_buffer_write(buf, nm, len); query_dname_tolower(*can_owner); } }
/** * findClosestEncloser * Given a name and a list of NSEC3s, find the candidate closest encloser. * This will be the first ancestor of 'name' (including itself) to have a * matching NSEC3 RR. * @param env: module environment with temporary region and buffer. * @param flt: the NSEC3 RR filter, contains zone name and RRs. * @param ct: cached hashes table. * @param qinfo: query that is verified for. * @param ce: closest encloser information is returned in here. * @return true if a closest encloser candidate is found, false if not. */ static int nsec3_find_closest_encloser(struct module_env* env, struct nsec3_filter* flt, rbtree_t* ct, struct query_info* qinfo, struct ce_response* ce) { uint8_t* nm = qinfo->qname; size_t nmlen = qinfo->qname_len; /* This scans from longest name to shortest, so the first match * we find is the only viable candidate. */ /* (David:) FIXME: modify so that the NSEC3 matching the zone apex need * not be present. (Mark Andrews idea). * (Wouter:) But make sure you check for DNAME bit in zone apex, * if the NSEC3 you find is the only NSEC3 in the zone, then this * may be the case. */ while(dname_subdomain_c(nm, flt->zone)) { if(find_matching_nsec3(env, flt, ct, nm, nmlen, &ce->ce_rrset, &ce->ce_rr)) { ce->ce = nm; ce->ce_len = nmlen; return 1; } dname_remove_label(&nm, &nmlen); } return 0; }
/** * Create chain of data element and parents * @param nm: name * @param nm_len: length of name * @param labs: labels in name. * @param parent: up to where to make, if NULL up to root label. * @return lowest element with name nm, or NULL malloc failure. */ static struct val_neg_data* neg_data_chain( uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent) { int i; int tolabs = parent?parent->labs:0; struct val_neg_data* el, *first = NULL, *prev = NULL; /* create the new subtree, i is labelcount of current creation */ /* this creates a 'first' to z->parent=NULL list of zones */ for(i=labs; i!=tolabs; i--) { /* create new item */ el = neg_setup_data_node(nm, nm_len, i); if(!el) { /* need to delete other allocations in this routine!*/ struct val_neg_data* p = first, *np; while(p) { np = p->parent; free(p); free(p->name); p = np; } return NULL; } if(i == labs) { first = el; } else { prev->parent = el; } /* prepare for next name */ prev = el; dname_remove_label(&nm, &nm_len); } return first; }
void dname_remove_labels(uint8_t** dname, size_t* len, int n) { int i; for(i=0; i<n; i++) dname_remove_label(dname, len); }
/** find a node, create it if not and all its empty nonterminal parents */ static int lz_find_create_node(struct local_zone* z, uint8_t* nm, size_t nmlen, int nmlabs, struct local_data** res) { struct local_data* ld = lz_find_node(z, nm, nmlen, nmlabs); if(!ld) { /* create a domain name to store rr. */ ld = (struct local_data*)regional_alloc_zero(z->region, sizeof(*ld)); if(!ld) { log_err("out of memory adding local data"); return 0; } ld->node.key = ld; ld->name = regional_alloc_init(z->region, nm, nmlen); if(!ld->name) { log_err("out of memory"); return 0; } ld->namelen = nmlen; ld->namelabs = nmlabs; if(!rbtree_insert(&z->data, &ld->node)) { log_assert(0); /* duplicate name */ } /* see if empty nonterminals need to be created */ if(nmlabs > z->namelabs) { dname_remove_label(&nm, &nmlen); if(!lz_find_create_node(z, nm, nmlen, nmlabs-1, res)) return 0; } } *res = ld; return 1; }
/** find nsec3 closest encloser in neg cache */ static struct val_neg_data* neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len, int qlabs, ldns_buffer* buf, uint8_t* hashnc, size_t* nclen) { struct val_neg_data* data; uint8_t hashce[SHA_DIGEST_LENGTH]; uint8_t b32[257]; size_t celen, b32len; *nclen = 0; while(qlabs > 0) { /* hash */ if(!(celen=nsec3_get_hashed(buf, qname, qname_len, zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt, zone->nsec3_saltlen, hashce, sizeof(hashce)))) return NULL; if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name, zone->len, b32, sizeof(b32)))) return NULL; /* lookup (exact match only) */ data = neg_find_data(zone, b32, b32len, zone->labs+1); if(data && data->in_use) { /* found ce match! */ return data; } *nclen = celen; memmove(hashnc, hashce, celen); dname_remove_label(&qname, &qname_len); qlabs --; } return NULL; }
struct key_entry_key* key_cache_obtain(struct key_cache* kcache, uint8_t* name, size_t namelen, uint16_t key_class, struct regional* region, uint32_t now) { /* keep looking until we find a nonexpired entry */ while(1) { struct key_entry_key* k = key_cache_search(kcache, name, namelen, key_class, 0); if(k) { /* see if TTL is OK */ struct key_entry_data* d = (struct key_entry_data*) k->entry.data; if(now <= d->ttl) { /* copy and return it */ struct key_entry_key* retkey = key_entry_copy_toregion(k, region); lock_rw_unlock(&k->entry.lock); return retkey; } lock_rw_unlock(&k->entry.lock); } /* snip off first label to continue */ if(dname_is_root(name)) break; dname_remove_label(&name, &namelen); } return NULL; }
/** test dname_remove_label */ static void dname_test_removelabel(void) { uint8_t* orig = (uint8_t*)"\007example\003com\000"; uint8_t* n = orig; size_t l = 13; unit_show_func("util/data/dname.c", "dname_remove_label"); dname_remove_label(&n, &l); unit_assert( n == orig+8 ); unit_assert( l == 5 ); dname_remove_label(&n, &l); unit_assert( n == orig+12 ); unit_assert( l == 1 ); dname_remove_label(&n, &l); unit_assert( n == orig+12 ); unit_assert( l == 1 ); }
/** * Calculate space needed for zone and all its parents * @param d: name of zone * @param len: length of name * @return size. */ static size_t calc_zone_need(uint8_t* d, size_t len) { size_t res = sizeof(struct val_neg_zone) + len; while(!dname_is_root(d)) { log_assert(len > 1); /* not root label */ dname_remove_label(&d, &len); res += sizeof(struct val_neg_zone) + len; } return res; }
size_t nsec3_get_nextowner_b32(struct ub_packed_rrset_key* rrset, int r, uint8_t* buf, size_t max) { uint8_t* nm, *zone; size_t nmlen, zonelen; if(!nsec3_get_nextowner(rrset, r, &nm, &nmlen)) return 0; /* append zone name; the owner name must be <b32>.zone */ zone = rrset->rk.dname; zonelen = rrset->rk.dname_len; dname_remove_label(&zone, &zonelen); return nsec3_hash_to_b32(nm, nmlen, zone, zonelen, buf, max); }
/** delete empty terminals from tree when final data is deleted */ static void del_empty_term(struct local_zone* z, struct local_data* d, uint8_t* name, size_t len, int labs) { while(d && d->rrsets == NULL && is_terminal(d)) { /* is this empty nonterminal? delete */ /* note, no memory recycling in zone region */ (void)rbtree_delete(&z->data, d); /* go up and to the next label */ if(dname_is_root(name)) return; dname_remove_label(&name, &len); labs--; d = lz_find_node(z, name, len, labs); } }
/** see if zone needs to have a hole inserted */ static int need_hole_insert(rbtree_t* tree, struct iter_forward_zone* zone) { struct iter_forward_zone k; if(rbtree_search(tree, zone)) return 0; /* exact match exists */ k = *zone; k.node.key = &k; /* search up the tree */ do { dname_remove_label(&k.name, &k.namelen); k.namelabs --; if(rbtree_search(tree, &k)) return 1; /* found an upper forward zone, need hole */ } while(k.namelabs > 1); return 0; /* no forwards above, no holes needed */ }
/** * Calculate space needed for the data and all its parents * @param rep: NSEC entries. * @return size. */ static size_t calc_data_need(struct reply_info* rep) { uint8_t* d; size_t i, len, res = 0; for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) { if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) { d = rep->rrsets[i]->rk.dname; len = rep->rrsets[i]->rk.dname_len; res = sizeof(struct val_neg_data) + len; while(!dname_is_root(d)) { log_assert(len > 1); /* not root label */ dname_remove_label(&d, &len); res += sizeof(struct val_neg_data) + len; } } } return res; }
/** * Initialize the filter structure. * Finds the zone by looking at available NSEC3 records and best match. * (skips the unknown flag and unknown algo NSEC3s). * * @param filter: nsec3 filter structure. * @param list: list of rrsets, an array of them. * @param num: number of rrsets in list. * @param qinfo: * query name to match a zone for. * query type (if DS a higher zone must be chosen) * qclass, to filter NSEC3s with. */ static void filter_init(struct nsec3_filter* filter, struct ub_packed_rrset_key** list, size_t num, struct query_info* qinfo) { size_t i; uint8_t* nm; size_t nmlen; filter->zone = NULL; filter->zone_len = 0; filter->list = list; filter->num = num; filter->fclass = qinfo->qclass; for(i=0; i<num; i++) { /* ignore other stuff in the list */ if(ntohs(list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 || ntohs(list[i]->rk.rrset_class) != qinfo->qclass) continue; /* skip unknown flags, algo */ if(!nsec3_rrset_has_known(list[i])) continue; /* since NSEC3s are base32.zonename, we can find the zone * name by stripping off the first label of the record */ nm = list[i]->rk.dname; nmlen = list[i]->rk.dname_len; dname_remove_label(&nm, &nmlen); /* if we find a domain that can prove about the qname, * and if this domain is closer to the qname */ if(dname_subdomain_c(qinfo->qname, nm) && (!filter->zone || dname_subdomain_c(nm, filter->zone))) { /* for a type DS do not accept a zone equal to qname*/ if(qinfo->qtype == LDNS_RR_TYPE_DS && query_dname_compare(qinfo->qname, nm) == 0 && !dname_is_root(qinfo->qname)) continue; filter->zone = nm; filter->zone_len = nmlen; } } }
/** * Iterate through NSEC3 list, per RR * This routine gives the next RR in the list (or sets rrset null). * Usage: * * size_t rrsetnum; * int rrnum; * struct ub_packed_rrset_key* rrset; * for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset; * rrset=filter_next(filter, &rrsetnum, &rrnum)) * do_stuff; * * Also filters out * o unknown flag NSEC3s * o unknown algorithm NSEC3s. * @param filter: nsec3 filter structure. * @param rrsetnum: in/out rrset number to look at. * @param rrnum: in/out rr number in rrset to look at. * @returns ptr to the next rrset (or NULL at end). */ static struct ub_packed_rrset_key* filter_next(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum) { size_t i; int r; uint8_t* nm; size_t nmlen; if(!filter->zone) /* empty list */ return NULL; for(i=*rrsetnum; i<filter->num; i++) { /* see if RRset qualifies */ if(ntohs(filter->list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 || ntohs(filter->list[i]->rk.rrset_class) != filter->fclass) continue; /* check RRset zone */ nm = filter->list[i]->rk.dname; nmlen = filter->list[i]->rk.dname_len; dname_remove_label(&nm, &nmlen); if(query_dname_compare(nm, filter->zone) != 0) continue; if(i == *rrsetnum) r = (*rrnum) + 1; /* continue at next RR */ else r = 0; /* new RRset start at first RR */ for(; r < (int)rrset_get_count(filter->list[i]); r++) { /* skip unknown flags, algo */ if(nsec3_unknown_flags(filter->list[i], r) || !nsec3_known_algo(filter->list[i], r)) continue; /* this one is a good target */ *rrsetnum = i; *rrnum = r; return filter->list[i]; } } return NULL; }
int print_deleg_lookup(SSL* ssl, struct worker* worker, uint8_t* nm, size_t nmlen, int ATTR_UNUSED(nmlabs)) { /* deep links into the iterator module */ struct delegpt* dp; struct dns_msg* msg; struct regional* region = worker->scratchpad; char b[260]; struct query_info qinfo; struct iter_hints_stub* stub; regional_free_all(region); qinfo.qname = nm; qinfo.qname_len = nmlen; qinfo.qtype = LDNS_RR_TYPE_A; qinfo.qclass = LDNS_RR_CLASS_IN; qinfo.local_alias = NULL; dname_str(nm, b); if(!ssl_printf(ssl, "The following name servers are used for lookup " "of %s\n", b)) return 0; dp = forwards_lookup(worker->env.fwds, nm, qinfo.qclass); if(dp) { if(!ssl_printf(ssl, "forwarding request:\n")) return 0; print_dp_main(ssl, dp, NULL); print_dp_details(ssl, worker, dp); return 1; } while(1) { dp = dns_cache_find_delegation(&worker->env, nm, nmlen, qinfo.qtype, qinfo.qclass, region, &msg, *worker->env.now); if(!dp) { return ssl_printf(ssl, "no delegation from " "cache; goes to configured roots\n"); } /* go up? */ if(iter_dp_is_useless(&qinfo, BIT_RD, dp)) { print_dp_main(ssl, dp, msg); print_dp_details(ssl, worker, dp); if(!ssl_printf(ssl, "cache delegation was " "useless (no IP addresses)\n")) return 0; if(dname_is_root(nm)) { /* goes to root config */ return ssl_printf(ssl, "no delegation from " "cache; goes to configured roots\n"); } else { /* useless, goes up */ nm = dp->name; nmlen = dp->namelen; dname_remove_label(&nm, &nmlen); dname_str(nm, b); if(!ssl_printf(ssl, "going up, lookup %s\n", b)) return 0; continue; } } stub = hints_lookup_stub(worker->env.hints, nm, qinfo.qclass, dp); if(stub) { if(stub->noprime) { if(!ssl_printf(ssl, "The noprime stub servers " "are used:\n")) return 0; } else { if(!ssl_printf(ssl, "The stub is primed " "with servers:\n")) return 0; } print_dp_main(ssl, stub->dp, NULL); print_dp_details(ssl, worker, stub->dp); } else { print_dp_main(ssl, dp, msg); print_dp_details(ssl, worker, dp); } break; } return 1; }
struct dns_msg* dns_cache_lookup(struct module_env* env, uint8_t* qname, size_t qnamelen, uint16_t qtype, uint16_t qclass, uint16_t flags, struct regional* region, struct regional* scratch) { struct lruhash_entry* e; struct query_info k; hashvalue_t h; time_t now = *env->now; struct ub_packed_rrset_key* rrset; /* lookup first, this has both NXdomains and ANSWER responses */ k.qname = qname; k.qname_len = qnamelen; k.qtype = qtype; k.qclass = qclass; h = query_info_hash(&k, flags); e = slabhash_lookup(env->msg_cache, h, &k, 0); if(e) { struct msgreply_entry* key = (struct msgreply_entry*)e->key; struct reply_info* data = (struct reply_info*)e->data; struct dns_msg* msg = tomsg(env, &key->key, data, region, now, scratch); if(msg) { lock_rw_unlock(&e->lock); return msg; } /* could be msg==NULL; due to TTL or not all rrsets available */ lock_rw_unlock(&e->lock); } /* see if a DNAME exists. Checked for first, to enforce that DNAMEs * are more important, the CNAME is resynthesized and thus * consistent with the DNAME */ if( (rrset=find_closest_of_type(env, qname, qnamelen, qclass, now, LDNS_RR_TYPE_DNAME, 1))) { /* synthesize a DNAME+CNAME message based on this */ struct dns_msg* msg = synth_dname_msg(rrset, region, now, &k); if(msg) { lock_rw_unlock(&rrset->entry.lock); return msg; } lock_rw_unlock(&rrset->entry.lock); } /* see if we have CNAME for this domain, * but not for DS records (which are part of the parent) */ if( qtype != LDNS_RR_TYPE_DS && (rrset=rrset_cache_lookup(env->rrset_cache, qname, qnamelen, LDNS_RR_TYPE_CNAME, qclass, 0, now, 0))) { struct dns_msg* msg = rrset_msg(rrset, region, now, &k); if(msg) { lock_rw_unlock(&rrset->entry.lock); return msg; } lock_rw_unlock(&rrset->entry.lock); } /* construct DS, DNSKEY, DLV messages from rrset cache. */ if((qtype == LDNS_RR_TYPE_DS || qtype == LDNS_RR_TYPE_DNSKEY || qtype == LDNS_RR_TYPE_DLV) && (rrset=rrset_cache_lookup(env->rrset_cache, qname, qnamelen, qtype, qclass, 0, now, 0))) { /* if the rrset is from the additional section, and the * signatures have fallen off, then do not synthesize a msg * instead, allow a full query for signed results to happen. * Forego all rrset data from additional section, because * some signatures may not be present and cause validation * failure. */ struct packed_rrset_data *d = (struct packed_rrset_data*) rrset->entry.data; if(d->trust != rrset_trust_add_noAA && d->trust != rrset_trust_add_AA && (qtype == LDNS_RR_TYPE_DS || (d->trust != rrset_trust_auth_noAA && d->trust != rrset_trust_auth_AA) )) { struct dns_msg* msg = rrset_msg(rrset, region, now, &k); if(msg) { lock_rw_unlock(&rrset->entry.lock); return msg; } } lock_rw_unlock(&rrset->entry.lock); } /* stop downwards cache search on NXDOMAIN. * Empty nonterminals are NOERROR, so an NXDOMAIN for foo * means bla.foo also does not exist. The DNSSEC proofs are * the same. We search upwards for NXDOMAINs. */ if(env->cfg->harden_below_nxdomain) while(!dname_is_root(k.qname)) { dname_remove_label(&k.qname, &k.qname_len); h = query_info_hash(&k, flags); e = slabhash_lookup(env->msg_cache, h, &k, 0); if(e) { struct reply_info* data = (struct reply_info*)e->data; struct dns_msg* msg; if(FLAGS_GET_RCODE(data->flags) == LDNS_RCODE_NXDOMAIN && data->security == sec_status_secure && (msg=tomsg(env, &k, data, region, now, scratch))) { lock_rw_unlock(&e->lock); msg->qinfo.qname=qname; msg->qinfo.qname_len=qnamelen; /* check that DNSSEC really works out */ msg->rep->security = sec_status_unchecked; return msg; } lock_rw_unlock(&e->lock); } } return NULL; }
struct dns_msg* dns_cache_lookup(struct module_env* env, uint8_t* qname, size_t qnamelen, uint16_t qtype, uint16_t qclass, uint16_t flags, struct regional* region, struct regional* scratch, int no_partial) { struct lruhash_entry* e; struct query_info k; hashvalue_type h; time_t now = *env->now; struct ub_packed_rrset_key* rrset; /* lookup first, this has both NXdomains and ANSWER responses */ k.qname = qname; k.qname_len = qnamelen; k.qtype = qtype; k.qclass = qclass; k.local_alias = NULL; h = query_info_hash(&k, flags); e = slabhash_lookup(env->msg_cache, h, &k, 0); if(e) { struct msgreply_entry* key = (struct msgreply_entry*)e->key; struct reply_info* data = (struct reply_info*)e->data; struct dns_msg* msg = tomsg(env, &key->key, data, region, now, scratch); if(msg) { lock_rw_unlock(&e->lock); return msg; } /* could be msg==NULL; due to TTL or not all rrsets available */ lock_rw_unlock(&e->lock); } /* see if a DNAME exists. Checked for first, to enforce that DNAMEs * are more important, the CNAME is resynthesized and thus * consistent with the DNAME */ if(!no_partial && (rrset=find_closest_of_type(env, qname, qnamelen, qclass, now, LDNS_RR_TYPE_DNAME, 1))) { /* synthesize a DNAME+CNAME message based on this */ enum sec_status sec_status = sec_status_unchecked; struct dns_msg* msg = synth_dname_msg(rrset, region, now, &k, &sec_status); if(msg) { struct ub_packed_rrset_key* cname_rrset; lock_rw_unlock(&rrset->entry.lock); /* now, after unlocking the DNAME rrset lock, * check the sec_status, and see if we need to look * up the CNAME record associated before it can * be used */ /* normally, only secure DNAMEs allowed from cache*/ if(sec_status == sec_status_secure) return msg; /* but if we have a CNAME cached with this name, then we * have previously already allowed this name to pass. * the next cache lookup is going to fetch that CNAME itself, * but it is better to have the (unsigned)DNAME + CNAME in * that case */ cname_rrset = rrset_cache_lookup( env->rrset_cache, qname, qnamelen, LDNS_RR_TYPE_CNAME, qclass, 0, now, 0); if(cname_rrset) { /* CNAME already synthesized by * synth_dname_msg routine, so we can * straight up return the msg */ lock_rw_unlock(&cname_rrset->entry.lock); return msg; } } else { lock_rw_unlock(&rrset->entry.lock); } } /* see if we have CNAME for this domain, * but not for DS records (which are part of the parent) */ if(!no_partial && qtype != LDNS_RR_TYPE_DS && (rrset=rrset_cache_lookup(env->rrset_cache, qname, qnamelen, LDNS_RR_TYPE_CNAME, qclass, 0, now, 0))) { uint8_t* wc = NULL; size_t wl; /* if the rrset is not a wildcard expansion, with wcname */ /* because, if we return that CNAME rrset on its own, it is * missing the NSEC or NSEC3 proof */ if(!(val_rrset_wildcard(rrset, &wc, &wl) && wc != NULL)) { struct dns_msg* msg = rrset_msg(rrset, region, now, &k); if(msg) { lock_rw_unlock(&rrset->entry.lock); return msg; } } lock_rw_unlock(&rrset->entry.lock); } /* construct DS, DNSKEY, DLV messages from rrset cache. */ if((qtype == LDNS_RR_TYPE_DS || qtype == LDNS_RR_TYPE_DNSKEY || qtype == LDNS_RR_TYPE_DLV) && (rrset=rrset_cache_lookup(env->rrset_cache, qname, qnamelen, qtype, qclass, 0, now, 0))) { /* if the rrset is from the additional section, and the * signatures have fallen off, then do not synthesize a msg * instead, allow a full query for signed results to happen. * Forego all rrset data from additional section, because * some signatures may not be present and cause validation * failure. */ struct packed_rrset_data *d = (struct packed_rrset_data*) rrset->entry.data; if(d->trust != rrset_trust_add_noAA && d->trust != rrset_trust_add_AA && (qtype == LDNS_RR_TYPE_DS || (d->trust != rrset_trust_auth_noAA && d->trust != rrset_trust_auth_AA) )) { struct dns_msg* msg = rrset_msg(rrset, region, now, &k); if(msg) { lock_rw_unlock(&rrset->entry.lock); return msg; } } lock_rw_unlock(&rrset->entry.lock); } /* stop downwards cache search on NXDOMAIN. * Empty nonterminals are NOERROR, so an NXDOMAIN for foo * means bla.foo also does not exist. The DNSSEC proofs are * the same. We search upwards for NXDOMAINs. */ if(env->cfg->harden_below_nxdomain) while(!dname_is_root(k.qname)) { dname_remove_label(&k.qname, &k.qname_len); h = query_info_hash(&k, flags); e = slabhash_lookup(env->msg_cache, h, &k, 0); if(!e && k.qtype != LDNS_RR_TYPE_A && env->cfg->qname_minimisation) { k.qtype = LDNS_RR_TYPE_A; h = query_info_hash(&k, flags); e = slabhash_lookup(env->msg_cache, h, &k, 0); } if(e) { struct reply_info* data = (struct reply_info*)e->data; struct dns_msg* msg; if(FLAGS_GET_RCODE(data->flags) == LDNS_RCODE_NXDOMAIN && data->security == sec_status_secure && (msg=tomsg(env, &k, data, region, now, scratch))){ lock_rw_unlock(&e->lock); msg->qinfo.qname=qname; msg->qinfo.qname_len=qnamelen; /* check that DNSSEC really works out */ msg->rep->security = sec_status_unchecked; return msg; } lock_rw_unlock(&e->lock); } k.qtype = qtype; } /* fill common RR types for ANY response to avoid requery */ if(qtype == LDNS_RR_TYPE_ANY) { return fill_any(env, qname, qnamelen, qtype, qclass, region); } return NULL; }
struct dns_msg* val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo, struct regional* region, struct rrset_cache* rrset_cache, ldns_buffer* buf, uint32_t now, int addsoa, uint8_t* topname) { struct dns_msg* msg; struct ub_packed_rrset_key* rrset; uint8_t* zname; size_t zname_len; int zname_labs; struct val_neg_zone* zone; /* only for DS queries */ if(qinfo->qtype != LDNS_RR_TYPE_DS) return NULL; log_assert(!topname || dname_subdomain_c(qinfo->qname, topname)); /* see if info from neg cache is available * For NSECs, because there is no optout; a DS next to a delegation * always has exactly an NSEC for it itself; check its DS bit. * flags=0 (not the zone apex). */ rrset = grab_nsec(rrset_cache, qinfo->qname, qinfo->qname_len, LDNS_RR_TYPE_NSEC, qinfo->qclass, 0, region, 1, qinfo->qtype, now); if(rrset) { /* return msg with that rrset */ if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len, qinfo->qtype, qinfo->qclass, region, 2))) return NULL; /* TTL already subtracted in grab_nsec */ if(!dns_msg_authadd(msg, region, rrset, 0)) return NULL; if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL)) return NULL; return msg; } /* check NSEC3 neg cache for type DS */ /* need to look one zone higher for DS type */ zname = qinfo->qname; zname_len = qinfo->qname_len; dname_remove_label(&zname, &zname_len); zname_labs = dname_count_labels(zname); /* lookup closest zone */ lock_basic_lock(&neg->lock); zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs, qinfo->qclass); while(zone && !zone->in_use) zone = zone->parent; /* check that the zone is not too high up so that we do not pick data * out of a zone that is above the last-seen key (or trust-anchor). */ if(zone && topname) { if(!dname_subdomain_c(zone->name, topname)) zone = NULL; } if(!zone) { lock_basic_unlock(&neg->lock); return NULL; } msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len, zname_labs+1, buf, rrset_cache, region, now, topname); if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) { lock_basic_unlock(&neg->lock); return NULL; } lock_basic_unlock(&neg->lock); return msg; }