Exemple #1
0
static int mv88e6131_setup(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	ret = mv88e6xxx_setup_common(ds);
	if (ret < 0)
		return ret;

	mv88e6xxx_ppu_state_init(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6185:
		ps->num_ports = 10;
		break;
	case PORT_SWITCH_ID_6095:
		ps->num_ports = 11;
		break;
	case PORT_SWITCH_ID_6131:
	case PORT_SWITCH_ID_6131_B2:
		ps->num_ports = 8;
		break;
	default:
		return -ENODEV;
	}

	ret = mv88e6xxx_switch_reset(ds, false);
	if (ret < 0)
		return ret;

	ret = mv88e6131_setup_global(ds);
	if (ret < 0)
		return ret;

	return mv88e6xxx_setup_ports(ds);
}
Exemple #2
0
static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
			       struct switchdev_obj_port_fdb *fdb,
			       int (*cb)(struct switchdev_obj *obj))
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct net_device *dev = ds->ports[port].netdev;
	struct bcm_sf2_arl_entry results[2];
	unsigned int count = 0;
	int ret;

	/* Start search operation */
	core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);

	do {
		ret = bcm_sf2_arl_search_wait(priv);
		if (ret)
			return ret;

		/* Read both entries, then return their values back */
		bcm_sf2_arl_search_rd(priv, 0, &results[0]);
		ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
		if (ret)
			return ret;

		bcm_sf2_arl_search_rd(priv, 1, &results[1]);
		ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
		if (ret)
			return ret;

		if (!results[0].is_valid && !results[1].is_valid)
			break;

	} while (count++ < CORE_ARLA_NUM_ENTRIES);

	return 0;
}
Exemple #3
0
static void bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct net_device *bridge = priv->port_sts[port].bridge_dev;
	s8 cpu_port = ds->dst->cpu_port;
	unsigned int i;
	u32 reg, p_ctl;

	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));

	for (i = 0; i < priv->hw_params.num_ports; i++) {
		/* Don't touch the remaining ports */
		if (priv->port_sts[i].bridge_dev != bridge)
			continue;

		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg &= ~(1 << port);
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
		priv->port_sts[port].vlan_ctl_mask = reg;

		/* Prevent self removal to preserve isolation */
		if (port != i)
			p_ctl &= ~(1 << i);
	}

	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
	priv->port_sts[port].vlan_ctl_mask = p_ctl;
	priv->port_sts[port].bridge_dev = NULL;

	/* Make this port join all VLANs without VLAN entries */
	reg = core_readl(priv, CORE_JOIN_ALL_VLAN_EN);
	reg |= BIT(port);
	if (!(reg & BIT(cpu_port)))
		reg |= BIT(cpu_port);
	core_writel(priv, reg, CORE_JOIN_ALL_VLAN_EN);
}
Exemple #4
0
static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;
	int ret;

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("%s: failed to software reset switch\n", __func__);
		return ret;
	}

	if (priv->hw_params.num_gphy == 1)
		bcm_sf2_gphy_enable_set(ds, true);

	for (port = 0; port < DSA_MAX_PORTS; port++) {
		if ((1 << port) & ds->enabled_port_mask)
			bcm_sf2_port_setup(ds, port, NULL);
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
	}

	return 0;
}
Exemple #5
0
static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port,
				    const unsigned char *addr, int state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA,
				   (0x10 << port) | state);
	if (ret)
		return ret;

	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB);

	return ret;
}
Exemple #6
0
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;

	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);

	/* Disable all ports physically present including the IMP
	 * port, the other ones have already been disabled during
	 * bcm_sf2_sw_setup
	 */
	for (port = 0; port < DSA_MAX_PORTS; port++) {
		if ((1 << port) & ds->phys_port_mask ||
		    dsa_is_cpu_port(ds, port))
			bcm_sf2_port_disable(ds, port, NULL);
	}

	return 0;
}
Exemple #7
0
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 reg, val;

	/* Enable the port memories */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

	/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
	reg = core_readl(priv, CORE_IMP_CTL);
	reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
	reg &= ~(RX_DIS | TX_DIS);
	core_writel(priv, reg, CORE_IMP_CTL);

	/* Enable forwarding */
	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);

	/* Enable IMP port in dumb mode */
	reg = core_readl(priv, CORE_SWITCH_CTRL);
	reg |= MII_DUMB_FWDG_EN;
	core_writel(priv, reg, CORE_SWITCH_CTRL);

	/* Resolve which bit controls the Broadcom tag */
	switch (port) {
	case 8:
		val = BRCM_HDR_EN_P8;
		break;
	case 7:
		val = BRCM_HDR_EN_P7;
		break;
	case 5:
		val = BRCM_HDR_EN_P5;
		break;
	default:
		val = 0;
		break;
	}

	/* Enable Broadcom tags for IMP port */
	reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
	reg |= val;
	core_writel(priv, reg, CORE_BRCM_HDR_CTRL);

	/* Enable reception Broadcom tag for CPU TX (switch RX) to
	 * allow us to tag outgoing frames
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);

	/* Enable transmission of Broadcom tags from the switch (CPU RX) to
	 * allow delivering frames to the per-port net_devices
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);

	/* Force link status for IMP port */
	reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
	reg |= (MII_SW_OR | LINK_STS);
	core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
}
Exemple #8
0
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct device_node *dn;
	void __iomem **base;
	unsigned int port;
	unsigned int i;
	u32 reg, rev;
	int ret;

	spin_lock_init(&priv->indir_lock);
	mutex_init(&priv->stats_mutex);

	/* All the interesting properties are at the parent device_node
	 * level
	 */
	dn = ds->cd->of_node->parent;
	bcm_sf2_identify_ports(priv, ds->cd->of_node);

	priv->irq0 = irq_of_parse_and_map(dn, 0);
	priv->irq1 = irq_of_parse_and_map(dn, 1);

	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
		*base = of_iomap(dn, i);
		if (*base == NULL) {
			pr_err("unable to find register: %s\n", reg_names[i]);
			ret = -ENOMEM;
			goto out_unmap;
		}
		base++;
	}

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("unable to software reset switch: %d\n", ret);
		goto out_unmap;
	}

	ret = bcm_sf2_mdio_register(ds);
	if (ret) {
		pr_err("failed to register MDIO bus\n");
		goto out_unmap;
	}

	/* Disable all interrupts and request them */
	bcm_sf2_intr_disable(priv);

	ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
			  "switch_0", priv);
	if (ret < 0) {
		pr_err("failed to request switch_0 IRQ\n");
		goto out_unmap;
	}

	ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
			  "switch_1", priv);
	if (ret < 0) {
		pr_err("failed to request switch_1 IRQ\n");
		goto out_free_irq0;
	}

	/* Reset the MIB counters */
	reg = core_readl(priv, CORE_GMNCFGCFG);
	reg |= RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);
	reg &= ~RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);

	/* Get the maximum number of ports for this switch */
	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
		priv->hw_params.num_ports = DSA_MAX_PORTS;

	/* Assume a single GPHY setup if we can't read that property */
	if (of_property_read_u32(dn, "brcm,num-gphy",
				 &priv->hw_params.num_gphy))
		priv->hw_params.num_gphy = 1;

	/* Enable all valid ports and disable those unused */
	for (port = 0; port < priv->hw_params.num_ports; port++) {
		/* IMP port receives special treatment */
		if ((1 << port) & ds->enabled_port_mask)
			bcm_sf2_port_setup(ds, port, NULL);
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
		else
			bcm_sf2_port_disable(ds, port, NULL);
	}

	bcm_sf2_sw_configure_vlan(ds);

	rev = reg_readl(priv, REG_SWITCH_REVISION);
	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
					SWITCH_TOP_REV_MASK;
	priv->hw_params.core_rev = (rev & SF2_REV_MASK);

	rev = reg_readl(priv, REG_PHY_REVISION);
	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;

	pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
		priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
		priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
		priv->core, priv->irq0, priv->irq1);

	return 0;

out_free_irq0:
	free_irq(priv->irq0, priv);
out_unmap:
	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
		if (*base)
			iounmap(*base);
		base++;
	}
	bcm_sf2_mdio_unregister(priv);
	return ret;
}
Exemple #9
0
static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
				   struct phy_device *phydev)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 id_mode_dis = 0, port_mode;
	const char *str = NULL;
	u32 reg;

	switch (phydev->interface) {
	case PHY_INTERFACE_MODE_RGMII:
		str = "RGMII (no delay)";
		id_mode_dis = 1;
	case PHY_INTERFACE_MODE_RGMII_TXID:
		if (!str)
			str = "RGMII (TX delay)";
		port_mode = EXT_GPHY;
		break;
	case PHY_INTERFACE_MODE_MII:
		str = "MII";
		port_mode = EXT_EPHY;
		break;
	case PHY_INTERFACE_MODE_REVMII:
		str = "Reverse MII";
		port_mode = EXT_REVMII;
		break;
	default:
		/* All other PHYs: internal and MoCA */
		goto force_link;
	}

	/* If the link is down, just disable the interface to conserve power */
	if (!phydev->link) {
		reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
		reg &= ~RGMII_MODE_EN;
		reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
		goto force_link;
	}

	/* Clear id_mode_dis bit, and the existing port mode, but
	 * make sure we enable the RGMII block for data to pass
	 */
	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
	reg &= ~ID_MODE_DIS;
	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
	reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);

	reg |= port_mode | RGMII_MODE_EN;
	if (id_mode_dis)
		reg |= ID_MODE_DIS;

	if (phydev->pause) {
		if (phydev->asym_pause)
			reg |= TX_PAUSE_EN;
		reg |= RX_PAUSE_EN;
	}

	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));

	pr_info("Port %d configured for %s\n", port, str);

force_link:
	/* Force link settings detected from the PHY */
	reg = SW_OVERRIDE;
	switch (phydev->speed) {
	case SPEED_1000:
		reg |= SPDSTS_1000 << SPEED_SHIFT;
		break;
	case SPEED_100:
		reg |= SPDSTS_100 << SPEED_SHIFT;
		break;
	}

	if (phydev->link)
		reg |= LINK_STS;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= DUPLX_MODE;

	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
}
Exemple #10
0
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct device_node *dn;
	void __iomem **base;
	unsigned int port;
	unsigned int i;
	u32 reg, rev;
	int ret;

	spin_lock_init(&priv->indir_lock);
	mutex_init(&priv->stats_mutex);

	/* All the interesting properties are at the parent device_node
	 * level
	 */
	dn = ds->pd->of_node->parent;

	priv->irq0 = irq_of_parse_and_map(dn, 0);
	priv->irq1 = irq_of_parse_and_map(dn, 1);

	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
		*base = of_iomap(dn, i);
		if (*base == NULL) {
			pr_err("unable to find register: %s\n", reg_names[i]);
			ret = -ENOMEM;
			goto out_unmap;
		}
		base++;
	}

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("unable to software reset switch: %d\n", ret);
		goto out_unmap;
	}

	/* Disable all interrupts and request them */
	bcm_sf2_intr_disable(priv);

	ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
			  "switch_0", priv);
	if (ret < 0) {
		pr_err("failed to request switch_0 IRQ\n");
		goto out_unmap;
	}

	ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
			  "switch_1", priv);
	if (ret < 0) {
		pr_err("failed to request switch_1 IRQ\n");
		goto out_free_irq0;
	}

	/* Reset the MIB counters */
	reg = core_readl(priv, CORE_GMNCFGCFG);
	reg |= RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);
	reg &= ~RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);

	/* Get the maximum number of ports for this switch */
	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
		priv->hw_params.num_ports = DSA_MAX_PORTS;

	/* Assume a single GPHY setup if we can't read that property */
	if (of_property_read_u32(dn, "brcm,num-gphy",
				 &priv->hw_params.num_gphy))
		priv->hw_params.num_gphy = 1;

	/* Enable all valid ports and disable those unused */
	for (port = 0; port < priv->hw_params.num_ports; port++) {
		/* IMP port receives special treatment */
		if ((1 << port) & ds->phys_port_mask)
			bcm_sf2_port_setup(ds, port, NULL);
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
		else
			bcm_sf2_port_disable(ds, port, NULL);
	}

	/* Include the pseudo-PHY address and the broadcast PHY address to
	 * divert reads towards our workaround. This is only required for
	 * 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
	 * that we can use the regular SWITCH_MDIO master controller instead.
	 *
	 * By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask
	 * to have a 1:1 mapping between Port address and PHY address in order
	 * to utilize the slave_mii_bus instance to read from Port PHYs. This is
	 * not what we want here, so we initialize phys_mii_mask 0 to always
	 * utilize the "master" MDIO bus backed by the "mdio-unimac" driver.
	 */
	if (of_machine_is_compatible("brcm,bcm7445d0"))
		ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
	else
		ds->phys_mii_mask = 0;

	rev = reg_readl(priv, REG_SWITCH_REVISION);
	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
					SWITCH_TOP_REV_MASK;
	priv->hw_params.core_rev = (rev & SF2_REV_MASK);

	rev = reg_readl(priv, REG_PHY_REVISION);
	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;

	pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
		priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
		priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
		priv->core, priv->irq0, priv->irq1);

	return 0;

out_free_irq0:
	free_irq(priv->irq0, priv);
out_unmap:
	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
		if (*base)
			iounmap(*base);
		base++;
	}
	return ret;
}
Exemple #11
0
static int mv88e6131_setup_port(struct dsa_switch *ds, int p)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = REG_PORT(p);
	u16 val;

	/* MAC Forcing register: don't force link, speed, duplex
	 * or flow control state to any particular values on physical
	 * ports, but force the CPU port and all DSA ports to 1000 Mb/s
	 * (100 Mb/s on 6085) full duplex.
	 */
	if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p))
		if (ps->id == ID_6085)
			REG_WRITE(addr, 0x01, 0x003d); /* 100 Mb/s */
		else
			REG_WRITE(addr, 0x01, 0x003e); /* 1000 Mb/s */
	else
		REG_WRITE(addr, 0x01, 0x0003);

	/* Port Control: disable Core Tag, disable Drop-on-Lock,
	 * transmit frames unmodified, disable Header mode,
	 * enable IGMP/MLD snoop, disable DoubleTag, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and
	 * IP priority fields (IP prio has precedence), and set STP
	 * state to Forwarding.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts, and enable DSA tagging
	 * mode.
	 *
	 * If this is the link to another switch, use DSA tagging
	 * mode, but do not enable forwarding of unknown unicasts.
	 */
	val = 0x0433;
	if (p == dsa_upstream_port(ds)) {
		val |= 0x0104;
		/* On 6085, unknown multicast forward is controlled
		 * here rather than in Port Control 2 register.
		 */
		if (ps->id == ID_6085)
			val |= 0x0008;
	}
	if (ds->dsa_port_mask & (1 << p))
		val |= 0x0100;
	REG_WRITE(addr, 0x04, val);

	/* Port Control 1: disable trunking.  Also, if this is the
	 * CPU port, enable learn messages to be sent to this port.
	 */
	REG_WRITE(addr, 0x05, dsa_is_cpu_port(ds, p) ? 0x8000 : 0x0000);

	/* Port based VLAN map: give each port its own address
	 * database, allow the CPU port to talk to each of the 'real'
	 * ports, and allow each of the 'real' ports to only talk to
	 * the upstream port.
	 */
	val = (p & 0xf) << 12;
	if (dsa_is_cpu_port(ds, p))
		val |= ds->phys_port_mask;
	else
		val |= 1 << dsa_upstream_port(ds);
	REG_WRITE(addr, 0x06, val);

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
	REG_WRITE(addr, 0x07, 0x0000);

	/* Port Control 2: don't force a good FCS, don't use
	 * VLAN-based, source address-based or destination
	 * address-based priority overrides, don't let the switch
	 * add or strip 802.1q tags, don't discard tagged or
	 * untagged frames on this port, do a destination address
	 * lookup on received packets as usual, don't send a copy
	 * of all transmitted/received frames on this port to the
	 * CPU, and configure the upstream port number.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown multicast addresses.
	 */
	if (ps->id == ID_6085)
		/* on 6085, bits 3:0 are reserved, bit 6 control ARP
		 * mirroring, and multicast forward is handled in
		 * Port Control register.
		 */
		REG_WRITE(addr, 0x08, 0x0080);
	else {
		val = 0x0080 | dsa_upstream_port(ds);
		if (p == dsa_upstream_port(ds))
			val |= 0x0040;
		REG_WRITE(addr, 0x08, val);
	}

	/* Rate Control: disable ingress rate limiting. */
	REG_WRITE(addr, 0x09, 0x0000);

	/* Rate Control 2: disable egress rate limiting. */
	REG_WRITE(addr, 0x0a, 0x0000);

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
	REG_WRITE(addr, 0x0b, 1 << p);

	/* Tag Remap: use an identity 802.1p prio -> switch prio
	 * mapping.
	 */
	REG_WRITE(addr, 0x18, 0x3210);

	/* Tag Remap 2: use an identity 802.1p prio -> switch prio
	 * mapping.
	 */
	REG_WRITE(addr, 0x19, 0x7654);

	return 0;
}