Exemple #1
0
int jacobi_eigenvectors
(
	int n,
	struct param p,
	double *Lambda,
	double *Q
)
/*
 * Construct the eigenvectors of the nxn Jacobi matrix associated with parameter p.
 */
{
	char flag='I';
	double *JE, *WORK;
	int INFO=1,N,LDZ;

	JE=(double *)calloc(n-1,sizeof(double));
	WORK=(double *)calloc(2*n-2,sizeof(double));

	jacobi_matrix(n,p,Lambda,JE);

	N=n; LDZ=n;
	dsteqr_(&flag,&N,Lambda,JE,Q,&LDZ,WORK,&INFO);

	if(INFO==0){
		return 0;
	} else {
		printf("ERROR: There was an error computing the eigenvectors of the Jacobi matrix.\n");
		return 1;
	}
}
Exemple #2
0
long dsteqr(char COMPZ, long N, double *D, double *E, double *Z, long LDZ,
      double *WORK)
{
  extern void dsteqr_(const char *COMPZp, const long *Np, double *D,
		     double *E, double *Z, const long *LDZp, double *WORK,
		     long *INFOp);
  long info;
  dsteqr_(&COMPZ, &N, D, E, Z, &LDZ, WORK, &info);
  return info;
}
Exemple #3
0
void lapack_dsteqr(int nn, int ldz, dreal *alph, dreal *beta, dreal *zz)
{
  int   nwork, info;
  char  compz = 'I';
  dreal *work = NULL;
  
  nwork = (1 >= 2*nn-2) ? 1 : 2*nn-2;
  
  work = (dreal *) calloc(nwork, sizeof(dreal));
  check_mem(work, "work");
  
  dsteqr_(&compz, &nn, alph, beta, zz, &ldz, work, &info);
  
  freeup(work);
  
  return;
  
 error:
  if(work) freeup(work);
  abort();
}
JNIEXPORT jint JNICALL Java_NativeLinAlg_dsteqr(
	JNIEnv *		env, 
	jclass			obj,
	jchar			compz_j,
	jint			n_j,
	jdoubleArray	d_j,
	jdoubleArray	e_j,
	jdoubleArray	z_j,
	jint			ldz_j,
	jdoubleArray	work_j,
	jintArray		info_j)
{

/* Subroutine  int dsteqr_(char *compz, integer *n, doublereal *d__, 
	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
	integer *info)
*/
	char		compz = compz_j;
	__CLPK_integer			n = n_j;
	__CLPK_doublereal*		d_p = (*env)->GetDoubleArrayElements(env, d_j, 0);
	__CLPK_doublereal*		e_p = (*env)->GetDoubleArrayElements(env, e_j, 0);
	__CLPK_doublereal*		z_p = (*env)->GetDoubleArrayElements(env, z_j, 0);
	__CLPK_integer			ldz = ldz_j;
	__CLPK_doublereal*		work_p = (*env)->GetDoubleArrayElements(env, work_j, 0);
	__CLPK_integer*			info_p = (*env)->GetIntArrayElements(env, info_j, 0);
	
	dsteqr_(&compz, &n, d_p, e_p, z_p, &ldz, work_p, info_p);
 	(*env)-> ReleaseDoubleArrayElements(env, d_j, (double *)d_p, 0); 	
	(*env)-> ReleaseDoubleArrayElements(env, e_j, (double *)e_p, 0);
	(*env)-> ReleaseDoubleArrayElements(env, z_j, (double *)z_p, 0);
	(*env)-> ReleaseDoubleArrayElements(env, work_j, (double *)work_p, 0);	
	(*env)-> ReleaseIntArrayElements(env, info_j, (jint *)info_p, 0);
	
	return info_p[0];

}
Exemple #5
0
/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n, 
	doublereal *d__, doublereal *e, doublereal *q, integer *ldq, 
	doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);

    /* Local variables */
    integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
    doublereal temp;
    integer curr;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    integer iperm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer indxq, iwrem;
    extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *, 
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    integer iqptr;
    extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *);
    integer tlvls;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    integer igivcl;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer igivnm, submat, curprb, subpbs, igivpt;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    integer curlvl, matsiz, iprmpt, smlsiz;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAED0 computes all eigenvalues and corresponding eigenvectors of a */
/*  symmetric tridiagonal matrix using the divide and conquer method. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          = 0:  Compute eigenvalues only. */
/*          = 1:  Compute eigenvectors of original dense symmetric matrix */
/*                also.  On entry, Q contains the orthogonal matrix used */
/*                to reduce the original matrix to tridiagonal form. */
/*          = 2:  Compute eigenvalues and eigenvectors of tridiagonal */
/*                matrix. */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the orthogonal matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry, the main diagonal of the tridiagonal matrix. */
/*         On exit, its eigenvalues. */

/*  E      (input) DOUBLE PRECISION array, dimension (N-1) */
/*         The off-diagonal elements of the tridiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
/*         On entry, Q must contain an N-by-N orthogonal matrix. */
/*         If ICOMPQ = 0    Q is not referenced. */
/*         If ICOMPQ = 1    On entry, Q is a subset of the columns of the */
/*                          orthogonal matrix used to reduce the full */
/*                          matrix to tridiagonal form corresponding to */
/*                          the subset of the full matrix which is being */
/*                          decomposed at this time. */
/*         If ICOMPQ = 2    On entry, Q will be the identity matrix. */
/*                          On exit, Q contains the eigenvectors of the */
/*                          tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  If eigenvectors are */
/*         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1. */

/*  QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N) */
/*         Referenced only when ICOMPQ = 1.  Used to store parts of */
/*         the eigenvector matrix when the updating matrix multiplies */
/*         take place. */

/*  LDQS   (input) INTEGER */
/*         The leading dimension of the array QSTORE.  If ICOMPQ = 1, */
/*         then  LDQS >= max(1,N).  In any case,  LDQS >= 1. */

/*  WORK   (workspace) DOUBLE PRECISION array, */
/*         If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
/*                     1 + 3*N + 2*N*lg N + 2*N**2 */
/*                     ( lg( N ) = smallest integer k */
/*                                 such that 2^k >= N ) */
/*         If ICOMPQ = 2, the dimension of WORK must be at least */
/*                     4*N + N**2. */

/*  IWORK  (workspace) INTEGER array, */
/*         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
/*                        6 + 6*N + 5*N*lg N. */
/*                        ( lg( N ) = smallest integer k */
/*                                    such that 2^k >= N ) */
/*         If ICOMPQ = 2, the dimension of IWORK must be at least */
/*                        3 + 5*N. */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    qstore_dim1 = *ldqs;
    qstore_offset = 1 + qstore_dim1;
    qstore -= qstore_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < max(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*ldqs < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0);

/*     Determine the size and placement of the submatrices, and save in */
/*     the leading elements of IWORK. */

    iwork[1] = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (iwork[subpbs] > smlsiz) {
	for (j = subpbs; j >= 1; --j) {
	    iwork[j * 2] = (iwork[j] + 1) / 2;
	    iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= i__1; ++j) {
	iwork[j] += iwork[j - 1];
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
/*     using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	submat = iwork[i__] + 1;
	smm1 = submat - 1;
	d__[smm1] -= (d__1 = e[smm1], abs(d__1));
	d__[submat] -= (d__1 = e[smm1], abs(d__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vectors */
/*        routine */

	temp = log((doublereal) (*n)) / log(2.);
	lgn = (integer) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i__ = 0; i__ <= i__1; ++i__) {
	    iwork[iprmpt + i__] = 1;
	    iwork[igivpt + i__] = 1;
/* L50: */
	}
	iwork[iqptr] = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and */
/*     conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i__ = 0; i__ <= i__1; ++i__) {
	if (i__ == 0) {
	    submat = 1;
	    matsiz = iwork[1];
	} else {
	    submat = iwork[i__] + 1;
	    matsiz = iwork[i__ + 1] - iwork[i__];
	}
	if (*icompq == 2) {
	    dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat + 
		    submat * q_dim1], ldq, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + 
		    iwork[iqptr + curr]], &matsiz, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat * 
			q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]], 
			 &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1], 
			ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = iwork[i__ + 1];
	for (j = submat; j <= i__2; ++j) {
	    iwork[indxq + j] = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices */
/*     into eigensystem for the corresponding larger matrix. */

/*     while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i__ = 0; i__ <= i__1; i__ += 2) {
	    if (i__ == 0) {
		submat = 1;
		matsiz = iwork[2];
		msd2 = iwork[1];
		curprb = 0;
	    } else {
		submat = iwork[i__] + 1;
		matsiz = iwork[i__ + 2] - iwork[i__];
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
/*     into an eigensystem of size MATSIZ. */
/*     DLAED1 is used only for the full eigensystem of a tridiagonal */
/*     matrix. */
/*     DLAED7 handles the cases in which eigenvalues only or eigenvalues */
/*     and eigenvectors of a full symmetric matrix (which was reduced to */
/*     tridiagonal form) are desired. */

	    if (*icompq == 2) {
		dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1], 
			ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
			msd2, &work[1], &iwork[subpbs + 1], info);
	    } else {
		dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
			submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
			iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
			work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
, &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
			work[iwrem], &iwork[subpbs + 1], info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while */

/*     Re-merge the eigenvalues/vectors which were deflated at the final */
/*     merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 
		    + 1], &c__1);
/* L100: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
/* L110: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
	dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
/* L120: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of DLAED0 */

} /* dlaed0_ */
Exemple #6
0
/* Subroutine */ int dstevx_(char *jobz, char *range, integer *n, doublereal *
	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 
	integer *iu, doublereal *abstol, integer *m, doublereal *w, 
	doublereal *z__, integer *ldz, doublereal *work, integer *iwork, 
	integer *ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, jj;
    doublereal eps, vll, vuu, tmp1;
    integer imax;
    doublereal rmin, rmax;
    logical test;
    doublereal tnrm;
    integer itmp1;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    char order[1];
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    logical wantz;
    extern doublereal dlamch_(char *);
    logical alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    integer indisp;
    extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, 
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *), 
	    dsterf_(integer *, doublereal *, doublereal *, integer *);
    integer indiwo;
    extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *);
    integer indwrk;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    integer nsplit;
    doublereal smlnum;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSTEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a real symmetric tridiagonal matrix A.  Eigenvalues and */
/*  eigenvectors can be selected by specifying either a range of values */
/*  or a range of indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  N       (input) INTEGER */
/*          The order of the matrix.  N >= 0. */

/*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
/*          On entry, the n diagonal elements of the tridiagonal matrix */
/*          A. */
/*          On exit, D may be multiplied by a constant factor chosen */
/*          to avoid over/underflow in computing the eigenvalues. */

/*  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */
/*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
/*          matrix A in elements 1 to N-1 of E. */
/*          On exit, E may be multiplied by a constant factor chosen */
/*          to avoid over/underflow in computing the eigenvalues. */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less */
/*          than or equal to zero, then  EPS*|T|  will be used in */
/*          its place, where |T| is the 1-norm of the tridiagonal */
/*          matrix. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge (INFO > 0), then that */
/*          column of Z contains the latest approximation to the */
/*          eigenvector, and the index of the eigenvector is returned */
/*          in IFAIL.  If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (5*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -7;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -8;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -9;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -14;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSTEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = d__[1];
	} else {
	    if (*vl < d__[1] && *vu >= d__[1]) {
		*m = 1;
		w[1] = d__[1];
	    }
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.;
	vuu = 0.;
    }
    tnrm = dlanst_("M", n, &d__[1], &e[1]);
    if (tnrm > 0. && tnrm < rmin) {
	iscale = 1;
	sigma = rmin / tnrm;
    } else if (tnrm > rmax) {
	iscale = 1;
	sigma = rmax / tnrm;
    }
    if (iscale == 1) {
	dscal_(n, &sigma, &d__[1], &c__1);
	i__1 = *n - 1;
	dscal_(&i__1, &sigma, &e[1], &c__1);
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     If all eigenvalues are desired and ABSTOL is less than zero, then */
/*     call DSTERF or SSTEQR.  If this fails for some eigenvalue, then */
/*     try DSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.) {
	dcopy_(n, &d__[1], &c__1, &w[1], &c__1);
	i__1 = *n - 1;
	dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1);
	indwrk = *n + 1;
	if (! wantz) {
	    dsterf_(n, &w[1], &work[1], info);
	} else {
	    dsteqr_("I", n, &w[1], &work[1], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L20;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indwrk = 1;
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, &
	    nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk], &
	    iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], &
		z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &ifail[1], 
		info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L20:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L30: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L40: */
	}
    }

    return 0;

/*     End of DSTEVX */

} /* dstevx_ */
Exemple #7
0
 int zlaed0_(int *qsiz, int *n, double *d__, 
	double *e, doublecomplex *q, int *ldq, doublecomplex *qstore, 
	int *ldqs, double *rwork, int *iwork, int *info)
{
    /* System generated locals */
    int q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    double d__1;

    /* Builtin functions */
    double log(double);
    int pow_ii(int *, int *);

    /* Local variables */
    int i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2;
    double temp;
    int curr, iperm;
    extern  int dcopy_(int *, double *, int *, 
	    double *, int *);
    int indxq, iwrem, iqptr, tlvls;
    extern  int zcopy_(int *, doublecomplex *, int *, 
	    doublecomplex *, int *), zlaed7_(int *, int *, 
	    int *, int *, int *, int *, double *, 
	    doublecomplex *, int *, double *, int *, double *, 
	     int *, int *, int *, int *, int *, 
	    double *, doublecomplex *, double *, int *, int *)
	    ;
    int igivcl;
    extern  int xerbla_(char *, int *);
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    extern  int zlacrm_(int *, int *, doublecomplex *, 
	     int *, double *, int *, doublecomplex *, int *, 
	    double *);
    int igivnm, submat, curprb, subpbs, igivpt;
    extern  int dsteqr_(char *, int *, double *, 
	    double *, double *, int *, double *, int *);
    int curlvl, matsiz, iprmpt, smlsiz;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Using the divide and conquer method, ZLAED0 computes all eigenvalues */
/*  of a symmetric tridiagonal matrix which is one diagonal block of */
/*  those from reducing a dense or band Hermitian matrix and */
/*  corresponding eigenvectors of the dense or band matrix. */

/*  Arguments */
/*  ========= */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the unitary matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry, the diagonal elements of the tridiagonal matrix. */
/*         On exit, the eigenvalues in ascending order. */

/*  E      (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*         On entry, the off-diagonal elements of the tridiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  Q      (input/output) COMPLEX*16 array, dimension (LDQ,N) */
/*         On entry, Q must contain an QSIZ x N matrix whose columns */
/*         unitarily orthonormal. It is a part of the unitary matrix */
/*         that reduces the full dense Hermitian matrix to a */
/*         (reducible) symmetric tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= MAX(1,N). */

/*  IWORK  (workspace) INTEGER array, */
/*         the dimension of IWORK must be at least */
/*                      6 + 6*N + 5*N*lg N */
/*                      ( lg( N ) = smallest int k */
/*                                  such that 2^k >= N ) */

/*  RWORK  (workspace) DOUBLE PRECISION array, */
/*                               dimension (1 + 3*N + 2*N*lg N + 3*N**2) */
/*                        ( lg( N ) = smallest int k */
/*                                    such that 2^k >= N ) */

/*  QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) */
/*         Used to store parts of */
/*         the eigenvector matrix when the updating matrix multiplies */
/*         take place. */

/*  LDQS   (input) INTEGER */
/*         The leading dimension of the array QSTORE. */
/*         LDQS >= MAX(1,N). */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  ===================================================================== */

/*  Warning:      N could be as big as QSIZ! */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    qstore_dim1 = *ldqs;
    qstore_offset = 1 + qstore_dim1;
    qstore -= qstore_offset;
    --rwork;
    --iwork;

    /* Function Body */
    *info = 0;

/*     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN */
/*        INFO = -1 */
/*     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) */
/*    $        THEN */
    if (*qsiz < MAX(0,*n)) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldq < MAX(1,*n)) {
	*info = -6;
    } else if (*ldqs < MAX(1,*n)) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "ZLAED0", " ", &c__0, &c__0, &c__0, &c__0);

/*     Determine the size and placement of the submatrices, and save in */
/*     the leading elements of IWORK. */

    iwork[1] = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (iwork[subpbs] > smlsiz) {
	for (j = subpbs; j >= 1; --j) {
	    iwork[j * 2] = (iwork[j] + 1) / 2;
	    iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= i__1; ++j) {
	iwork[j] += iwork[j - 1];
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
/*     using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	submat = iwork[i__] + 1;
	smm1 = submat - 1;
	d__[smm1] -= (d__1 = e[smm1], ABS(d__1));
	d__[submat] -= (d__1 = e[smm1], ABS(d__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;

/*     Set up workspaces for eigenvalues only/accumulate new vectors */
/*     routine */

    temp = log((double) (*n)) / log(2.);
    lgn = (int) temp;
    if (pow_ii(&c__2, &lgn) < *n) {
	++lgn;
    }
    if (pow_ii(&c__2, &lgn) < *n) {
	++lgn;
    }
    iprmpt = indxq + *n + 1;
    iperm = iprmpt + *n * lgn;
    iqptr = iperm + *n * lgn;
    igivpt = iqptr + *n + 2;
    igivcl = igivpt + *n * lgn;

    igivnm = 1;
    iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
    i__1 = *n;
    iwrem = iq + i__1 * i__1 + 1;
/*     Initialize pointers */
    i__1 = subpbs;
    for (i__ = 0; i__ <= i__1; ++i__) {
	iwork[iprmpt + i__] = 1;
	iwork[igivpt + i__] = 1;
/* L50: */
    }
    iwork[iqptr] = 1;

/*     Solve each submatrix eigenproblem at the bottom of the divide and */
/*     conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i__ = 0; i__ <= i__1; ++i__) {
	if (i__ == 0) {
	    submat = 1;
	    matsiz = iwork[1];
	} else {
	    submat = iwork[i__] + 1;
	    matsiz = iwork[i__ + 1] - iwork[i__];
	}
	ll = iq - 1 + iwork[iqptr + curr];
	dsteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, &
		rwork[1], info);
	zlacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], &
		matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem]
);
/* Computing 2nd power */
	i__2 = matsiz;
	iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
	++curr;
	if (*info > 0) {
	    *info = submat * (*n + 1) + submat + matsiz - 1;
	    return 0;
	}
	k = 1;
	i__2 = iwork[i__ + 1];
	for (j = submat; j <= i__2; ++j) {
	    iwork[indxq + j] = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices */
/*     into eigensystem for the corresponding larger matrix. */

/*     while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i__ = 0; i__ <= i__1; i__ += 2) {
	    if (i__ == 0) {
		submat = 1;
		matsiz = iwork[2];
		msd2 = iwork[1];
		curprb = 0;
	    } else {
		submat = iwork[i__] + 1;
		matsiz = iwork[i__ + 2] - iwork[i__];
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
/*     into an eigensystem of size MATSIZ.  ZLAED7 handles the case */
/*     when the eigenvectors of a full or band Hermitian matrix (which */
/*     was reduced to tridiagonal form) are desired. */

/*     I am free to use Q as a valuable working space until Loop 150. */

	    zlaed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[
		    submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[
		    submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &
		    iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
		    igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat * 
		    q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info);
	    if (*info > 0) {
		*info = submat * (*n + 1) + submat + matsiz - 1;
		return 0;
	    }
	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while */

/*     Re-merge the eigenvalues/vectors which were deflated at the final */
/*     merge step. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	j = iwork[indxq + i__];
	rwork[i__] = d__[j];
	zcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1]
, &c__1);
/* L100: */
    }
    dcopy_(n, &rwork[1], &c__1, &d__[1], &c__1);

    return 0;

/*     End of ZLAED0 */

} /* zlaed0_ */
Exemple #8
0
 int dspevx_(char *jobz, char *range, char *uplo, int *n, 
	double *ap, double *vl, double *vu, int *il, int *
	iu, double *abstol, int *m, double *w, double *z__, 
	int *ldz, double *work, int *iwork, int *ifail, 
	int *info)
{
    /* System generated locals */
    int z_dim1, z_offset, i__1, i__2;
    double d__1, d__2;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    int i__, j, jj;
    double eps, vll, vuu, tmp1;
    int indd, inde;
    double anrm;
    int imax;
    double rmin, rmax;
    int test;
    int itmp1, indee;
    extern  int dscal_(int *, double *, double *, 
	    int *);
    double sigma;
    extern int lsame_(char *, char *);
    int iinfo;
    char order[1];
    extern  int dcopy_(int *, double *, int *, 
	    double *, int *), dswap_(int *, double *, int 
	    *, double *, int *);
    int wantz;
    extern double dlamch_(char *);
    int alleig, indeig;
    int iscale, indibl;
    int valeig;
    double safmin;
    extern  int xerbla_(char *, int *);
    double abstll, bignum;
    extern double dlansp_(char *, char *, int *, double *, 
	    double *);
    int indtau, indisp;
    extern  int dstein_(int *, double *, double *, 
	     int *, double *, int *, int *, double *, 
	    int *, double *, int *, int *, int *), 
	    dsterf_(int *, double *, double *, int *);
    int indiwo;
    extern  int dstebz_(char *, char *, int *, double 
	    *, double *, int *, int *, double *, double *, 
	     double *, int *, int *, double *, int *, 
	    int *, double *, int *, int *);
    int indwrk;
    extern  int dopgtr_(char *, int *, double *, 
	    double *, double *, int *, double *, int *), dsptrd_(char *, int *, double *, double *, 
	    double *, double *, int *), dsteqr_(char *, 
	    int *, double *, double *, double *, int *, 
	    double *, int *), dopmtr_(char *, char *, char *, 
	    int *, int *, double *, double *, double *, 
	    int *, double *, int *);
    int nsplit;
    double smlnum;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSPEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a float symmetric matrix A in packed storage.  Eigenvalues/vectors */
/*  can be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the symmetric matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, AP is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
/*          and first superdiagonal of the tridiagonal matrix T overwrite */
/*          the corresponding elements of A, and if UPLO = 'L', the */
/*          diagonal and first subdiagonal of T overwrite the */
/*          corresponding elements of A. */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   MAX( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AP to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the selected eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, MAX(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least MAX(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= MAX(1,N). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (8*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -7;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > MAX(1,*n)) {
		*info = -8;
	    } else if (*iu < MIN(*n,*il) || *iu > *n) {
		*info = -9;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -14;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSPEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = ap[1];
	} else {
	    if (*vl < ap[1] && *vu >= ap[1]) {
		*m = 1;
		w[1] = ap[1];
	    }
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = MIN(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.;
	vuu = 0.;
    }
    anrm = dlansp_("M", uplo, n, &ap[1], &work[1]);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	dscal_(&i__1, &sigma, &ap[1], &c__1);
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */

    indtau = 1;
    inde = indtau + *n;
    indd = inde + *n;
    indwrk = indd + *n;
    dsptrd_(uplo, n, &ap[1], &work[indd], &work[inde], &work[indtau], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call DSTERF or DOPGTR and SSTEQR.  If this fails */
/*     for some eigenvalue, then try DSTEBZ. */

    test = FALSE;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE;
	}
    }
    if ((alleig || test) && *abstol <= 0.) {
	dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    dopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
		    work[indwrk], &iinfo);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L20;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	dopmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], 
		ldz, &work[indwrk], &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L20:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L30: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L40: */
	}
    }

    return 0;

/*     End of DSPEVX */

} /* dspevx_ */
Exemple #9
0
/* Subroutine */
int dsyevx_(char *jobz, char *range, char *uplo, integer *n, doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer * il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    integer i__, j, nb, jj;
    doublereal eps, vll, vuu, tmp1;
    integer indd, inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    logical test;
    integer itmp1, indee;
    extern /* Subroutine */
    int dscal_(integer *, doublereal *, doublereal *, integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    char order[1];
    extern /* Subroutine */
    int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *);
    logical lower, wantz;
    extern doublereal dlamch_(char *);
    logical alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    extern /* Subroutine */
    int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *);
    doublereal safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    doublereal abstll, bignum;
    integer indtau, indisp;
    extern /* Subroutine */
    int dstein_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), dsterf_(integer *, doublereal *, doublereal *, integer *);
    integer indiwo, indwkn;
    extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *);
    extern /* Subroutine */
    int dstebz_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *);
    integer indwrk, lwkmin;
    extern /* Subroutine */
    int dorgtr_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), dormtr_(char *, char *, char *, integer *, integer *, doublereal * , integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *);
    integer llwrkn, llwork, nsplit;
    doublereal smlnum;
    extern /* Subroutine */
    int dsytrd_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *);
    integer lwkopt;
    logical lquery;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;
    /* Function Body */
    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1;
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (alleig || valeig || indeig))
    {
        *info = -2;
    }
    else if (! (lower || lsame_(uplo, "U")))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*lda < max(1,*n))
    {
        *info = -6;
    }
    else
    {
        if (valeig)
        {
            if (*n > 0 && *vu <= *vl)
            {
                *info = -8;
            }
        }
        else if (indeig)
        {
            if (*il < 1 || *il > max(1,*n))
            {
                *info = -9;
            }
            else if (*iu < min(*n,*il) || *iu > *n)
            {
                *info = -10;
            }
        }
    }
    if (*info == 0)
    {
        if (*ldz < 1 || wantz && *ldz < *n)
        {
            *info = -15;
        }
    }
    if (*info == 0)
    {
        if (*n <= 1)
        {
            lwkmin = 1;
            work[1] = (doublereal) lwkmin;
        }
        else
        {
            lwkmin = *n << 3;
            nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
            /* Computing MAX */
            i__1 = nb;
            i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, &c_n1); // , expr subst
            nb = max(i__1,i__2);
            /* Computing MAX */
            i__1 = lwkmin;
            i__2 = (nb + 3) * *n; // , expr subst
            lwkopt = max(i__1,i__2);
            work[1] = (doublereal) lwkopt;
        }
        if (*lwork < lwkmin && ! lquery)
        {
            *info = -17;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("DSYEVX", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    *m = 0;
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        if (alleig || indeig)
        {
            *m = 1;
            w[1] = a[a_dim1 + 1];
        }
        else
        {
            if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1])
            {
                *m = 1;
                w[1] = a[a_dim1 + 1];
            }
        }
        if (wantz)
        {
            z__[z_dim1 + 1] = 1.;
        }
        return 0;
    }
    /* Get machine constants. */
    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    /* Computing MIN */
    d__1 = sqrt(bignum);
    d__2 = 1. / sqrt(sqrt(safmin)); // , expr subst
    rmax = min(d__1,d__2);
    /* Scale matrix to allowable range, if necessary. */
    iscale = 0;
    abstll = *abstol;
    if (valeig)
    {
        vll = *vl;
        vuu = *vu;
    }
    anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    if (anrm > 0. && anrm < rmin)
    {
        iscale = 1;
        sigma = rmin / anrm;
    }
    else if (anrm > rmax)
    {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1)
    {
        if (lower)
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__2 = *n - j + 1;
                dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
                /* L10: */
            }
        }
        else
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
                /* L20: */
            }
        }
        if (*abstol > 0.)
        {
            abstll = *abstol * sigma;
        }
        if (valeig)
        {
            vll = *vl * sigma;
            vuu = *vu * sigma;
        }
    }
    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    indtau = 1;
    inde = indtau + *n;
    indd = inde + *n;
    indwrk = indd + *n;
    llwork = *lwork - indwrk + 1;
    dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[ indtau], &work[indwrk], &llwork, &iinfo);
    /* If all eigenvalues are desired and ABSTOL is less than or equal to */
    /* zero, then call DSTERF or DORGTR and SSTEQR. If this fails for */
    /* some eigenvalue, then try DSTEBZ. */
    test = FALSE_;
    if (indeig)
    {
        if (*il == 1 && *iu == *n)
        {
            test = TRUE_;
        }
    }
    if ((alleig || test) && *abstol <= 0.)
    {
        dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
        indee = indwrk + (*n << 1);
        if (! wantz)
        {
            i__1 = *n - 1;
            dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
            dsterf_(n, &w[1], &work[indee], info);
        }
        else
        {
            dlacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
            dorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk] , &llwork, &iinfo);
            i__1 = *n - 1;
            dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
            dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[ indwrk], info);
            if (*info == 0)
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    ifail[i__] = 0;
                    /* L30: */
                }
            }
        }
        if (*info == 0)
        {
            *m = *n;
            goto L40;
        }
        *info = 0;
    }
    /* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */
    if (wantz)
    {
        *(unsigned char *)order = 'B';
    }
    else
    {
        *(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ indwrk], &iwork[indiwo], info);
    if (wantz)
    {
        dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], & ifail[1], info);
        /* Apply orthogonal matrix used in reduction to tridiagonal */
        /* form to eigenvectors returned by DSTEIN. */
        indwkn = inde;
        llwrkn = *lwork - indwkn + 1;
        dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[ z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
L40:
    if (iscale == 1)
    {
        if (*info == 0)
        {
            imax = *m;
        }
        else
        {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        dscal_(&imax, &d__1, &w[1], &c__1);
    }
    /* If eigenvalues are not in order, then sort them, along with */
    /* eigenvectors. */
    if (wantz)
    {
        i__1 = *m - 1;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            i__ = 0;
            tmp1 = w[j];
            i__2 = *m;
            for (jj = j + 1;
                    jj <= i__2;
                    ++jj)
            {
                if (w[jj] < tmp1)
                {
                    i__ = jj;
                    tmp1 = w[jj];
                }
                /* L50: */
            }
            if (i__ != 0)
            {
                itmp1 = iwork[indibl + i__ - 1];
                w[i__] = w[j];
                iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1);
                if (*info != 0)
                {
                    itmp1 = ifail[i__];
                    ifail[i__] = ifail[j];
                    ifail[j] = itmp1;
                }
            }
            /* L60: */
        }
    }
    /* Set WORK(1) to optimal workspace size. */
    work[1] = (doublereal) lwkopt;
    return 0;
    /* End of DSYEVX */
}
Exemple #10
0
 int dsyevx_(char *jobz, char *range, char *uplo, int *n, 
	double *a, int *lda, double *vl, double *vu, int *
	il, int *iu, double *abstol, int *m, double *w, 
	double *z__, int *ldz, double *work, int *lwork, 
	int *iwork, int *ifail, int *info)
{
    /* System generated locals */
    int a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    double d__1, d__2;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    int i__, j, nb, jj;
    double eps, vll, vuu, tmp1;
    int indd, inde;
    double anrm;
    int imax;
    double rmin, rmax;
    int test;
    int itmp1, indee;
    extern  int dscal_(int *, double *, double *, 
	    int *);
    double sigma;
    extern int lsame_(char *, char *);
    int iinfo;
    char order[1];
    extern  int dcopy_(int *, double *, int *, 
	    double *, int *), dswap_(int *, double *, int 
	    *, double *, int *);
    int lower, wantz;
    extern double dlamch_(char *);
    int alleig, indeig;
    int iscale, indibl;
    int valeig;
    extern  int dlacpy_(char *, int *, int *, 
	    double *, int *, double *, int *);
    double safmin;
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    extern  int xerbla_(char *, int *);
    double abstll, bignum;
    int indtau, indisp;
    extern  int dstein_(int *, double *, double *, 
	     int *, double *, int *, int *, double *, 
	    int *, double *, int *, int *, int *), 
	    dsterf_(int *, double *, double *, int *);
    int indiwo, indwkn;
    extern double dlansy_(char *, char *, int *, double *, 
	    int *, double *);
    extern  int dstebz_(char *, char *, int *, double 
	    *, double *, int *, int *, double *, double *, 
	     double *, int *, int *, double *, int *, 
	    int *, double *, int *, int *);
    int indwrk, lwkmin;
    extern  int dorgtr_(char *, int *, double *, 
	    int *, double *, double *, int *, int *), dsteqr_(char *, int *, double *, double *, 
	    double *, int *, double *, int *), 
	    dormtr_(char *, char *, char *, int *, int *, double *
, int *, double *, double *, int *, double *, 
	    int *, int *);
    int llwrkn, llwork, nsplit;
    double smlnum;
    extern  int dsytrd_(char *, int *, double *, 
	    int *, double *, double *, double *, double *, 
	     int *, int *);
    int lwkopt;
    int lquery;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a float symmetric matrix A.  Eigenvalues and eigenvectors can be */
/*  selected by specifying either a range of values or a range of indices */
/*  for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= MAX(1,N). */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   MAX( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          On normal exit, the first M elements contain the selected */
/*          eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, MAX(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least MAX(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= MAX(1,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= 1, when N <= 1; */
/*          otherwise 8*N. */
/*          For optimal efficiency, LWORK >= (NB+3)*N, */
/*          where NB is the max of the blocksize for DSYTRD and DORMTR */
/*          returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < MAX(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > MAX(1,*n)) {
		*info = -9;
	    } else if (*iu < MIN(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	}
    }

    if (*info == 0) {
	if (*n <= 1) {
	    lwkmin = 1;
	    work[1] = (double) lwkmin;
	} else {
	    lwkmin = *n << 3;
	    nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	    i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, 
		    &c_n1);
	    nb = MAX(i__1,i__2);
/* Computing MAX */
	    i__1 = lwkmin, i__2 = (nb + 3) * *n;
	    lwkopt = MAX(i__1,i__2);
	    work[1] = (double) lwkopt;
	}

	if (*lwork < lwkmin && ! lquery) {
	    *info = -17;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = a[a_dim1 + 1];
	} else {
	    if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
		*m = 1;
		w[1] = a[a_dim1 + 1];
	    }
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = MIN(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    indtau = 1;
    inde = indtau + *n;
    indd = inde + *n;
    indwrk = indd + *n;
    llwork = *lwork - indwrk + 1;
    dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
	    indtau], &work[indwrk], &llwork, &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal to */
/*     zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for */
/*     some eigenvalue, then try DSTEBZ. */

    test = FALSE;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE;
	}
    }
    if ((alleig || test) && *abstol <= 0.) {
	dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    dlacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
	    dorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
, &llwork, &iinfo);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L30: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L40;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	indwkn = inde;
	llwrkn = *lwork - indwkn + 1;
	dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L40:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L50: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L60: */
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (double) lwkopt;

    return 0;

/*     End of DSYEVX */

} /* dsyevx_ */
Exemple #11
0
/* Subroutine */ int dsbgv_(char *jobz, char *uplo, integer *n, integer *ka, 
	integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *
	ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 
	integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;

    /* Local variables */
    integer inde;
    char vect[1];
    extern logical lsame_(char *, char *);
    integer iinfo;
    logical upper, wantz;
    extern /* Subroutine */ int xerbla_(char *, integer *), dpbstf_(
	    char *, integer *, integer *, doublereal *, integer *, integer *), dsbtrd_(char *, char *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, doublereal *, doublereal *, integer *, 
	     doublereal *, integer *), dsbgst_(char *, char *, 
	     integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), dsterf_(integer *, doublereal *, 
	    doublereal *, integer *);
    integer indwrk;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSBGV computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a real generalized symmetric-definite banded eigenproblem, of */
/*  the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */
/*  and banded, and B is also positive definite. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  KA      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. */

/*  KB      (input) INTEGER */
/*          The number of superdiagonals of the matrix B if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. */

/*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first ka+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */

/*          On exit, the contents of AB are destroyed. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KA+1. */

/*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix B, stored in the first kb+1 rows of the array.  The */
/*          j-th column of B is stored in the j-th column of the array BB */
/*          as follows: */
/*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */

/*          On exit, the factor S from the split Cholesky factorization */
/*          B = S**T*S, as returned by DPBSTF. */

/*  LDBB    (input) INTEGER */
/*          The leading dimension of the array BB.  LDBB >= KB+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors, with the i-th column of Z holding the */
/*          eigenvector associated with W(i). The eigenvectors are */
/*          normalized so that Z**T*B*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= N. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is: */
/*             <= N:  the algorithm failed to converge: */
/*                    i off-diagonal elements of an intermediate */
/*                    tridiagonal form did not converge to zero; */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF */
/*                    returned INFO = i: B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ka < 0) {
	*info = -4;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -5;
    } else if (*ldab < *ka + 1) {
	*info = -7;
    } else if (*ldbb < *kb + 1) {
	*info = -9;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSBGV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    inde = 1;
    indwrk = inde + *n;
    dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
	     &z__[z_offset], ldz, &work[indwrk], &iinfo)
	    ;

/*     Reduce to tridiagonal form. */

    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
	    z_offset], ldz, &work[indwrk], &iinfo);

/*     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEQR. */

    if (! wantz) {
	dsterf_(n, &w[1], &work[inde], info);
    } else {
	dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indwrk], info);
    }
    return 0;

/*     End of DSBGV */

} /* dsbgv_ */
Exemple #12
0
/* Subroutine */ int dstev_(char *jobz, integer *n, doublereal *d__, 
	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
	integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DSTEV computes all eigenvalues and, optionally, eigenvectors of a   
    real symmetric tridiagonal matrix A.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    N       (input) INTEGER   
            The order of the matrix.  N >= 0.   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the n diagonal elements of the tridiagonal matrix   
            A.   
            On exit, if INFO = 0, the eigenvalues in ascending order.   

    E       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the (n-1) subdiagonal elements of the tridiagonal   
            matrix A, stored in elements 1 to N-1 of E; E(N) need not   
            be set, but is used by the routine.   
            On exit, the contents of E are destroyed.   

    Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)   
            If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal   
            eigenvectors of the matrix A, with the i-th column of Z   
            holding the eigenvector associated with D(i).   
            If JOBZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))   
            If JOBZ = 'N', WORK is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the algorithm failed to converge; i   
                  off-diagonal elements of E did not converge to zero.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer imax;
    static doublereal rmin, rmax, tnrm;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static doublereal sigma;
    extern logical lsame_(char *, char *);
    static logical wantz;
    extern doublereal dlamch_(char *);
    static integer iscale;
    static doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static doublereal bignum;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
	     integer *), dsteqr_(char *, integer *, doublereal *, doublereal *
	    , doublereal *, integer *, doublereal *, integer *);
    static doublereal smlnum, eps;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -6;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSTEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (wantz) {
	    z___ref(1, 1) = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    tnrm = dlanst_("M", n, &d__[1], &e[1]);
    if (tnrm > 0. && tnrm < rmin) {
	iscale = 1;
	sigma = rmin / tnrm;
    } else if (tnrm > rmax) {
	iscale = 1;
	sigma = rmax / tnrm;
    }
    if (iscale == 1) {
	dscal_(n, &sigma, &d__[1], &c__1);
	i__1 = *n - 1;
	dscal_(&i__1, &sigma, &e[1], &c__1);
    }

/*     For eigenvalues only, call DSTERF.  For eigenvalues and   
       eigenvectors, call DSTEQR. */

    if (! wantz) {
	dsterf_(n, &d__[1], &e[1], info);
    } else {
	dsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &d__[1], &c__1);
    }

    return 0;

/*     End of DSTEV */

} /* dstev_ */
Exemple #13
0
/* Subroutine */ int dsbgvx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *ka, integer *kb, doublereal *ab, integer *ldab, doublereal *
	bb, integer *ldbb, doublereal *q, integer *ldq, doublereal *vl, 
	doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer 
	*m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 
	integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, jj;
    doublereal tmp1;
    integer indd, inde;
    char vect[1];
    logical test;
    integer itmp1, indee;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    integer iinfo;
    char order[1];
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    logical upper, wantz, alleig, indeig;
    integer indibl;
    logical valeig;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dpbstf_(char *, integer *, 
	    integer *, doublereal *, integer *, integer *), dsbtrd_(
	    char *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
	     integer *);
    integer indisp;
    extern /* Subroutine */ int dsbgst_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *),
	     dstein_(integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, integer *);
    integer indiwo;
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
	     integer *), dstebz_(char *, char *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *);
    integer indwrk;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    integer nsplit;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSBGVX computes selected eigenvalues, and optionally, eigenvectors */
/*  of a real generalized symmetric-definite banded eigenproblem, of */
/*  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric */
/*  and banded, and B is also positive definite.  Eigenvalues and */
/*  eigenvectors can be selected by specifying either all eigenvalues, */
/*  a range of values or a range of indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  KA      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KA >= 0. */

/*  KB      (input) INTEGER */
/*          The number of superdiagonals of the matrix B if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KB >= 0. */

/*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first ka+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */

/*          On exit, the contents of AB are destroyed. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KA+1. */

/*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix B, stored in the first kb+1 rows of the array.  The */
/*          j-th column of B is stored in the j-th column of the array BB */
/*          as follows: */
/*          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */

/*          On exit, the factor S from the split Cholesky factorization */
/*          B = S**T*S, as returned by DPBSTF. */

/*  LDBB    (input) INTEGER */
/*          The leading dimension of the array BB.  LDBB >= KB+1. */

/*  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the n-by-n matrix used in the reduction of */
/*          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */
/*          and consequently C to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'N', */
/*          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors, with the i-th column of Z holding the */
/*          eigenvector associated with W(i).  The eigenvectors are */
/*          normalized so Z**T*B*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N) */

/*  IWORK   (workspace/output) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (M) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvalues that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0 : successful exit */
/*          < 0 : if INFO = -i, the i-th argument had an illegal value */
/*          <= N: if INFO = i, then i eigenvectors failed to converge. */
/*                  Their indices are stored in IFAIL. */
/*          > N : DPBSTF returned an error code; i.e., */
/*                if INFO = N + i, for 1 <= i <= N, then the leading */
/*                minor of order i of B is not positive definite. */
/*                The factorization of B could not be completed and */
/*                no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ka < 0) {
	*info = -5;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -6;
    } else if (*ldab < *ka + 1) {
	*info = -8;
    } else if (*ldbb < *kb + 1) {
	*info = -10;
    } else if (*ldq < 1 || wantz && *ldq < *n) {
	*info = -12;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -14;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -15;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -16;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSBGVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
	     &q[q_offset], ldq, &work[1], &iinfo);

/*     Reduce symmetric band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indwrk = inde + *n;
    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &work[indd], &work[inde], 
	     &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call DSTERF or SSTEQR.  If this fails for some */
/*     eigenvalue, then try DSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.) {
	dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	i__1 = *n - 1;
	dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	if (! wantz) {
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, */
/*     call DSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, vl, vu, il, iu, abstol, &work[indd], &work[inde], 
	     m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk], 
	     &iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply transformation matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    dgemv_("N", n, n, &c_b25, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b27, &z__[j * z_dim1 + 1], &c__1);
/* L20: */
	}
    }

L30:

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of DSBGVX */

} /* dsbgvx_ */
Exemple #14
0
/* Subroutine */ int dsyevx_(char *jobz, char *range, char *uplo, integer *n, 
	doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *
	il, integer *iu, doublereal *abstol, integer *m, doublereal *w, 
	doublereal *z__, integer *ldz, doublereal *work, integer *lwork, 
	integer *iwork, integer *ifail, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DSYEVX computes selected eigenvalues and, optionally, eigenvectors   
    of a real symmetric matrix A.  Eigenvalues and eigenvectors can be   
    selected by specifying either a range of values or a range of indices   
    for the desired eigenvalues.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found.   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found.   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the   
            leading N-by-N upper triangular part of A contains the   
            upper triangular part of the matrix A.  If UPLO = 'L',   
            the leading N-by-N lower triangular part of A contains   
            the lower triangular part of the matrix A.   
            On exit, the lower triangle (if UPLO='L') or the upper   
            triangle (if UPLO='U') of A, including the diagonal, is   
            destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    VL      (input) DOUBLE PRECISION   
    VU      (input) DOUBLE PRECISION   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) DOUBLE PRECISION   
            The absolute error tolerance for the eigenvalues.   
            An approximate eigenvalue is accepted as converged   
            when it is determined to lie in an interval [a,b]   
            of width less than or equal to   

                    ABSTOL + EPS *   max( |a|,|b| ) ,   

            where EPS is the machine precision.  If ABSTOL is less than   
            or equal to zero, then  EPS*|T|  will be used in its place,   
            where |T| is the 1-norm of the tridiagonal matrix obtained   
            by reducing A to tridiagonal form.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*DLAMCH('S'), not zero.   
            If this routine returns with INFO>0, indicating that some   
            eigenvectors did not converge, try setting ABSTOL to   
            2*DLAMCH('S').   

            See "Computing Small Singular Values of Bidiagonal Matrices   
            with Guaranteed High Relative Accuracy," by Demmel and   
            Kahan, LAPACK Working Note #3.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            On normal exit, the first M elements contain the selected   
            eigenvalues in ascending order.   

    Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix A   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If an eigenvector fails to converge, then that column of Z   
            contains the latest approximation to the eigenvector, and the   
            index of the eigenvector is returned in IFAIL.   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are   
            supplied in the array Z; if RANGE = 'V', the exact value of M   
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The length of the array WORK.  LWORK >= max(1,8*N).   
            For optimal efficiency, LWORK >= (NB+3)*N,   
            where NB is the max of the blocksize for DSYTRD and DORMTR   
            returned by ILAENV.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace) INTEGER array, dimension (5*N)   

    IFAIL   (output) INTEGER array, dimension (N)   
            If JOBZ = 'V', then if INFO = 0, the first M elements of   
            IFAIL are zero.  If INFO > 0, then IFAIL contains the   
            indices of the eigenvectors that failed to converge.   
            If JOBZ = 'N', then IFAIL is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, then i eigenvectors failed to converge.   
                  Their indices are stored in array IFAIL.   

   =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer indd, inde;
    static doublereal anrm;
    static integer imax;
    static doublereal rmin, rmax;
    static integer lopt, itmp1, i__, j, indee;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static doublereal sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    static char order[1];
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    static logical lower, wantz;
    static integer nb, jj;
    extern doublereal dlamch_(char *);
    static logical alleig, indeig;
    static integer iscale, indibl;
    static logical valeig;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static doublereal safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static doublereal abstll, bignum;
    static integer indtau, indisp;
    extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *), 
	    dsterf_(integer *, doublereal *, doublereal *, integer *);
    static integer indiwo, indwkn;
    extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, doublereal *,
	     doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *);
    static integer indwrk;
    extern /* Subroutine */ int dorgtr_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dormtr_(char *, char *, char *, integer *, integer *, doublereal *
	    , integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    static integer llwrkn, llwork, nsplit;
    static doublereal smlnum;
    extern /* Subroutine */ int dsytrd_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     integer *, integer *);
    static integer lwkopt;
    static logical lquery;
    static doublereal eps, vll, vuu, tmp1;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = 1, i__2 = *n << 3;
	    if (*lwork < max(i__1,i__2) && ! lquery) {
		*info = -17;
	    }
	}
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
		 (ftnlen)1);
/* Computing MAX */
	i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, &
		c_n1, (ftnlen)6, (ftnlen)1);
	nb = max(i__1,i__2);
	lwkopt = (nb + 3) * *n;
	work[1] = (doublereal) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	work[1] = 1.;
	return 0;
    }

    if (*n == 1) {
	work[1] = 7.;
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = a_ref(1, 1);
	} else {
	    if (*vl < a_ref(1, 1) && *vu >= a_ref(1, 1)) {
		*m = 1;
		w[1] = a_ref(1, 1);
	    }
	}
	if (wantz) {
	    z___ref(1, 1) = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    vll = *vl;
    vuu = *vu;
    anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		dscal_(&i__2, &sigma, &a_ref(j, j), &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		dscal_(&j, &sigma, &a_ref(1, j), &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    indtau = 1;
    inde = indtau + *n;
    indd = inde + *n;
    indwrk = indd + *n;
    llwork = *lwork - indwrk + 1;
    dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
	    indtau], &work[indwrk], &llwork, &iinfo);
    lopt = (integer) (*n * 3 + work[indwrk]);

/*     If all eigenvalues are desired and ABSTOL is less than or equal to   
       zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for   
       some eigenvalue, then try DSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.) {
	dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    dlacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
	    dorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
		    , &llwork, &iinfo);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L30: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L40;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal   
          form to eigenvectors returned by DSTEIN. */

	indwkn = inde;
	llwrkn = *lwork - indwkn + 1;
	dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L40:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L50: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		dswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, j), &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L60: */
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DSYEVX */

} /* dsyevx_ */
Exemple #15
0
/* ----------------------------------------------------------------------- */
/* Subroutine */ int dseupd_(logical *rvec, char *howmny, logical *select, 
	doublereal *d__, doublereal *z__, integer *ldz, doublereal *sigma, 
	char *bmat, integer *n, char *which, integer *nev, doublereal *tol, 
	doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer 
	*iparam, integer *ipntr, doublereal *workd, doublereal *workl, 
	integer *lworkl, integer *info, ftnlen howmny_len, ftnlen bmat_len, 
	ftnlen which_len)
{
    /* System generated locals */
    integer v_dim1, v_offset, z_dim1, z_offset, i__1;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    integer s_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double pow_dd(doublereal *, doublereal *);

    /* Local variables */
    static integer j, k, ih, jj, iq, np, iw, ibd, ihb, ihd, ldh, ldq, irz;
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer mode;
    static doublereal eps23;
    static integer ierr;
    static doublereal temp;
    static integer next;
    static char type__[6];
    static integer ritz;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    static doublereal temp1;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static logical reord;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer nconv;
    static doublereal rnorm;
    extern /* Subroutine */ int dvout_(integer *, integer *, doublereal *, 
	    integer *, char *, ftnlen), ivout_(integer *, integer *, integer *
	    , integer *, char *, ftnlen), dgeqr2_(integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *);
    static doublereal bnorm2;
    extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, ftnlen, ftnlen);
    extern doublereal dlamch_(char *, ftnlen);
    static integer bounds, msglvl, ishift, numcnv;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, ftnlen), 
	    dsesrt_(char *, logical *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, ftnlen), dsteqr_(char *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *, ftnlen), dsortr_(char *, logical *, integer *, 
	    doublereal *, doublereal *, ftnlen), dsgets_(integer *, char *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    ftnlen);
    static integer leftptr, rghtptr;


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */


/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */



/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */


/*     %------------% */
/*     | Parameters | */
/*     %------------% */


/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */


/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */


/*     %---------------------% */
/*     | Intrinsic Functions | */
/*     %---------------------% */


/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

/*     %------------------------% */
/*     | Set default parameters | */
/*     %------------------------% */

    /* Parameter adjustments */
    --workd;
    --resid;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --d__;
    --select;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --iparam;
    --ipntr;
    --workl;

    /* Function Body */
    msglvl = debug_1.mseupd;
    mode = iparam[7];
    nconv = iparam[5];
    *info = 0;

/*     %--------------% */
/*     | Quick return | */
/*     %--------------% */

    if (nconv == 0) {
	goto L9000;
    }
    ierr = 0;

    if (nconv <= 0) {
	ierr = -14;
    }
    if (*n <= 0) {
	ierr = -1;
    }
    if (*nev <= 0) {
	ierr = -2;
    }
    if (*ncv <= *nev || *ncv > *n) {
	ierr = -3;
    }
    if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SM", (
	    ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LA", (ftnlen)2, (
	    ftnlen)2) != 0 && s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 &&
	     s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) {
	ierr = -5;
    }
    if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') {
	ierr = -6;
    }
    if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' && 
	    *(unsigned char *)howmny != 'S' && *rvec) {
	ierr = -15;
    }
    if (*rvec && *(unsigned char *)howmny == 'S') {
	ierr = -16;
    }

/* Computing 2nd power */
    i__1 = *ncv;
    if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) {
	ierr = -7;
    }

    if (mode == 1 || mode == 2) {
	s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
    } else if (mode == 3) {
	s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
    } else if (mode == 4) {
	s_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6);
    } else if (mode == 5) {
	s_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6);
    } else {
	ierr = -10;
    }
    if (mode == 1 && *(unsigned char *)bmat == 'G') {
	ierr = -11;
    }
    if (*nev == 1 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {
	ierr = -12;
    }

/*     %------------% */
/*     | Error Exit | */
/*     %------------% */

    if (ierr != 0) {
	*info = ierr;
	goto L9000;
    }

/*     %-------------------------------------------------------% */
/*     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  | */
/*     | etc... and the remaining workspace.                   | */
/*     | Also update pointer to be used on output.             | */
/*     | Memory is laid out as follows:                        | */
/*     | workl(1:2*ncv) := generated tridiagonal matrix H      | */
/*     |       The subdiagonal is stored in workl(2:ncv).      | */
/*     |       The dead spot is workl(1) but upon exiting      | */
/*     |       dsaupd  stores the B-norm of the last residual   | */
/*     |       vector in workl(1). We use this !!!             | */
/*     | workl(2*ncv+1:2*ncv+ncv) := ritz values               | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates   | */
/*     |       The wanted values are in the first NCONV spots. | */
/*     | NOTE: workl(1:4*ncv) is set by dsaupd  and is not      | */
/*     |       modified by dseupd .                             | */
/*     %-------------------------------------------------------% */

/*     %-------------------------------------------------------% */
/*     | The following is used and set by dseupd .              | */
/*     | workl(4*ncv+1:4*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the diagonal of H. Upon EXIT contains the NCV   | */
/*     |       Ritz values of the original system. The first   | */
/*     |       NCONV spots have the wanted values. If MODE =   | */
/*     |       1 or 2 then will equal workl(2*ncv+1:3*ncv).    | */
/*     | workl(5*ncv+1:5*ncv+ncv) := used as workspace during  | */
/*     |       computation of the eigenvectors of H. Stores    | */
/*     |       the subdiagonal of H. Upon EXIT contains the    | */
/*     |       NCV corresponding Ritz estimates of the         | */
/*     |       original system. The first NCONV spots have the | */
/*     |       wanted values. If MODE = 1,2 then will equal    | */
/*     |       workl(3*ncv+1:4*ncv).                           | */
/*     | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is  | */
/*     |       the eigenvector matrix for H as returned by     | */
/*     |       dsteqr . Not referenced if RVEC = .False.        | */
/*     |       Ordering follows that of workl(4*ncv+1:5*ncv)   | */
/*     | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) :=         | */
/*     |       Workspace. Needed by dsteqr  and by dseupd .      | */
/*     | GRAND total of NCV*(NCV+8) locations.                 | */
/*     %-------------------------------------------------------% */


    ih = ipntr[5];
    ritz = ipntr[6];
    bounds = ipntr[7];
    ldh = *ncv;
    ldq = *ncv;
    ihd = bounds + ldh;
    ihb = ihd + ldh;
    iq = ihb + ldh;
    iw = iq + ldh * *ncv;
    next = iw + (*ncv << 1);
    ipntr[4] = next;
    ipntr[8] = ihd;
    ipntr[9] = ihb;
    ipntr[10] = iq;

/*     %----------------------------------------% */
/*     | irz points to the Ritz values computed | */
/*     |     by _seigt before exiting _saup2.   | */
/*     | ibd points to the Ritz estimates       | */
/*     |     computed by _seigt before exiting  | */
/*     |     _saup2.                            | */
/*     %----------------------------------------% */

    irz = ipntr[11] + *ncv;
    ibd = irz + *ncv;


/*     %---------------------------------% */
/*     | Set machine dependent constant. | */
/*     %---------------------------------% */

    eps23 = dlamch_("Epsilon-Machine", (ftnlen)15);
    eps23 = pow_dd(&eps23, &c_b21);

/*     %---------------------------------------% */
/*     | RNORM is B-norm of the RESID(1:N).    | */
/*     | BNORM2 is the 2 norm of B*RESID(1:N). | */
/*     | Upon exit of dsaupd  WORKD(1:N) has    | */
/*     | B*RESID(1:N).                         | */
/*     %---------------------------------------% */

    rnorm = workl[ih];
    if (*(unsigned char *)bmat == 'I') {
	bnorm2 = rnorm;
    } else if (*(unsigned char *)bmat == 'G') {
	bnorm2 = dnrm2_(n, &workd[1], &c__1);
    }

    if (msglvl > 2) {
	dvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_seupd: "
		"Ritz values passed in from _SAUPD.", (ftnlen)42);
	dvout_(&debug_1.logfil, ncv, &workl[ibd], &debug_1.ndigit, "_seupd: "
		"Ritz estimates passed in from _SAUPD.", (ftnlen)45);
    }

    if (*rvec) {

	reord = FALSE_;

/*        %---------------------------------------------------% */
/*        | Use the temporary bounds array to store indices   | */
/*        | These will be used to mark the select array later | */
/*        %---------------------------------------------------% */

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[bounds + j - 1] = (doublereal) j;
	    select[j] = FALSE_;
/* L10: */
	}

/*        %-------------------------------------% */
/*        | Select the wanted Ritz values.      | */
/*        | Sort the Ritz values so that the    | */
/*        | wanted ones appear at the tailing   | */
/*        | NEV positions of workl(irr) and     | */
/*        | workl(iri).  Move the corresponding | */
/*        | error estimates in workl(bound)     | */
/*        | accordingly.                        | */
/*        %-------------------------------------% */

	np = *ncv - *nev;
	ishift = 0;
	dsgets_(&ishift, which, nev, &np, &workl[irz], &workl[bounds], &workl[
		1], (ftnlen)2);

	if (msglvl > 2) {
	    dvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_seu"
		    "pd: Ritz values after calling _SGETS.", (ftnlen)41);
	    dvout_(&debug_1.logfil, ncv, &workl[bounds], &debug_1.ndigit, 
		    "_seupd: Ritz value indices after calling _SGETS.", (
		    ftnlen)48);
	}

/*        %-----------------------------------------------------% */
/*        | Record indices of the converged wanted Ritz values  | */
/*        | Mark the select array for possible reordering       | */
/*        %-----------------------------------------------------% */

	numcnv = 0;
	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    d__2 = eps23, d__3 = (d__1 = workl[irz + *ncv - j], abs(d__1));
	    temp1 = max(d__2,d__3);
	    jj = (integer) workl[bounds + *ncv - j];
	    if (numcnv < nconv && workl[ibd + jj - 1] <= *tol * temp1) {
		select[jj] = TRUE_;
		++numcnv;
		if (jj > *nev) {
		    reord = TRUE_;
		}
	    }
/* L11: */
	}

/*        %-----------------------------------------------------------% */
/*        | Check the count (numcnv) of converged Ritz values with    | */
/*        | the number (nconv) reported by _saupd.  If these two      | */
/*        | are different then there has probably been an error       | */
/*        | caused by incorrect passing of the _saupd data.           | */
/*        %-----------------------------------------------------------% */

	if (msglvl > 2) {
	    ivout_(&debug_1.logfil, &c__1, &numcnv, &debug_1.ndigit, "_seupd"
		    ": Number of specified eigenvalues", (ftnlen)39);
	    ivout_(&debug_1.logfil, &c__1, &nconv, &debug_1.ndigit, "_seupd:"
		    " Number of \"converged\" eigenvalues", (ftnlen)41);
	}

	if (numcnv != nconv) {
	    *info = -17;
	    goto L9000;
	}

/*        %-----------------------------------------------------------% */
/*        | Call LAPACK routine _steqr to compute the eigenvalues and | */
/*        | eigenvectors of the final symmetric tridiagonal matrix H. | */
/*        | Initialize the eigenvector matrix Q to the identity.      | */
/*        %-----------------------------------------------------------% */

	i__1 = *ncv - 1;
	dcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1);
	dcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1);

	dsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], &ldq, &
		workl[iw], &ierr, (ftnlen)8);

	if (ierr != 0) {
	    *info = -8;
	    goto L9000;
	}

	if (msglvl > 1) {
	    dcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1);
	    dvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, "_seu"
		    "pd: NCV Ritz values of the final H matrix", (ftnlen)45);
	    dvout_(&debug_1.logfil, ncv, &workl[iw], &debug_1.ndigit, "_seup"
		    "d: last row of the eigenvector matrix for H", (ftnlen)48);
	}

	if (reord) {

/*           %---------------------------------------------% */
/*           | Reordered the eigenvalues and eigenvectors  | */
/*           | computed by _steqr so that the "converged"  | */
/*           | eigenvalues appear in the first NCONV       | */
/*           | positions of workl(ihd), and the associated | */
/*           | eigenvectors appear in the first NCONV      | */
/*           | columns.                                    | */
/*           %---------------------------------------------% */

	    leftptr = 1;
	    rghtptr = *ncv;

	    if (*ncv == 1) {
		goto L30;
	    }

L20:
	    if (select[leftptr]) {

/*              %-------------------------------------------% */
/*              | Search, from the left, for the first Ritz | */
/*              | value that has not converged.             | */
/*              %-------------------------------------------% */

		++leftptr;

	    } else if (! select[rghtptr]) {

/*              %----------------------------------------------% */
/*              | Search, from the right, the first Ritz value | */
/*              | that has converged.                          | */
/*              %----------------------------------------------% */

		--rghtptr;

	    } else {

/*              %----------------------------------------------% */
/*              | Swap the Ritz value on the left that has not | */
/*              | converged with the Ritz value on the right   | */
/*              | that has converged.  Swap the associated     | */
/*              | eigenvector of the tridiagonal matrix H as   | */
/*              | well.                                        | */
/*              %----------------------------------------------% */

		temp = workl[ihd + leftptr - 1];
		workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1];
		workl[ihd + rghtptr - 1] = temp;
		dcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, &workl[
			iw], &c__1);
		dcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, &workl[
			iq + *ncv * (leftptr - 1)], &c__1);
		dcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * (rghtptr - 
			1)], &c__1);
		++leftptr;
		--rghtptr;

	    }

	    if (leftptr < rghtptr) {
		goto L20;
	    }

L30:
	    ;
	}

	if (msglvl > 2) {
	    dvout_(&debug_1.logfil, ncv, &workl[ihd], &debug_1.ndigit, "_seu"
		    "pd: The eigenvalues of H--reordered", (ftnlen)39);
	}

/*        %----------------------------------------% */
/*        | Load the converged Ritz values into D. | */
/*        %----------------------------------------% */

	dcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);

    } else {

/*        %-----------------------------------------------------% */
/*        | Ritz vectors not required. Load Ritz values into D. | */
/*        %-----------------------------------------------------% */

	dcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1);
	dcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1);

    }

/*     %------------------------------------------------------------------% */
/*     | Transform the Ritz values and possibly vectors and corresponding | */
/*     | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values | */
/*     | (and corresponding data) are returned in ascending order.        | */
/*     %------------------------------------------------------------------% */

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {

/*        %---------------------------------------------------------% */
/*        | Ascending sort of wanted Ritz values, vectors and error | */
/*        | bounds. Not necessary if only Ritz values are desired.  | */
/*        %---------------------------------------------------------% */

	if (*rvec) {
	    dsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq, (
		    ftnlen)2);
	} else {
	    dcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	}

    } else {

/*        %-------------------------------------------------------------% */
/*        | *  Make a copy of all the Ritz values.                      | */
/*        | *  Transform the Ritz values back to the original system.   | */
/*        |    For TYPE = 'SHIFTI' the transformation is                | */
/*        |             lambda = 1/theta + sigma                        | */
/*        |    For TYPE = 'BUCKLE' the transformation is                | */
/*        |             lambda = sigma * theta / ( theta - 1 )          | */
/*        |    For TYPE = 'CAYLEY' the transformation is                | */
/*        |             lambda = sigma * (theta + 1) / (theta - 1 )     | */
/*        |    where the theta are the Ritz values returned by dsaupd .  | */
/*        | NOTES:                                                      | */
/*        | *The Ritz vectors are not affected by the transformation.   | */
/*        |  They are only reordered.                                   | */
/*        %-------------------------------------------------------------% */

	dcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1);
	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma;
/* L40: */
	    }
	} else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd 
			+ k - 1] - 1.);
/* L50: */
	    }
	} else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {
	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / (
			workl[ihd + k - 1] - 1.);
/* L60: */
	    }
	}

/*        %-------------------------------------------------------------% */
/*        | *  Store the wanted NCONV lambda values into D.             | */
/*        | *  Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1)   | */
/*        |    into ascending order and apply sort to the NCONV theta   | */
/*        |    values in the transformed system. We will need this to   | */
/*        |    compute Ritz estimates in the original system.           | */
/*        | *  Finally sort the lambda`s into ascending order and apply | */
/*        |    to Ritz vectors if wanted. Else just sort lambda`s into  | */
/*        |    ascending order.                                         | */
/*        | NOTES:                                                      | */
/*        | *workl(iw:iw+ncv-1) contain the theta ordered so that they  | */
/*        |  match the ordering of the lambda. We`ll use them again for | */
/*        |  Ritz vector purification.                                  | */
/*        %-------------------------------------------------------------% */

	dcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1);
	dsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw], (ftnlen)2);
	if (*rvec) {
	    dsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq, (
		    ftnlen)2);
	} else {
	    dcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1);
	    d__1 = bnorm2 / rnorm;
	    dscal_(ncv, &d__1, &workl[ihb], &c__1);
	    dsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb], (ftnlen)2);
	}

    }

/*     %------------------------------------------------% */
/*     | Compute the Ritz vectors. Transform the wanted | */
/*     | eigenvectors of the symmetric tridiagonal H by | */
/*     | the Lanczos basis matrix V.                    | */
/*     %------------------------------------------------% */

    if (*rvec && *(unsigned char *)howmny == 'A') {

/*        %----------------------------------------------------------% */
/*        | Compute the QR factorization of the matrix representing  | */
/*        | the wanted invariant subspace located in the first NCONV | */
/*        | columns of workl(iq,ldq).                                | */
/*        %----------------------------------------------------------% */

	dgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], &workl[ihb],
		 &ierr);

/*        %--------------------------------------------------------% */
/*        | * Postmultiply V by Q.                                 | */
/*        | * Copy the first NCONV columns of VQ into Z.           | */
/*        | The N by NCONV matrix Z is now a matrix representation | */
/*        | of the approximate invariant subspace associated with  | */
/*        | the Ritz values in workl(ihd).                         | */
/*        %--------------------------------------------------------% */

	dorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], &ldq, &
		workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], &ierr, (
		ftnlen)5, (ftnlen)11);
	dlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz, (
		ftnlen)3);

/*        %-----------------------------------------------------% */
/*        | In order to compute the Ritz estimates for the Ritz | */
/*        | values in both systems, need the last row of the    | */
/*        | eigenvector matrix. Remember, it`s in factored form | */
/*        %-----------------------------------------------------% */

	i__1 = *ncv - 1;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = 0.;
/* L65: */
	}
	workl[ihb + *ncv - 1] = 1.;
	dorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], &ldq, &
		workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr, (ftnlen)4, (
		ftnlen)9);

    } else if (*rvec && *(unsigned char *)howmny == 'S') {

/*     Not yet implemented. See remark 2 above. */

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) {

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1)
		    );
/* L70: */
	}

    } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) {

/*        %-------------------------------------------------% */
/*        | *  Determine Ritz estimates of the theta.       | */
/*        |    If RVEC = .true. then compute Ritz estimates | */
/*        |               of the theta.                     | */
/*        |    If RVEC = .false. then copy Ritz estimates   | */
/*        |              as computed by dsaupd .             | */
/*        | *  Determine Ritz estimates of the lambda.      | */
/*        %-------------------------------------------------% */

	dscal_(ncv, &bnorm2, &workl[ihb], &c__1);
	if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1];
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) / 
			(d__2 * d__2);
/* L80: */
	    }

	} else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
/* Computing 2nd power */
		d__2 = workl[iw + k - 1] - 1.;
		workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs(
			d__1)) / (d__2 * d__2);
/* L90: */
	    }

	} else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) {

	    i__1 = *ncv;
	    for (k = 1; k <= i__1; ++k) {
		workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw + 
			k - 1] * (workl[iw + k - 1] - 1.), abs(d__1));
/* L100: */
	    }

	}

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) {
	dvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_seupd: U"
		"ntransformed converged Ritz values", (ftnlen)43);
	dvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, "_seup"
		"d: Ritz estimates of the untransformed Ritz values", (ftnlen)
		55);
    } else if (msglvl > 1) {
	dvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_seupd: C"
		"onverged Ritz values", (ftnlen)29);
	dvout_(&debug_1.logfil, &nconv, &workl[ihb], &debug_1.ndigit, "_seup"
		"d: Associated Ritz estimates", (ftnlen)33);
    }

/*     %-------------------------------------------------% */
/*     | Ritz vector purification step. Formally perform | */
/*     | one of inverse subspace iteration. Only used    | */
/*     | for MODE = 3,4,5. See reference 7               | */
/*     %-------------------------------------------------% */

    if (*rvec && (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || s_cmp(
	    type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k];
/* L110: */
	}

    } else if (*rvec && s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) {

	i__1 = nconv - 1;
	for (k = 0; k <= i__1; ++k) {
	    workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] - 
		    1.);
/* L120: */
	}

    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) {
	dger_(n, &nconv, &c_b110, &resid[1], &c__1, &workl[iw], &c__1, &z__[
		z_offset], ldz);
    }

L9000:

    return 0;

/*     %---------------% */
/*     | End of dseupd | */
/*     %---------------% */

} /* dseupd_ */
Exemple #16
0
/* Subroutine */ int dspev_(char *jobz, char *uplo, integer *n, doublereal *
	ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 
	integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    doublereal eps;
    integer inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    logical wantz;
    extern doublereal dlamch_(char *);
    integer iscale;
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum;
    extern doublereal dlansp_(char *, char *, integer *, doublereal *, 
	    doublereal *);
    integer indtau;
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
	     integer *);
    integer indwrk;
    extern /* Subroutine */ int dopgtr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *), dsptrd_(char *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *), dsteqr_(char *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    doublereal smlnum;


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSPEV computes all the eigenvalues and, optionally, eigenvectors of a */
/*  real symmetric matrix A in packed storage. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the symmetric matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, AP is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
/*          and first superdiagonal of the tridiagonal matrix T overwrite */
/*          the corresponding elements of A, and if UPLO = 'L', the */
/*          diagonal and first subdiagonal of T overwrite the */
/*          corresponding elements of A. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lsame_(uplo, "U") || lsame_(uplo, 
	    "L"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSPEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = ap[1];
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = dlansp_("M", uplo, n, &ap[1], &work[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	dscal_(&i__1, &sigma, &ap[1], &c__1);
    }

/*     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */

    inde = 1;
    indtau = inde + *n;
    dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);

/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call */
/*     DOPGTR to generate the orthogonal matrix, then call DSTEQR. */

    if (! wantz) {
	dsterf_(n, &w[1], &work[inde], info);
    } else {
	indwrk = indtau + *n;
	dopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[
		indwrk], &iinfo);
	dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indtau], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

    return 0;

/*     End of DSPEV */

} /* dspev_ */
/* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__, 
	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
	integer *lwork, integer *iwork, integer *liwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DSTEDC computes all eigenvalues and, optionally, eigenvectors of a   
    symmetric tridiagonal matrix using the divide and conquer method.   
    The eigenvectors of a full or band real symmetric matrix can also be   
    found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this   
    matrix to tridiagonal form.   

    This code makes very mild assumptions about floating point   
    arithmetic. It will work on machines with a guard digit in   
    add/subtract, or on those binary machines without guard digits   
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.   
    It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.  See DLAED3 for details.   

    Arguments   
    =========   

    COMPZ   (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only.   
            = 'I':  Compute eigenvectors of tridiagonal matrix also.   
            = 'V':  Compute eigenvectors of original dense symmetric   
                    matrix also.  On entry, Z contains the orthogonal   
                    matrix used to reduce the original matrix to   
                    tridiagonal form.   

    N       (input) INTEGER   
            The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the diagonal elements of the tridiagonal matrix.   
            On exit, if INFO = 0, the eigenvalues in ascending order.   

    E       (input/output) DOUBLE PRECISION array, dimension (N-1)   
            On entry, the subdiagonal elements of the tridiagonal matrix.   
            On exit, E has been destroyed.   

    Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)   
            On entry, if COMPZ = 'V', then Z contains the orthogonal   
            matrix used in the reduction to tridiagonal form.   
            On exit, if INFO = 0, then if COMPZ = 'V', Z contains the   
            orthonormal eigenvectors of the original symmetric matrix,   
            and if COMPZ = 'I', Z contains the orthonormal eigenvectors   
            of the symmetric tridiagonal matrix.   
            If  COMPZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1.   
            If eigenvectors are desired, then LDZ >= max(1,N).   

    WORK    (workspace/output) DOUBLE PRECISION array,   
                                           dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.   
            If COMPZ = 'V' and N > 1 then LWORK must be at least   
                           ( 1 + 3*N + 2*N*lg N + 3*N**2 ),   
                           where lg( N ) = smallest integer k such   
                           that 2**k >= N.   
            If COMPZ = 'I' and N > 1 then LWORK must be at least   
                           ( 1 + 4*N + N**2 ).   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace/output) INTEGER array, dimension (LIWORK)   
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.   

    LIWORK  (input) INTEGER   
            The dimension of the array IWORK.   
            If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.   
            If COMPZ = 'V' and N > 1 then LIWORK must be at least   
                           ( 6 + 6*N + 5*N*lg N ).   
            If COMPZ = 'I' and N > 1 then LIWORK must be at least   
                           ( 3 + 5*N ).   

            If LIWORK = -1, then a workspace query is assumed; the   
            routine only calculates the optimal size of the IWORK array,   
            returns this value as the first entry of the IWORK array, and   
            no error message related to LIWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    Further Details   
    ===============   

    Based on contributions by   
       Jeff Rutter, Computer Science Division, University of California   
       at Berkeley, USA   
    Modified by Francoise Tisseur, University of Tennessee.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__2 = 2;
    static integer c__9 = 9;
    static integer c__0 = 0;
    static doublereal c_b18 = 0.;
    static doublereal c_b19 = 1.;
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    double sqrt(doublereal);
    /* Local variables */
    static doublereal tiny;
    static integer i__, j, k, m;
    static doublereal p;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer lwmin;
    extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *, doublereal *, integer *, integer *);
    static integer start, ii;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlacpy_(char *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *), 
	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
	     integer *), dlasrt_(char *, integer *, doublereal *, integer *);
    static integer liwmin, icompz;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    static doublereal orgnrm;
    static logical lquery;
    static integer smlsiz, dtrtrw, storez, end, lgn;
    static doublereal eps;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *liwork == -1;

    if (lsame_(compz, "N")) {
	icompz = 0;
    } else if (lsame_(compz, "V")) {
	icompz = 1;
    } else if (lsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (*n <= 1 || icompz <= 0) {
	liwmin = 1;
	lwmin = 1;
    } else {
	lgn = (integer) (log((doublereal) (*n)) / log(2.));
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (icompz == 1) {
/* Computing 2nd power */
	    i__1 = *n;
	    lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
	    liwmin = *n * 6 + 6 + *n * 5 * lgn;
	} else if (icompz == 2) {
/* Computing 2nd power */
	    i__1 = *n;
	    lwmin = (*n << 2) + 1 + i__1 * i__1;
	    liwmin = *n * 5 + 3;
	}
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    } else if (*lwork < lwmin && ! lquery) {
	*info = -8;
    } else if (*liwork < liwmin && ! lquery) {
	*info = -10;
    }

    if (*info == 0) {
	work[1] = (doublereal) lwmin;
	iwork[1] = liwmin;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSTEDC", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }
    if (*n == 1) {
	if (icompz != 0) {
	    z___ref(1, 1) = 1.;
	}
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
	    ftnlen)6, (ftnlen)1);

/*     If the following conditional clause is removed, then the routine   
       will use the Divide and Conquer routine to compute only the   
       eigenvalues, which requires (3N + 3N**2) real workspace and   
       (2 + 5N + 2N lg(N)) integer workspace.   
       Since on many architectures DSTERF is much faster than any other   
       algorithm for finding eigenvalues only, it is used here   
       as the default.   

       If COMPZ = 'N', use DSTERF to compute the eigenvalues. */

    if (icompz == 0) {
	dsterf_(n, &d__[1], &e[1], info);
	return 0;
    }

/*     If N is smaller than the minimum divide size (SMLSIZ+1), then   
       solve the problem with another solver. */

    if (*n <= smlsiz) {
	if (icompz == 0) {
	    dsterf_(n, &d__[1], &e[1], info);
	    return 0;
	} else if (icompz == 2) {
	    dsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], 
		    info);
	    return 0;
	} else {
	    dsteqr_("V", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], 
		    info);
	    return 0;
	}
    }

/*     If COMPZ = 'V', the Z matrix must be stored elsewhere for later   
       use. */

    if (icompz == 1) {
	storez = *n * *n + 1;
    } else {
	storez = 1;
    }

    if (icompz == 2) {
	dlaset_("Full", n, n, &c_b18, &c_b19, &z__[z_offset], ldz);
    }

/*     Scale. */

    orgnrm = dlanst_("M", n, &d__[1], &e[1]);
    if (orgnrm == 0.) {
	return 0;
    }

    eps = dlamch_("Epsilon");

    start = 1;

/*     while ( START <= N ) */

L10:
    if (start <= *n) {

/*     Let END be the position of the next subdiagonal entry such that   
       E( END ) <= TINY or END = N if no such subdiagonal exists.  The   
       matrix identified by the elements between START and END   
       constitutes an independent sub-problem. */

	end = start;
L20:
	if (end < *n) {
	    tiny = eps * sqrt((d__1 = d__[end], abs(d__1))) * sqrt((d__2 = 
		    d__[end + 1], abs(d__2)));
	    if ((d__1 = e[end], abs(d__1)) > tiny) {
		++end;
		goto L20;
	    }
	}

/*        (Sub) Problem determined.  Compute its size and solve it. */

	m = end - start + 1;
	if (m == 1) {
	    start = end + 1;
	    goto L10;
	}
	if (m > smlsiz) {
	    *info = smlsiz;

/*           Scale. */

	    orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
	    dlascl_("G", &c__0, &c__0, &orgnrm, &c_b19, &m, &c__1, &d__[start]
		    , &m, info);
	    i__1 = m - 1;
	    i__2 = m - 1;
	    dlascl_("G", &c__0, &c__0, &orgnrm, &c_b19, &i__1, &c__1, &e[
		    start], &i__2, info);

	    if (icompz == 1) {
		dtrtrw = 1;
	    } else {
		dtrtrw = start;
	    }
	    dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z___ref(dtrtrw, 
		    start), ldz, &work[1], n, &work[storez], &iwork[1], info);
	    if (*info != 0) {
		*info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m 
			+ 1) + start - 1;
		return 0;
	    }

/*           Scale back. */

	    dlascl_("G", &c__0, &c__0, &c_b19, &orgnrm, &m, &c__1, &d__[start]
		    , &m, info);

	} else {
	    if (icompz == 1) {

/*     Since QR won't update a Z matrix which is larger than the   
       length of D, we must solve the sub-problem in a workspace and   
       then multiply back into Z. */

		dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &work[
			m * m + 1], info);
		dlacpy_("A", n, &m, &z___ref(1, start), ldz, &work[storez], n);
		dgemm_("N", "N", n, &m, &m, &c_b19, &work[storez], ldz, &work[
			1], &m, &c_b18, &z___ref(1, start), ldz);
	    } else if (icompz == 2) {
		dsteqr_("I", &m, &d__[start], &e[start], &z___ref(start, 
			start), ldz, &work[1], info);
	    } else {
		dsterf_(&m, &d__[start], &e[start], info);
	    }
	    if (*info != 0) {
		*info = start * (*n + 1) + end;
		return 0;
	    }
	}

	start = end + 1;
	goto L10;
    }

/*     endwhile   

       If the problem split any number of times, then the eigenvalues   
       will not be properly ordered.  Here we permute the eigenvalues   
       (and the associated eigenvectors) into ascending order. */

    if (m != *n) {
	if (icompz == 0) {

/*        Use Quick Sort */

	    dlasrt_("I", n, &d__[1], info);

	} else {

/*        Use Selection Sort to minimize swaps of eigenvectors */

	    i__1 = *n;
	    for (ii = 2; ii <= i__1; ++ii) {
		i__ = ii - 1;
		k = i__;
		p = d__[i__];
		i__2 = *n;
		for (j = ii; j <= i__2; ++j) {
		    if (d__[j] < p) {
			k = j;
			p = d__[j];
		    }
/* L30: */
		}
		if (k != i__) {
		    d__[k] = d__[i__];
		    d__[i__] = p;
		    dswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, k), &c__1);
		}
/* L40: */
	    }
	}
    }

    work[1] = (doublereal) lwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of DSTEDC */

} /* dstedc_ */
Exemple #18
0
/* Subroutine */ int dsyev_(char *jobz, char *uplo, integer *n, doublereal *a, 
	 integer *lda, doublereal *w, doublereal *work, integer *lwork, 
	integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer nb;
    doublereal eps;
    integer inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    logical lower, wantz;
    extern doublereal dlamch_(char *);
    integer iscale;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    doublereal safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum;
    integer indtau;
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
	     integer *);
    extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
	    integer *, doublereal *);
    integer indwrk;
    extern /* Subroutine */ int dorgtr_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dsytrd_(char *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *);
    integer llwork;
    doublereal smlnum;
    integer lwkopt;
    logical lquery;


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYEV computes all eigenvalues and, optionally, eigenvectors of a */
/*  real symmetric matrix A. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/*          orthonormal eigenvectors of the matrix A. */
/*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
/*          or the upper triangle (if UPLO='U') of A, including the */
/*          diagonal, is destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= max(1,3*N-1). */
/*          For optimal efficiency, LWORK >= (NB+2)*N, */
/*          where NB is the blocksize for DSYTRD returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	i__1 = 1, i__2 = (nb + 2) * *n;
	lwkopt = max(i__1,i__2);
	work[1] = (doublereal) lwkopt;

/* Computing MAX */
	i__1 = 1, i__2 = *n * 3 - 1;
	if (*lwork < max(i__1,i__2) && ! lquery) {
	    *info = -8;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYEV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = a[a_dim1 + 1];
	work[1] = 2.;
	if (wantz) {
	    a[a_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	dlascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda, 
		info);
    }

/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    inde = 1;
    indtau = inde + *n;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
	    work[indwrk], &llwork, &iinfo);

/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call */
/*     DORGTR to generate the orthogonal matrix, then call DSTEQR. */

    if (! wantz) {
	dsterf_(n, &w[1], &work[inde], info);
    } else {
	dorgtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
		llwork, &iinfo);
	dsteqr_(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau], 
		 info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DSYEV */

} /* dsyev_ */
Exemple #19
0
/* Subroutine */
int dstev_(char *jobz, integer *n, doublereal *d__, doublereal *e, doublereal *z__, integer *ldz, doublereal *work, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    doublereal eps;
    integer imax;
    doublereal rmin, rmax, tnrm;
    extern /* Subroutine */
    int dscal_(integer *, doublereal *, doublereal *, integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    logical wantz;
    extern doublereal dlamch_(char *);
    integer iscale;
    doublereal safmin;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    doublereal bignum;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */
    int dsterf_(integer *, doublereal *, doublereal *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal * , doublereal *, integer *, doublereal *, integer *);
    doublereal smlnum;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*ldz < 1 || wantz && *ldz < *n)
    {
        *info = -6;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("DSTEV ", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        if (wantz)
        {
            z__[z_dim1 + 1] = 1.;
        }
        return 0;
    }
    /* Get machine constants. */
    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);
    /* Scale matrix to allowable range, if necessary. */
    iscale = 0;
    tnrm = dlanst_("M", n, &d__[1], &e[1]);
    if (tnrm > 0. && tnrm < rmin)
    {
        iscale = 1;
        sigma = rmin / tnrm;
    }
    else if (tnrm > rmax)
    {
        iscale = 1;
        sigma = rmax / tnrm;
    }
    if (iscale == 1)
    {
        dscal_(n, &sigma, &d__[1], &c__1);
        i__1 = *n - 1;
        dscal_(&i__1, &sigma, &e[1], &c__1);
    }
    /* For eigenvalues only, call DSTERF. For eigenvalues and */
    /* eigenvectors, call DSTEQR. */
    if (! wantz)
    {
        dsterf_(n, &d__[1], &e[1], info);
    }
    else
    {
        dsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1)
    {
        if (*info == 0)
        {
            imax = *n;
        }
        else
        {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        dscal_(&imax, &d__1, &d__[1], &c__1);
    }
    return 0;
    /* End of DSTEV */
}
Exemple #20
0
/* Subroutine */ int dstev_(char *jobz, integer *n, doublereal *d__,
                            doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
                            integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    doublereal eps;
    integer imax;
    doublereal rmin, rmax, tnrm;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
                                       integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    logical wantz;
    extern doublereal dlamch_(char *);
    integer iscale;
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
                                        integer *), dsteqr_(char *, integer *, doublereal *, doublereal *
                                                , doublereal *, integer *, doublereal *, integer *);
    doublereal smlnum;


    /*  -- LAPACK driver routine (version 3.2) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  DSTEV computes all eigenvalues and, optionally, eigenvectors of a */
    /*  real symmetric tridiagonal matrix A. */

    /*  Arguments */
    /*  ========= */

    /*  JOBZ    (input) CHARACTER*1 */
    /*          = 'N':  Compute eigenvalues only; */
    /*          = 'V':  Compute eigenvalues and eigenvectors. */

    /*  N       (input) INTEGER */
    /*          The order of the matrix.  N >= 0. */

    /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
    /*          On entry, the n diagonal elements of the tridiagonal matrix */
    /*          A. */
    /*          On exit, if INFO = 0, the eigenvalues in ascending order. */

    /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
    /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
    /*          matrix A, stored in elements 1 to N-1 of E. */
    /*          On exit, the contents of E are destroyed. */

    /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
    /*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
    /*          eigenvectors of the matrix A, with the i-th column of Z */
    /*          holding the eigenvector associated with D(i). */
    /*          If JOBZ = 'N', then Z is not referenced. */

    /*  LDZ     (input) INTEGER */
    /*          The leading dimension of the array Z.  LDZ >= 1, and if */
    /*          JOBZ = 'V', LDZ >= max(1,N). */

    /*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) */
    /*          If JOBZ = 'N', WORK is not referenced. */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
    /*          > 0:  if INFO = i, the algorithm failed to converge; i */
    /*                off-diagonal elements of E did not converge to zero. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
        *info = -1;
    } else if (*n < 0) {
        *info = -2;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
        *info = -6;
    }

    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DSTEV ", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    if (*n == 1) {
        if (wantz) {
            z__[z_dim1 + 1] = 1.;
        }
        return 0;
    }

    /*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

    /*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    tnrm = dlanst_("M", n, &d__[1], &e[1]);
    if (tnrm > 0. && tnrm < rmin) {
        iscale = 1;
        sigma = rmin / tnrm;
    } else if (tnrm > rmax) {
        iscale = 1;
        sigma = rmax / tnrm;
    }
    if (iscale == 1) {
        dscal_(n, &sigma, &d__[1], &c__1);
        i__1 = *n - 1;
        dscal_(&i__1, &sigma, &e[1], &c__1);
    }

    /*     For eigenvalues only, call DSTERF.  For eigenvalues and */
    /*     eigenvectors, call DSTEQR. */

    if (! wantz) {
        dsterf_(n, &d__[1], &e[1], info);
    } else {
        dsteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
    }

    /*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
        if (*info == 0) {
            imax = *n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        dscal_(&imax, &d__1, &d__[1], &c__1);
    }

    return 0;

    /*     End of DSTEV */

} /* dstev_ */
Exemple #21
0
/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n, 
	doublereal *d, doublereal *e, doublereal *q, integer *ldq, doublereal 
	*qstore, integer *ldqs, doublereal *work, integer *iwork, integer *
	info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DLAED0 computes all eigenvalues and corresponding eigenvectors of a   
    symmetric tridiagonal matrix using the divide and conquer method.   

    Arguments   
    =========   

    ICOMPQ  (input) INTEGER   
            = 0:  Compute eigenvalues only.   
            = 1:  Compute eigenvectors of original dense symmetric matrix 
  
                  also.  On entry, Q contains the orthogonal matrix used 
  
                  to reduce the original matrix to tridiagonal form.   
            = 2:  Compute eigenvalues and eigenvectors of tridiagonal   
                  matrix.   

    QSIZ   (input) INTEGER   
           The dimension of the orthogonal matrix used to reduce   
           the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. 
  

    N      (input) INTEGER   
           The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D      (input/output) DOUBLE PRECISION array, dimension (N)   
           On entry, the main diagonal of the tridiagonal matrix.   
           On exit, its eigenvalues.   

    E      (input) DOUBLE PRECISION array, dimension (N-1)   
           The off-diagonal elements of the tridiagonal matrix.   
           On exit, E has been destroyed.   

    Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)   
           On entry, Q must contain an N-by-N orthogonal matrix.   
           If ICOMPQ = 0    Q is not referenced.   
           If ICOMPQ = 1    On entry, Q is a subset of the columns of the 
  
                            orthogonal matrix used to reduce the full   
                            matrix to tridiagonal form corresponding to   
                            the subset of the full matrix which is being 
  
                            decomposed at this time.   
           If ICOMPQ = 2    On entry, Q will be the identity matrix.   
                            On exit, Q contains the eigenvectors of the   
                            tridiagonal matrix.   

    LDQ    (input) INTEGER   
           The leading dimension of the array Q.  If eigenvectors are   
           desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.   

    QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)   
           Referenced only when ICOMPQ = 1.  Used to store parts of   
           the eigenvector matrix when the updating matrix multiplies   
           take place.   

    LDQS   (input) INTEGER   
           The leading dimension of the array QSTORE.  If ICOMPQ = 1,   
           then  LDQS >= max(1,N).  In any case,  LDQS >= 1.   

    WORK   (workspace) DOUBLE PRECISION array,   
                                  dimension (1 + 3*N + 2*N*lg N + 2*N**2) 
  
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   

    IWORK  (workspace) INTEGER array,   
           If ICOMPQ = 0 or 1, the dimension of IWORK must be at least   
                          6 + 6*N + 5*N*lg N.   
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   
           If ICOMPQ = 2, the dimension of IWORK must be at least   
                          2 + 5*N.   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__2 = 2;
    static doublereal c_b16 = 1.;
    static doublereal c_b17 = 0.;
    static integer c__1 = 1;
    
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    doublereal d__1;
    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    /* Local variables */
    static doublereal temp;
    static integer curr, i, j, k;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    static integer iperm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer indxq, iwrem;
    extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    static integer iqptr;
    extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *);
    static integer tlvls, iq;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer igivcl;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer igivnm, submat, curprb, subpbs, igivpt;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    static integer curlvl, matsiz, iprmpt, lgn, msd2, smm1, spm1, spm2;



#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]

#define Q(I,J) q[(I)-1 + ((J)-1)* ( *ldq)]
#define QSTORE(I,J) qstore[(I)-1 + ((J)-1)* ( *ldqs)]

    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < max(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*ldqs < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the size and placement of the submatrices, and save in   
       the leading elements of IWORK. */

    IWORK(1) = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (IWORK(subpbs) > 25) {
	for (j = subpbs; j >= 1; --j) {
	    IWORK(j * 2) = (IWORK(j) + 1) / 2;
	    IWORK((j << 1) - 1) = IWORK(j) / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= subpbs; ++j) {
	IWORK(j) += IWORK(j - 1);
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 
  
       using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i = 1; i <= spm1; ++i) {
	submat = IWORK(i) + 1;
	smm1 = submat - 1;
	D(smm1) -= (d__1 = E(smm1), abs(d__1));
	D(submat) -= (d__1 = E(smm1), abs(d__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vector
s   
          routine */

	temp = log((doublereal) (*n)) / log(2.);
	lgn = (integer) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i = 0; i <= subpbs; ++i) {
	    IWORK(iprmpt + i) = 1;
	    IWORK(igivpt + i) = 1;
/* L50: */
	}
	IWORK(iqptr) = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and 
  
       conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i = 0; i <= spm1; ++i) {
	if (i == 0) {
	    submat = 1;
	    matsiz = IWORK(1);
	} else {
	    submat = IWORK(i) + 1;
	    matsiz = IWORK(i + 1) - IWORK(i);
	}
	if (*icompq == 2) {
	    dsteqr_("I", &matsiz, &D(submat), &E(submat), &Q(submat,submat), ldq, &WORK(1), info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    dsteqr_("I", &matsiz, &D(submat), &E(submat), &WORK(iq - 1 + 
		    IWORK(iqptr + curr)), &matsiz, &WORK(1), info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b16, &Q(1,submat), ldq, &WORK(iq - 1 + IWORK(iqptr + curr)),
			 &matsiz, &c_b17, &QSTORE(1,submat), 
			ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    IWORK(iqptr + curr + 1) = IWORK(iqptr + curr) + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = IWORK(i + 1);
	for (j = submat; j <= IWORK(i+1); ++j) {
	    IWORK(indxq + j) = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices   
       into eigensystem for the corresponding larger matrix.   

       while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i = 0; i <= spm2; i += 2) {
	    if (i == 0) {
		submat = 1;
		matsiz = IWORK(2);
		msd2 = IWORK(1);
		curprb = 0;
	    } else {
		submat = IWORK(i) + 1;
		matsiz = IWORK(i + 2) - IWORK(i);
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - M
SD2)   
       into an eigensystem of size MATSIZ.   
       DLAED1 is used only for the full eigensystem of a tridiagon
al   
       matrix.   
       DLAED7 handles the cases in which eigenvalues only or eigen
values   
       and eigenvectors of a full symmetric matrix (which was redu
ced to   
       tridiagonal form) are desired. */

	    if (*icompq == 2) {
		dlaed1_(&matsiz, &D(submat), &Q(submat,submat), 
			ldq, &IWORK(indxq + submat), &E(submat + msd2 - 1), &
			msd2, &WORK(1), &IWORK(subpbs + 1), info);
	    } else {
		dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &D(
			submat), &QSTORE(1,submat), ldqs, &
			IWORK(indxq + submat), &E(submat + msd2 - 1), &msd2, &
			WORK(iq), &IWORK(iqptr), &IWORK(iprmpt), &IWORK(iperm)
			, &IWORK(igivpt), &IWORK(igivcl), &WORK(igivnm), &
			WORK(iwrem), &IWORK(subpbs + 1), info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    IWORK(i / 2 + 1) = IWORK(i + 2);
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while   

       Re-merge the eigenvalues/vectors which were deflated at the final 
  
       merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
	    dcopy_(qsiz, &QSTORE(1,j), &c__1, &Q(1,i), &c__1);
/* L100: */
	}
	dcopy_(n, &WORK(1), &c__1, &D(1), &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
	    dcopy_(n, &Q(1,j), &c__1, &WORK(*n * i + 1), &c__1);
/* L110: */
	}
	dcopy_(n, &WORK(1), &c__1, &D(1), &c__1);
	dlacpy_("A", n, n, &WORK(*n + 1), n, &Q(1,1), ldq);
    } else {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
/* L120: */
	}
	dcopy_(n, &WORK(1), &c__1, &D(1), &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of DLAED0 */

} /* dlaed0_ */
Exemple #22
0
/* Subroutine */ int dsbev_(char *jobz, char *uplo, integer *n, integer *kd, 
	doublereal *ab, integer *ldab, doublereal *w, doublereal *z__, 
	integer *ldz, doublereal *work, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, z_dim1, z_offset, i__1;
    doublereal d__1;

    /* Local variables */
    doublereal eps;
    integer inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    doublereal sigma;
    integer iinfo;
    logical lower, wantz;
    integer iscale;
    doublereal safmin;
    doublereal bignum;
    integer indwrk;
    doublereal smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  DSBEV computes all the eigenvalues and, optionally, eigenvectors of */
/*  a real symmetric band matrix A. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the first */
/*          superdiagonal and the diagonal of the tridiagonal matrix T */
/*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/*          the diagonal and first subdiagonal of T are returned in the */
/*          first two rows of AB. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*ldab < *kd + 1) {
	*info = -6;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSBEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (lower) {
	    w[1] = ab[ab_dim1 + 1];
	} else {
	    w[1] = ab[*kd + 1 + ab_dim1];
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = dlansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    dlascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    dlascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
    }

/*     Call DSBTRD to reduce symmetric band matrix to tridiagonal form. */

    inde = 1;
    indwrk = inde + *n;
    dsbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
	    z_offset], ldz, &work[indwrk], &iinfo);

/*     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEQR. */

    if (! wantz) {
	dsterf_(n, &w[1], &work[inde], info);
    } else {
	dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indwrk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

    return 0;

/*     End of DSBEV */

} /* dsbev_ */
Exemple #23
0
/* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__, 
	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
	integer *lwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, k, m;
    doublereal p;
    integer ii, lgn;
    doublereal eps, tiny;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer lwmin;
    extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
	     integer *, doublereal *, integer *, integer *);
    integer start;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlacpy_(char *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *), 
	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    integer finish;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
	     integer *), dlasrt_(char *, integer *, doublereal *, integer *);
    integer liwmin, icompz;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    doublereal orgnrm;
    logical lquery;
    integer smlsiz, storez, strtrw;


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
/*  symmetric tridiagonal matrix using the divide and conquer method. */
/*  The eigenvectors of a full or band real symmetric matrix can also be */
/*  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this */
/*  matrix to tridiagonal form. */

/*  This code makes very mild assumptions about floating point */
/*  arithmetic. It will work on machines with a guard digit in */
/*  add/subtract, or on those binary machines without guard digits */
/*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
/*  It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none.  See DLAED3 for details. */

/*  Arguments */
/*  ========= */

/*  COMPZ   (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only. */
/*          = 'I':  Compute eigenvectors of tridiagonal matrix also. */
/*          = 'V':  Compute eigenvectors of original dense symmetric */
/*                  matrix also.  On entry, Z contains the orthogonal */
/*                  matrix used to reduce the original matrix to */
/*                  tridiagonal form. */

/*  N       (input) INTEGER */
/*          The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
/*          On entry, the diagonal elements of the tridiagonal matrix. */
/*          On exit, if INFO = 0, the eigenvalues in ascending order. */

/*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*          On entry, the subdiagonal elements of the tridiagonal matrix. */
/*          On exit, E has been destroyed. */

/*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
/*          On entry, if COMPZ = 'V', then Z contains the orthogonal */
/*          matrix used in the reduction to tridiagonal form. */
/*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
/*          orthonormal eigenvectors of the original symmetric matrix, */
/*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
/*          of the symmetric tridiagonal matrix. */
/*          If  COMPZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1. */
/*          If eigenvectors are desired, then LDZ >= max(1,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, */
/*                                         dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1 then LWORK must be at least */
/*                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ), */
/*                         where lg( N ) = smallest integer k such */
/*                         that 2**k >= N. */
/*          If COMPZ = 'I' and N > 1 then LWORK must be at least */
/*                         ( 1 + 4*N + N**2 ). */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LWORK need */
/*          only be max(1,2*(N-1)). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1 then LIWORK must be at least */
/*                         ( 6 + 6*N + 5*N*lg N ). */
/*          If COMPZ = 'I' and N > 1 then LIWORK must be at least */
/*                         ( 3 + 5*N ). */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LIWORK */
/*          need only be 1. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */
/*  Modified by Francoise Tisseur, University of Tennessee. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *liwork == -1;

    if (lsame_(compz, "N")) {
	icompz = 0;
    } else if (lsame_(compz, "V")) {
	icompz = 1;
    } else if (lsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    }

    if (*info == 0) {

/*        Compute the workspace requirements */

	smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0);
	if (*n <= 1 || icompz == 0) {
	    liwmin = 1;
	    lwmin = 1;
	} else if (*n <= smlsiz) {
	    liwmin = 1;
	    lwmin = *n - 1 << 1;
	} else {
	    lgn = (integer) (log((doublereal) (*n)) / log(2.));
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    if (icompz == 1) {
/* Computing 2nd power */
		i__1 = *n;
		lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
		liwmin = *n * 6 + 6 + *n * 5 * lgn;
	    } else if (icompz == 2) {
/* Computing 2nd power */
		i__1 = *n;
		lwmin = (*n << 2) + 1 + i__1 * i__1;
		liwmin = *n * 5 + 3;
	    }
	}
	work[1] = (doublereal) lwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -8;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -10;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSTEDC", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }
    if (*n == 1) {
	if (icompz != 0) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     If the following conditional clause is removed, then the routine */
/*     will use the Divide and Conquer routine to compute only the */
/*     eigenvalues, which requires (3N + 3N**2) real workspace and */
/*     (2 + 5N + 2N lg(N)) integer workspace. */
/*     Since on many architectures DSTERF is much faster than any other */
/*     algorithm for finding eigenvalues only, it is used here */
/*     as the default. If the conditional clause is removed, then */
/*     information on the size of workspace needs to be changed. */

/*     If COMPZ = 'N', use DSTERF to compute the eigenvalues. */

    if (icompz == 0) {
	dsterf_(n, &d__[1], &e[1], info);
	goto L50;
    }

/*     If N is smaller than the minimum divide size (SMLSIZ+1), then */
/*     solve the problem with another solver. */

    if (*n <= smlsiz) {

	dsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);

    } else {

/*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later */
/*        use. */

	if (icompz == 1) {
	    storez = *n * *n + 1;
	} else {
	    storez = 1;
	}

	if (icompz == 2) {
	    dlaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);
	}

/*        Scale. */

	orgnrm = dlanst_("M", n, &d__[1], &e[1]);
	if (orgnrm == 0.) {
	    goto L50;
	}

	eps = dlamch_("Epsilon");

	start = 1;

/*        while ( START <= N ) */

L10:
	if (start <= *n) {

/*           Let FINISH be the position of the next subdiagonal entry */
/*           such that E( FINISH ) <= TINY or FINISH = N if no such */
/*           subdiagonal exists.  The matrix identified by the elements */
/*           between START and FINISH constitutes an independent */
/*           sub-problem. */

	    finish = start;
L20:
	    if (finish < *n) {
		tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
			d__2 = d__[finish + 1], abs(d__2)));
		if ((d__1 = e[finish], abs(d__1)) > tiny) {
		    ++finish;
		    goto L20;
		}
	    }

/*           (Sub) Problem determined.  Compute its size and solve it. */

	    m = finish - start + 1;
	    if (m == 1) {
		start = finish + 1;
		goto L10;
	    }
	    if (m > smlsiz) {

/*              Scale. */

		orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
			start], &m, info);
		i__1 = m - 1;
		i__2 = m - 1;
		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
			start], &i__2, info);

		if (icompz == 1) {
		    strtrw = 1;
		} else {
		    strtrw = start;
		}
		dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw + 
			start * z_dim1], ldz, &work[1], n, &work[storez], &
			iwork[1], info);
		if (*info != 0) {
		    *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
			     (m + 1) + start - 1;
		    goto L50;
		}

/*              Scale back. */

		dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
			start], &m, info);

	    } else {
		if (icompz == 1) {

/*                 Since QR won't update a Z matrix which is larger than */
/*                 the length of D, we must solve the sub-problem in a */
/*                 workspace and then multiply back into Z. */

		    dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &
			    work[m * m + 1], info);
		    dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
			    storez], n);
		    dgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &
			    work[1], &m, &c_b17, &z__[start * z_dim1 + 1], 
			    ldz);
		} else if (icompz == 2) {
		    dsteqr_("I", &m, &d__[start], &e[start], &z__[start + 
			    start * z_dim1], ldz, &work[1], info);
		} else {
		    dsterf_(&m, &d__[start], &e[start], info);
		}
		if (*info != 0) {
		    *info = start * (*n + 1) + finish;
		    goto L50;
		}
	    }

	    start = finish + 1;
	    goto L10;
	}

/*        endwhile */

/*        If the problem split any number of times, then the eigenvalues */
/*        will not be properly ordered.  Here we permute the eigenvalues */
/*        (and the associated eigenvectors) into ascending order. */

	if (m != *n) {
	    if (icompz == 0) {

/*              Use Quick Sort */

		dlasrt_("I", n, &d__[1], info);

	    } else {

/*              Use Selection Sort to minimize swaps of eigenvectors */

		i__1 = *n;
		for (ii = 2; ii <= i__1; ++ii) {
		    i__ = ii - 1;
		    k = i__;
		    p = d__[i__];
		    i__2 = *n;
		    for (j = ii; j <= i__2; ++j) {
			if (d__[j] < p) {
			    k = j;
			    p = d__[j];
			}
/* L30: */
		    }
		    if (k != i__) {
			d__[k] = d__[i__];
			d__[i__] = p;
			dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * 
				z_dim1 + 1], &c__1);
		    }
/* L40: */
		}
	    }
	}
    }

L50:
    work[1] = (doublereal) lwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of DSTEDC */

} /* dstedc_ */
Exemple #24
0
/* Subroutine */ HYPRE_Int dsyev_(char *jobz, char *uplo, integer *n, doublereal *a,
                                  integer *lda, doublereal *w, doublereal *work, integer *lwork,
                                  integer *info)
{
    /*  -- LAPACK driver routine (version 3.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           June 30, 1999


        Purpose
        =======

        DSYEV computes all eigenvalues and, optionally, eigenvectors of a
        real symmetric matrix A.

        Arguments
        =========

        JOBZ    (input) CHARACTER*1
                = 'N':  Compute eigenvalues only;
                = 'V':  Compute eigenvalues and eigenvectors.

        UPLO    (input) CHARACTER*1
                = 'U':  Upper triangle of A is stored;
                = 'L':  Lower triangle of A is stored.

        N       (input) INTEGER
                The order of the matrix A.  N >= 0.

        A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                On entry, the symmetric matrix A.  If UPLO = 'U', the
                leading N-by-N upper triangular part of A contains the
                upper triangular part of the matrix A.  If UPLO = 'L',
                the leading N-by-N lower triangular part of A contains
                the lower triangular part of the matrix A.
                On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                orthonormal eigenvectors of the matrix A.
                If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                or the upper triangle (if UPLO='U') of A, including the
                diagonal, is destroyed.

        LDA     (input) INTEGER
                The leading dimension of the array A.  LDA >= max(1,N).

        W       (output) DOUBLE PRECISION array, dimension (N)
                If INFO = 0, the eigenvalues in ascending order.

        WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
                On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

        LWORK   (input) INTEGER
                The length of the array WORK.  LWORK >= max(1,3*N-1).
                For optimal efficiency, LWORK >= (NB+2)*N,
                where NB is the blocksize for DSYTRD returned by ILAENV.

                If LWORK = -1, then a workspace query is assumed; the routine
                only calculates the optimal size of the WORK array, returns
                this value as the first entry of the WORK array, and no error
                message related to LWORK is issued by XERBLA.

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value
                > 0:  if INFO = i, the algorithm failed to converge; i
                      off-diagonal elements of an intermediate tridiagonal
                      form did not converge to zero.

        =====================================================================


           Test the input parameters.

           Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static integer c__0 = 0;
    static doublereal c_b17 = 1.;

    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal d__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer inde;
    static doublereal anrm;
    static integer imax;
    static doublereal rmin, rmax;
    /***static integer lopt;***/
    extern /* Subroutine */ HYPRE_Int dscal_(integer *, doublereal *, doublereal *,
            integer *);
    static doublereal sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    static logical lower, wantz;
    static integer nb;
    extern doublereal dlamch_(char *);
    static integer iscale;
    extern /* Subroutine */ HYPRE_Int dlascl_(char *, integer *, integer *,
            doublereal *, doublereal *, integer *, integer *, doublereal *,
            integer *, integer *);
    static doublereal safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
                           integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
    static doublereal bignum;
    static integer indtau;
    extern /* Subroutine */ HYPRE_Int dsterf_(integer *, doublereal *, doublereal *,
            integer *);
    extern doublereal dlansy_(char *, char *, integer *, doublereal *,
                              integer *, doublereal *);
    static integer indwrk;
    extern /* Subroutine */ HYPRE_Int dorgtr_(char *, integer *, doublereal *,
            integer *, doublereal *, doublereal *, integer *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal *,
                    doublereal *, integer *, doublereal *, integer *),
                               dsytrd_(char *, integer *, doublereal *, integer *, doublereal *,
                                       doublereal *, doublereal *, doublereal *, integer *, integer *);
    static integer llwork;
    static doublereal smlnum;
    static integer lwkopt;
    static logical lquery;
    static doublereal eps;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --w;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
        *info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
        *info = -2;
    } else if (*n < 0) {
        *info = -3;
    } else if (*lda < max(1,*n)) {
        *info = -5;
    } else { /* if(complicated condition) */
        /* Computing MAX */
        i__1 = 1, i__2 = *n * 3 - 1;
        if (*lwork < max(i__1,i__2) && ! lquery) {
            *info = -8;
        }
    }

    if (*info == 0) {
        nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
                     (ftnlen)1);
        /* Computing MAX */
        i__1 = 1, i__2 = (nb + 2) * *n;
        lwkopt = max(i__1,i__2);
        work[1] = (doublereal) lwkopt;
    }

    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DSYEV ", &i__1);
        return 0;
    } else if (lquery) {
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        work[1] = 1.;
        return 0;
    }

    if (*n == 1) {
        w[1] = a_ref(1, 1);
        work[1] = 3.;
        if (wantz) {
            a_ref(1, 1) = 1.;
        }
        return 0;
    }

    /*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

    /*     Scale matrix to allowable range, if necessary. */

    anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        dlascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda,
                info);
    }

    /*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    inde = 1;
    indtau = inde + *n;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
            work[indwrk], &llwork, &iinfo);
    /***lopt = (integer) ((*n << 1) + work[indwrk]);***/

    /*     For eigenvalues only, call DSTERF.  For eigenvectors, first call
           DORGTR to generate the orthogonal matrix, then call DSTEQR. */

    if (! wantz) {
        dsterf_(n, &w[1], &work[inde], info);
    } else {
        dorgtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
                llwork, &iinfo);
        dsteqr_(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau],
                info);
    }

    /*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
        if (*info == 0) {
            imax = *n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        dscal_(&imax, &d__1, &w[1], &c__1);
    }

    /*     Set WORK(1) to optimal workspace size. */

    work[1] = (doublereal) lwkopt;

    return 0;

    /*     End of DSYEV */

} /* dsyev_ */
Exemple #25
0
/* Subroutine */ int dsbevx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *kd, doublereal *ab, integer *ldab, doublereal *q, integer *
	ldq, doublereal *vl, doublereal *vu, integer *il, integer *iu, 
	doublereal *abstol, integer *m, doublereal *w, doublereal *z__, 
	integer *ldz, doublereal *work, integer *iwork, integer *ifail, 
	integer *info, ftnlen jobz_len, ftnlen range_len, ftnlen uplo_len)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
	    i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer i__, j, jj;
    static doublereal eps, vll, vuu, tmp1;
    static integer indd, inde;
    static doublereal anrm;
    static integer imax;
    static doublereal rmin, rmax;
    static integer itmp1, indee;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static doublereal sigma;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, ftnlen);
    static integer iinfo;
    static char order[1];
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    static logical lower, wantz;
    extern doublereal dlamch_(char *, ftnlen);
    static logical alleig, indeig;
    static integer iscale, indibl;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *, ftnlen);
    extern doublereal dlansb_(char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, ftnlen, ftnlen);
    static logical valeig;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, ftnlen);
    static doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
    static doublereal abstll, bignum;
    extern /* Subroutine */ int dsbtrd_(char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, ftnlen, ftnlen);
    static integer indisp;
    extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *), 
	    dsterf_(integer *, doublereal *, doublereal *, integer *);
    static integer indiwo;
    extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, doublereal *,
	     doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *, ftnlen, ftnlen);
    static integer indwrk;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    ftnlen);
    static integer nsplit;
    static doublereal smlnum;


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSBEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a real symmetric band matrix A.  Eigenvalues and eigenvectors can */
/*  be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the first */
/*          superdiagonal and the diagonal of the tridiagonal matrix T */
/*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/*          the diagonal and first subdiagonal of T are returned in the */
/*          first two rows of AB. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the N-by-N orthogonal matrix used in the */
/*                         reduction to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'V', then */
/*          LDQ >= max(1,N). */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AB to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1);
    alleig = lsame_(range, "A", (ftnlen)1, (ftnlen)1);
    valeig = lsame_(range, "V", (ftnlen)1, (ftnlen)1);
    indeig = lsame_(range, "I", (ftnlen)1, (ftnlen)1);
    lower = lsame_(uplo, "L", (ftnlen)1, (ftnlen)1);

    *info = 0;
    if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U", (ftnlen)1, (ftnlen)1))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (wantz && *ldq < max(1,*n)) {
	*info = -9;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -11;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -12;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -13;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -18;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSBEVX", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	*m = 1;
	if (lower) {
	    tmp1 = ab[ab_dim1 + 1];
	} else {
	    tmp1 = ab[*kd + 1 + ab_dim1];
	}
	if (valeig) {
	    if (! (*vl < tmp1 && *vu >= tmp1)) {
		*m = 0;
	    }
	}
	if (*m == 1) {
	    w[1] = tmp1;
	    if (wantz) {
		z__[z_dim1 + 1] = 1.;
	    }
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum", (ftnlen)12);
    eps = dlamch_("Precision", (ftnlen)9);
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.;
	vuu = 0.;
    }
    anrm = dlansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1], (ftnlen)
	    1, (ftnlen)1);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    dlascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, 
		    info, (ftnlen)1);
	} else {
	    dlascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, 
		    info, (ftnlen)1);
	}
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call DSBTRD to reduce symmetric band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indwrk = inde + *n;
    dsbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde],
	     &q[q_offset], ldq, &work[indwrk], &iinfo, (ftnlen)1, (ftnlen)1);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call DSTERF or SSTEQR.  If this fails for some */
/*     eigenvalue, then try DSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.) {
	dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsterf_(n, &w[1], &work[indee], info);
	} else {
	    dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz, (
		    ftnlen)1);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info, (ftnlen)1);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info, (ftnlen)1, (ftnlen)1);

    if (wantz) {
	dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by DSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    dgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b34, &z__[j * z_dim1 + 1], &c__1, (ftnlen)1);
/* L20: */
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of DSBEVX */

} /* dsbevx_ */