int dt_inttab_insert(dt_inttab_t *ip, uint64_t value, uint_t flags) { uint_t h = value & (ip->int_hashlen - 1); dt_inthash_t *hp; if (flags & DT_INT_SHARED) { for (hp = ip->int_hash[h]; hp != NULL; hp = hp->inh_hash) { if (hp->inh_value == value && hp->inh_flags == flags) return (hp->inh_index); } } if ((hp = dt_alloc(ip->int_hdl, sizeof (dt_inthash_t))) == NULL) return (-1); hp->inh_hash = ip->int_hash[h]; hp->inh_next = NULL; hp->inh_value = value; hp->inh_index = ip->int_index++; hp->inh_flags = flags; ip->int_hash[h] = hp; ip->int_nelems++; if (ip->int_head == NULL) ip->int_head = hp; else ip->int_tail->inh_next = hp; ip->int_tail = hp; return (hp->inh_index); }
static void dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, const char *msg) { dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); if (dprn == NULL) { dt_dprintf("failed to allocate notification for %d %s\n", (int)dpr->dpr_pid, msg); } else { dprn->dprn_dpr = dpr; if (msg == NULL) dprn->dprn_errmsg[0] = '\0'; else (void) strlcpy(dprn->dprn_errmsg, msg, sizeof (dprn->dprn_errmsg)); (void) pthread_mutex_lock(&dph->dph_lock); dprn->dprn_next = dph->dph_notify; dph->dph_notify = dprn; //printf("%s pid=%d\n", __func__, Pstatus(dpr->dpr_proc)->pr_pid); (void) pthread_cond_broadcast(&dph->dph_cv); (void) pthread_mutex_unlock(&dph->dph_lock); } }
static int dt_opt_setenv(dtrace_hdl_t *dtp, const char *arg, uintptr_t option) { char **p; char *var; int i; /* * We can't effectively set environment variables from #pragma lines * since the processes have already been spawned. */ if (dtp->dt_pcb != NULL) return (dt_set_errno(dtp, EDT_BADOPTCTX)); if (arg == NULL) return (dt_set_errno(dtp, EDT_BADOPTVAL)); if (!option && strchr(arg, '=') != NULL) return (dt_set_errno(dtp, EDT_BADOPTVAL)); for (i = 1, p = dtp->dt_proc_env; *p != NULL; i++, p++) continue; for (p = dtp->dt_proc_env; *p != NULL; p++) { var = strchr(*p, '='); if (var == NULL) var = *p + strlen(*p); if (strncmp(*p, arg, var - *p) == 0) { dt_free(dtp, *p); *p = dtp->dt_proc_env[i - 1]; dtp->dt_proc_env[i - 1] = NULL; i--; } } if (option) { if ((var = strdup(arg)) == NULL) return (dt_set_errno(dtp, EDT_NOMEM)); if ((p = dt_alloc(dtp, sizeof (char *) * (i + 1))) == NULL) { dt_free(dtp, var); return (dt_set_errno(dtp, EDT_NOMEM)); } bcopy(dtp->dt_proc_env, p, sizeof (char *) * i); dt_free(dtp, dtp->dt_proc_env); dtp->dt_proc_env = p; dtp->dt_proc_env[i - 1] = var; dtp->dt_proc_env[i] = NULL; } return (0); }
static struct decision* majority_result_node(const struct sample *samples, int count) { unsigned field = 0; int val = 0; majority_result(samples, count, &field, &val); struct decision *d = dt_alloc(); d->field = field; d->value = val; return d; }
static int dt_dof_reset(dtrace_hdl_t *dtp, dtrace_prog_t *pgp) { dt_dof_t *ddo = &dtp->dt_dof; uint_t i, nx = dtp->dt_xlatorid; assert(ddo->ddo_hdl == dtp); ddo->ddo_pgp = pgp; ddo->ddo_nsecs = 0; ddo->ddo_strsec = DOF_SECIDX_NONE; dt_free(dtp, ddo->ddo_xlimport); dt_free(dtp, ddo->ddo_xlexport); ddo->ddo_xlimport = dt_alloc(dtp, sizeof (dof_secidx_t) * nx); ddo->ddo_xlexport = dt_alloc(dtp, sizeof (dof_secidx_t) * nx); if (nx != 0 && (ddo->ddo_xlimport == NULL || ddo->ddo_xlexport == NULL)) return (-1); /* errno is set for us */ for (i = 0; i < nx; i++) { ddo->ddo_xlimport[i] = DOF_SECIDX_NONE; ddo->ddo_xlexport[i] = DOF_SECIDX_NONE; } dt_buf_reset(dtp, &ddo->ddo_secs); dt_buf_reset(dtp, &ddo->ddo_strs); dt_buf_reset(dtp, &ddo->ddo_ldata); dt_buf_reset(dtp, &ddo->ddo_udata); dt_buf_reset(dtp, &ddo->ddo_probes); dt_buf_reset(dtp, &ddo->ddo_args); dt_buf_reset(dtp, &ddo->ddo_offs); dt_buf_reset(dtp, &ddo->ddo_enoffs); dt_buf_reset(dtp, &ddo->ddo_rels); dt_buf_reset(dtp, &ddo->ddo_xlms); return (0); }
static struct dtread_data * dtread_data_alloc() { struct dtread_data *dr; dr = (struct dtread_data *) calloc(1, sizeof(struct dtread_data)); if (dr == NULL){ LOG_ERRNO("calloc() returned NULL\n"); return NULL; } if ((dr->de = dt_alloc()) == NULL){ free(dr); return NULL; } return dr; }
int dt_probe_define(dt_provider_t *pvp, dt_probe_t *prp, const char *fname, const char *rname, uint32_t offset, int isenabled) { dtrace_hdl_t *dtp = pvp->pv_hdl; dt_probe_instance_t *pip; uint32_t **offs; uint_t *noffs, *maxoffs; assert(fname != NULL); for (pip = prp->pr_inst; pip != NULL; pip = pip->pi_next) { if (strcmp(pip->pi_fname, fname) == 0 && ((rname == NULL && pip->pi_rname == NULL) || (rname != NULL && pip->pi_rname != NULL && strcmp(pip->pi_rname, rname) == 0))) break; } if (pip == NULL) { if ((pip = dt_zalloc(dtp, sizeof (*pip))) == NULL) return (-1); if ((pip->pi_offs = dt_zalloc(dtp, sizeof (uint32_t))) == NULL) goto nomem; if ((pip->pi_enoffs = dt_zalloc(dtp, sizeof (uint32_t))) == NULL) goto nomem; if ((pip->pi_fname = strdup(fname)) == NULL) goto nomem; if (rname != NULL && (pip->pi_rname = strdup(rname)) == NULL) goto nomem; pip->pi_noffs = 0; pip->pi_maxoffs = 1; pip->pi_nenoffs = 0; pip->pi_maxenoffs = 1; pip->pi_next = prp->pr_inst; prp->pr_inst = pip; } if (isenabled) { offs = &pip->pi_enoffs; noffs = &pip->pi_nenoffs; maxoffs = &pip->pi_maxenoffs; } else { offs = &pip->pi_offs; noffs = &pip->pi_noffs; maxoffs = &pip->pi_maxoffs; } if (*noffs == *maxoffs) { uint_t new_max = *maxoffs * 2; uint32_t *new_offs = dt_alloc(dtp, sizeof (uint32_t) * new_max); if (new_offs == NULL) return (-1); bcopy(*offs, new_offs, sizeof (uint32_t) * *maxoffs); dt_free(dtp, *offs); *maxoffs = new_max; *offs = new_offs; } dt_dprintf("defined probe %s %s:%s %s() +0x%x (%s)\n", isenabled ? "(is-enabled)" : "", pvp->pv_desc.dtvd_name, prp->pr_ident->di_name, fname, offset, rname != NULL ? rname : fname); assert(*noffs < *maxoffs); (*offs)[(*noffs)++] = offset; return (0); nomem: dt_free(dtp, pip->pi_fname); dt_free(dtp, pip->pi_enoffs); dt_free(dtp, pip->pi_offs); dt_free(dtp, pip); return (dt_set_errno(dtp, EDT_NOMEM)); }
dt_probe_t * dt_probe_create(dtrace_hdl_t *dtp, dt_ident_t *idp, int protoc, dt_node_t *nargs, uint_t nargc, dt_node_t *xargs, uint_t xargc) { dt_module_t *dmp; dt_probe_t *prp; const char *p; uint_t i; assert(idp->di_kind == DT_IDENT_PROBE); assert(idp->di_data == NULL); /* * If only a single prototype is given, set xargc/s to nargc/s to * simplify subsequent use. Note that we can have one or both of nargs * and xargs be specified but set to NULL, indicating a void prototype. */ if (protoc < 2) { assert(xargs == NULL); assert(xargc == 0); xargs = nargs; xargc = nargc; } if ((prp = dt_alloc(dtp, sizeof (dt_probe_t))) == NULL) return (NULL); prp->pr_pvp = NULL; prp->pr_ident = idp; p = strrchr(idp->di_name, ':'); assert(p != NULL); prp->pr_name = p + 1; prp->pr_nargs = nargs; prp->pr_nargv = dt_alloc(dtp, sizeof (dt_node_t *) * nargc); prp->pr_nargc = nargc; prp->pr_xargs = xargs; prp->pr_xargv = dt_alloc(dtp, sizeof (dt_node_t *) * xargc); prp->pr_xargc = xargc; prp->pr_mapping = dt_alloc(dtp, sizeof (uint8_t) * xargc); prp->pr_inst = NULL; prp->pr_argv = dt_alloc(dtp, sizeof (dtrace_typeinfo_t) * xargc); prp->pr_argc = xargc; if ((prp->pr_nargc != 0 && prp->pr_nargv == NULL) || (prp->pr_xargc != 0 && prp->pr_xargv == NULL) || (prp->pr_xargc != 0 && prp->pr_mapping == NULL) || (prp->pr_argc != 0 && prp->pr_argv == NULL)) { dt_probe_destroy(prp); return (NULL); } for (i = 0; i < xargc; i++, xargs = xargs->dn_list) { if (xargs->dn_string != NULL) prp->pr_mapping[i] = dt_probe_argmap(xargs, nargs); else prp->pr_mapping[i] = i; prp->pr_xargv[i] = xargs; if ((dmp = dt_module_lookup_by_ctf(dtp, xargs->dn_ctfp)) != NULL) prp->pr_argv[i].dtt_object = dmp->dm_name; else prp->pr_argv[i].dtt_object = NULL; prp->pr_argv[i].dtt_ctfp = xargs->dn_ctfp; prp->pr_argv[i].dtt_type = xargs->dn_type; } for (i = 0; i < nargc; i++, nargs = nargs->dn_list) prp->pr_nargv[i] = nargs; idp->di_data = prp; return (prp); }
dtrace_difo_t * dt_as(dt_pcb_t *pcb) { dtrace_hdl_t *dtp = pcb->pcb_hdl; dt_irlist_t *dlp = &pcb->pcb_ir; uint_t *labels = NULL; dt_irnode_t *dip; dtrace_difo_t *dp; dt_ident_t *idp; size_t n = 0; uint_t i; uint_t kmask, kbits, umask, ubits; uint_t krel = 0, urel = 0, xlrefs = 0; /* * Select bitmasks based upon the desired symbol linking policy. We * test (di_extern->di_flags & xmask) == xbits to determine if the * symbol should have a relocation entry generated in the loop below. * * DT_LINK_KERNEL = kernel symbols static, user symbols dynamic * DT_LINK_PRIMARY = primary kernel symbols static, others dynamic * DT_LINK_DYNAMIC = all symbols dynamic * DT_LINK_STATIC = all symbols static * * By 'static' we mean that we use the symbol's value at compile-time * in the final DIF. By 'dynamic' we mean that we create a relocation * table entry for the symbol's value so it can be relocated later. */ switch (dtp->dt_linkmode) { case DT_LINK_KERNEL: kmask = 0; kbits = -1u; umask = DT_IDFLG_USER; ubits = DT_IDFLG_USER; break; case DT_LINK_PRIMARY: kmask = DT_IDFLG_USER | DT_IDFLG_PRIM; kbits = 0; umask = DT_IDFLG_USER; ubits = DT_IDFLG_USER; break; case DT_LINK_DYNAMIC: kmask = DT_IDFLG_USER; kbits = 0; umask = DT_IDFLG_USER; ubits = DT_IDFLG_USER; break; case DT_LINK_STATIC: kmask = umask = 0; kbits = ubits = -1u; break; default: xyerror(D_UNKNOWN, "internal error -- invalid link mode %u\n", dtp->dt_linkmode); } assert(pcb->pcb_difo == NULL); pcb->pcb_difo = dt_zalloc(dtp, sizeof (dtrace_difo_t)); if ((dp = pcb->pcb_difo) == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); dp->dtdo_buf = dt_alloc(dtp, sizeof (dif_instr_t) * dlp->dl_len); if (dp->dtdo_buf == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); if ((labels = dt_alloc(dtp, sizeof (uint_t) * dlp->dl_label)) == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); /* * Make an initial pass through the instruction list, filling in the * instruction buffer with valid instructions and skipping labeled nops. * While doing this, we also fill in our labels[] translation table * and we count up the number of relocation table entries we will need. */ for (i = 0, dip = dlp->dl_list; dip != NULL; dip = dip->di_next) { if (dip->di_label != DT_LBL_NONE) labels[dip->di_label] = i; if (dip->di_label == DT_LBL_NONE || dip->di_instr != DIF_INSTR_NOP) dp->dtdo_buf[i++] = dip->di_instr; if (dip->di_extern == NULL) continue; /* no external references needed */ switch (DIF_INSTR_OP(dip->di_instr)) { case DIF_OP_SETX: idp = dip->di_extern; if ((idp->di_flags & kmask) == kbits) krel++; else if ((idp->di_flags & umask) == ubits) urel++; break; case DIF_OP_XLATE: case DIF_OP_XLARG: xlrefs++; break; default: xyerror(D_UNKNOWN, "unexpected assembler relocation " "for opcode 0x%x\n", DIF_INSTR_OP(dip->di_instr)); } } assert(i == dlp->dl_len); dp->dtdo_len = dlp->dl_len; /* * Make a second pass through the instructions, relocating each branch * label to the index of the final instruction in the buffer and noting * any other instruction-specific DIFO flags such as dtdo_destructive. */ for (i = 0; i < dp->dtdo_len; i++) { dif_instr_t instr = dp->dtdo_buf[i]; uint_t op = DIF_INSTR_OP(instr); if (op == DIF_OP_CALL) { if (DIF_INSTR_SUBR(instr) == DIF_SUBR_COPYOUT || DIF_INSTR_SUBR(instr) == DIF_SUBR_COPYOUTSTR) dp->dtdo_destructive = 1; continue; } if (op >= DIF_OP_BA && op <= DIF_OP_BLEU) { assert(DIF_INSTR_LABEL(instr) < dlp->dl_label); dp->dtdo_buf[i] = DIF_INSTR_BRANCH(op, labels[DIF_INSTR_LABEL(instr)]); } } dt_free(dtp, labels); pcb->pcb_asvidx = 0; /* * Allocate memory for the appropriate number of variable records and * then fill in each variable record. As we populate the variable * table we insert the corresponding variable names into the strtab. */ (void) dt_idhash_iter(dtp->dt_tls, dt_countvar, &n); (void) dt_idhash_iter(dtp->dt_globals, dt_countvar, &n); (void) dt_idhash_iter(pcb->pcb_locals, dt_countvar, &n); if (n != 0) { dp->dtdo_vartab = dt_alloc(dtp, n * sizeof (dtrace_difv_t)); dp->dtdo_varlen = (uint32_t)n; if (dp->dtdo_vartab == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); (void) dt_idhash_iter(dtp->dt_tls, dt_copyvar, pcb); (void) dt_idhash_iter(dtp->dt_globals, dt_copyvar, pcb); (void) dt_idhash_iter(pcb->pcb_locals, dt_copyvar, pcb); } /* * Allocate memory for the appropriate number of relocation table * entries based upon our kernel and user counts from the first pass. */ if (krel != 0) { dp->dtdo_kreltab = dt_alloc(dtp, krel * sizeof (dof_relodesc_t)); dp->dtdo_krelen = krel; if (dp->dtdo_kreltab == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); } if (urel != 0) { dp->dtdo_ureltab = dt_alloc(dtp, urel * sizeof (dof_relodesc_t)); dp->dtdo_urelen = urel; if (dp->dtdo_ureltab == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); } if (xlrefs != 0) { dp->dtdo_xlmtab = dt_zalloc(dtp, sizeof (dt_node_t *) * xlrefs); dp->dtdo_xlmlen = xlrefs; if (dp->dtdo_xlmtab == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); } /* * If any relocations are needed, make another pass through the * instruction list and fill in the relocation table entries. */ if (krel + urel + xlrefs != 0) { uint_t knodef = pcb->pcb_cflags & DTRACE_C_KNODEF; uint_t unodef = pcb->pcb_cflags & DTRACE_C_UNODEF; dof_relodesc_t *krp = dp->dtdo_kreltab; dof_relodesc_t *urp = dp->dtdo_ureltab; dt_node_t **xlp = dp->dtdo_xlmtab; i = 0; /* dtdo_buf[] index */ for (dip = dlp->dl_list; dip != NULL; dip = dip->di_next) { dof_relodesc_t *rp; ssize_t soff; uint_t nodef; if (dip->di_label != DT_LBL_NONE && dip->di_instr == DIF_INSTR_NOP) continue; /* skip label declarations */ i++; /* advance dtdo_buf[] index */ if (DIF_INSTR_OP(dip->di_instr) == DIF_OP_XLATE || DIF_INSTR_OP(dip->di_instr) == DIF_OP_XLARG) { assert(dp->dtdo_buf[i - 1] == dip->di_instr); dt_as_xlate(pcb, dp, i - 1, (uint_t) (xlp++ - dp->dtdo_xlmtab), dip->di_extern); continue; } if ((idp = dip->di_extern) == NULL) continue; /* no relocation entry needed */ if ((idp->di_flags & kmask) == kbits) { nodef = knodef; rp = krp++; } else if ((idp->di_flags & umask) == ubits) { nodef = unodef; rp = urp++; } else continue; if (!nodef) dt_as_undef(idp, i); assert(DIF_INSTR_OP(dip->di_instr) == DIF_OP_SETX); soff = dt_strtab_insert(pcb->pcb_strtab, idp->di_name); if (soff == -1L) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); if (soff > DIF_STROFF_MAX) longjmp(pcb->pcb_jmpbuf, EDT_STR2BIG); rp->dofr_name = (dof_stridx_t)soff; rp->dofr_type = DOF_RELO_SETX; rp->dofr_offset = DIF_INSTR_INTEGER(dip->di_instr) * sizeof (uint64_t); rp->dofr_data = 0; } assert(krp == dp->dtdo_kreltab + dp->dtdo_krelen); assert(urp == dp->dtdo_ureltab + dp->dtdo_urelen); assert(xlp == dp->dtdo_xlmtab + dp->dtdo_xlmlen); assert(i == dp->dtdo_len); } /* * Allocate memory for the compiled string table and then copy the * chunks from the string table into the final string buffer. */ if ((n = dt_strtab_size(pcb->pcb_strtab)) != 0) { if ((dp->dtdo_strtab = dt_alloc(dtp, n)) == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); (void) dt_strtab_write(pcb->pcb_strtab, (dt_strtab_write_f *)dt_copystr, pcb); dp->dtdo_strlen = (uint32_t)n; } /* * Allocate memory for the compiled integer table and then copy the * integer constants from the table into the final integer buffer. */ if ((n = dt_inttab_size(pcb->pcb_inttab)) != 0) { if ((dp->dtdo_inttab = dt_alloc(dtp, n * sizeof (uint64_t))) == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); dt_inttab_write(pcb->pcb_inttab, dp->dtdo_inttab); dp->dtdo_intlen = (uint32_t)n; } /* * Fill in the DIFO return type from the type associated with the * node saved in pcb_dret, and then clear pcb_difo and pcb_dret * now that the assembler has completed successfully. */ dt_node_diftype(dtp, pcb->pcb_dret, &dp->dtdo_rtype); pcb->pcb_difo = NULL; pcb->pcb_dret = NULL; if (pcb->pcb_cflags & DTRACE_C_DIFV) dt_dis(dp, stderr); return (dp); }
static struct decision* dt_parse_samples(const struct sample *samples, int max, struct where *where) { bool ambiguous = is_set_ambiguous(samples, max); int best_field = best_field_where(samples, max, where); if (best_field < 0 || !ambiguous) { if (!ambiguous) printf("Non-ambiguous set:\n"); else printf("No best field:\n"); print_set_info(samples, max, where); struct decision *d = majority_result_node(samples, max); printf("\tLeaf with majority value %i -> %i\n", d->field, d->value); return d; } // The first call has no defined where, and it must be explicitly // deleted. Other calls only need append a new where-clause and // give it proper filters. struct where *w = where_alloc(); if (where) where_append(where, w); else where = w; w->field = best_field; // Get all the unique values from the set int unique = 0; int *vals = unique_values(samples, max, &unique, best_field); // The decision tree we are returning struct decision *dec = NULL; for (int i=0; i<unique; i++) { // Create a subset filtered for s->{best_field} = V[i] w->value = vals[i]; int wmax = 0; struct sample *wsamples = filter_where(samples, max, where, &wmax); // If the filtered subset is equal to the superset, the training // data is ambiguous. Return a leaf node with the majority result if (wmax == max) { printf("Ambiguity in training set:\n\t"); print_set_info(samples, max, where); dec = majority_result_node(samples, max); printf("\tassigning majority value %i=%i\n\n", dec->field, dec->value); goto dt_parse_samples_cleanup; } // Create a branch-node struct decision *d = dt_alloc(); d->field = best_field; d->value = vals[i]; // Append the branch to the tree if (!dec) dec = d; else dt_append_next(dec, d); // Create a subtree struct decision *sub = dt_parse_samples(wsamples, wmax, where); d->dest = sub; // Reference "dec" from all sibling nodes of sub while (sub) { sub->parent = dec; sub = sub->next; } free(wsamples); } dt_parse_samples_cleanup: if (where != w) where_destroy(where_pop(where)); else where_destroy(w); free(vals); return dec; }
/* * The #pragma depends_on directive can be used to express a dependency on a * module, provider or library which if not present will cause processing to * abort. */ static void dt_pragma_depends(const char *prname, dt_node_t *cnp) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *nnp = cnp ? cnp->dn_list : NULL; int found; dt_lib_depend_t *dld; char lib[MAXPATHLEN]; size_t plen; char *provs, *cpy, *tok; if (cnp == NULL || nnp == NULL || cnp->dn_kind != DT_NODE_IDENT || nnp->dn_kind != DT_NODE_IDENT) { xyerror(D_PRAGMA_MALFORM, "malformed #pragma %s " "<class> <name>\n", prname); } if (strcmp(cnp->dn_string, "provider") == 0) { /* * First try to get the provider list using the * debug.dtrace.providers sysctl, since that'll work even if * we're not running as root. */ provs = NULL; if (sysctlbyname("debug.dtrace.providers", NULL, &plen, NULL, 0) || ((provs = dt_alloc(dtp, plen)) == NULL) || sysctlbyname("debug.dtrace.providers", provs, &plen, NULL, 0)) found = dt_provider_lookup(dtp, nnp->dn_string) != NULL; else { found = B_FALSE; for (cpy = provs; (tok = strsep(&cpy, " ")) != NULL; ) if (strcmp(tok, nnp->dn_string) == 0) { found = B_TRUE; break; } if (found == B_FALSE) found = dt_provider_lookup(dtp, nnp->dn_string) != NULL; } if (provs != NULL) dt_free(dtp, provs); } else if (strcmp(cnp->dn_string, "module") == 0) { dt_module_t *mp = dt_module_lookup_by_name(dtp, nnp->dn_string); found = mp != NULL && dt_module_getctf(dtp, mp) != NULL; } else if (strcmp(cnp->dn_string, "library") == 0) { if (yypcb->pcb_cflags & DTRACE_C_CTL) { assert(dtp->dt_filetag != NULL); dt_pragma_depends_finddep(dtp, nnp->dn_string, lib, sizeof (lib)); dld = dt_lib_depend_lookup(&dtp->dt_lib_dep, dtp->dt_filetag); assert(dld != NULL); if ((dt_lib_depend_add(dtp, &dld->dtld_dependencies, lib)) != 0) { xyerror(D_PRAGMA_DEPEND, "failed to add dependency %s:%s\n", lib, dtrace_errmsg(dtp, dtrace_errno(dtp))); } } else { /* * By this point we have already performed a topological * sort of the dependencies; we process this directive * as satisfied as long as the dependency was properly * loaded. */ if (dtp->dt_filetag == NULL) xyerror(D_PRAGMA_DEPEND, "main program may " "not explicitly depend on a library"); dld = dt_lib_depend_lookup(&dtp->dt_lib_dep, dtp->dt_filetag); assert(dld != NULL); dt_pragma_depends_finddep(dtp, nnp->dn_string, lib, sizeof (lib)); dld = dt_lib_depend_lookup(&dtp->dt_lib_dep_sorted, lib); assert(dld != NULL); if (!dld->dtld_loaded) xyerror(D_PRAGMA_DEPEND, "program requires " "library \"%s\" which failed to load", lib); } found = B_TRUE; } else { xyerror(D_PRAGMA_INVAL, "invalid class %s " "specified by #pragma %s\n", cnp->dn_string, prname); } if (!found) { xyerror(D_PRAGMA_DEPEND, "program requires %s %s\n", cnp->dn_string, nnp->dn_string); } }
static int dt_pid_per_sym(dt_pid_probe_t *pp, const GElf_Sym *symp, const char *func) { dtrace_hdl_t *dtp = pp->dpp_dtp; dt_pcb_t *pcb = pp->dpp_pcb; dt_proc_t *dpr = pp->dpp_dpr; fasttrap_probe_spec_t *ftp; uint64_t off; char *end; uint_t nmatches = 0; ulong_t sz; int glob, err; int isdash = strcmp("-", func) == 0; pid_t pid; #if defined(sun) pid = Pstatus(pp->dpp_pr)->pr_pid; #else pid = proc_getpid(pp->dpp_pr); #endif dt_dprintf("creating probe pid%d:%s:%s:%s\n", (int)pid, pp->dpp_obj, func, pp->dpp_name); sz = sizeof (fasttrap_probe_spec_t) + (isdash ? 4 : (symp->st_size - 1) * sizeof (ftp->ftps_offs[0])); if ((ftp = dt_alloc(dtp, sz)) == NULL) { dt_dprintf("proc_per_sym: dt_alloc(%lu) failed\n", sz); return (1); /* errno is set for us */ } ftp->ftps_pid = pid; (void) strncpy(ftp->ftps_func, func, sizeof (ftp->ftps_func)); dt_pid_objname(ftp->ftps_mod, sizeof (ftp->ftps_mod), pp->dpp_lmid, pp->dpp_obj); if (!isdash && gmatch("return", pp->dpp_name)) { if (dt_pid_create_return_probe(pp->dpp_pr, dtp, ftp, symp, pp->dpp_stret) < 0) { return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_CREATEFAIL, "failed to create return probe " "for '%s': %s", func, dtrace_errmsg(dtp, dtrace_errno(dtp)))); } nmatches++; } if (!isdash && gmatch("entry", pp->dpp_name)) { if (dt_pid_create_entry_probe(pp->dpp_pr, dtp, ftp, symp) < 0) { return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_CREATEFAIL, "failed to create entry probe " "for '%s': %s", func, dtrace_errmsg(dtp, dtrace_errno(dtp)))); } nmatches++; } glob = strisglob(pp->dpp_name); if (!glob && nmatches == 0) { off = strtoull(pp->dpp_name, &end, 16); if (*end != '\0') { return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_NAME, "'%s' is an invalid probe name", pp->dpp_name)); } if (off >= symp->st_size) { return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_OFF, "offset 0x%llx outside of function '%s'", (u_longlong_t)off, func)); } err = dt_pid_create_offset_probe(pp->dpp_pr, pp->dpp_dtp, ftp, symp, off); if (err == DT_PROC_ERR) { return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_CREATEFAIL, "failed to create probe at " "'%s+0x%llx': %s", func, (u_longlong_t)off, dtrace_errmsg(dtp, dtrace_errno(dtp)))); } if (err == DT_PROC_ALIGN) { return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_ALIGN, "offset 0x%llx is not aligned on an instruction", (u_longlong_t)off)); } nmatches++; } else if (glob && !isdash) { if (dt_pid_create_glob_offset_probes(pp->dpp_pr, pp->dpp_dtp, ftp, symp, pp->dpp_name) < 0) { return (dt_pid_error(dtp, pcb, dpr, ftp, D_PROC_CREATEFAIL, "failed to create offset probes in '%s': %s", func, dtrace_errmsg(dtp, dtrace_errno(dtp)))); } nmatches++; } pp->dpp_nmatches += nmatches; dt_free(dtp, ftp); return (0); }
dt_xlator_t * dt_xlator_create(dtrace_hdl_t *dtp, const dtrace_typeinfo_t *src, const dtrace_typeinfo_t *dst, const char *name, dt_node_t *members, dt_node_t *nodes) { dt_xlator_t *dxp = dt_zalloc(dtp, sizeof (dt_xlator_t)); dtrace_typeinfo_t ptr = *dst; dt_xlator_t **map; dt_node_t *dnp; uint_t kind; if (dxp == NULL) return (NULL); dxp->dx_hdl = dtp; dxp->dx_id = dtp->dt_xlatorid++; dxp->dx_gen = dtp->dt_gen; dxp->dx_arg = -1; if ((map = dt_alloc(dtp, sizeof (void *) * (dxp->dx_id + 1))) == NULL) { dt_free(dtp, dxp); return (NULL); } dt_list_append(&dtp->dt_xlators, dxp); bcopy(dtp->dt_xlatormap, map, sizeof (void *) * dxp->dx_id); dt_free(dtp, dtp->dt_xlatormap); dtp->dt_xlatormap = map; dtp->dt_xlatormap[dxp->dx_id] = dxp; if (dt_type_pointer(&ptr) == -1) { ptr.dtt_ctfp = NULL; ptr.dtt_type = CTF_ERR; } dxp->dx_ident = dt_ident_create(name ? name : "T", DT_IDENT_SCALAR, DT_IDFLG_REF | DT_IDFLG_ORPHAN, 0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); if (dxp->dx_ident == NULL) goto err; /* no memory for identifier */ dxp->dx_ident->di_ctfp = src->dtt_ctfp; dxp->dx_ident->di_type = src->dtt_type; /* * If an input parameter name is given, this is a static translator * definition: create an idhash and identifier for the parameter. */ if (name != NULL) { dxp->dx_locals = dt_idhash_create("xlparams", NULL, 0, 0); if (dxp->dx_locals == NULL) goto err; /* no memory for identifier hash */ dt_idhash_xinsert(dxp->dx_locals, dxp->dx_ident); } dxp->dx_souid.di_name = "translator"; dxp->dx_souid.di_kind = DT_IDENT_XLSOU; dxp->dx_souid.di_flags = DT_IDFLG_REF; dxp->dx_souid.di_id = dxp->dx_id; dxp->dx_souid.di_attr = _dtrace_defattr; dxp->dx_souid.di_ops = &dt_idops_thaw; dxp->dx_souid.di_data = dxp; dxp->dx_souid.di_ctfp = dst->dtt_ctfp; dxp->dx_souid.di_type = dst->dtt_type; dxp->dx_souid.di_gen = dtp->dt_gen; dxp->dx_ptrid.di_name = "translator"; dxp->dx_ptrid.di_kind = DT_IDENT_XLPTR; dxp->dx_ptrid.di_flags = DT_IDFLG_REF; dxp->dx_ptrid.di_id = dxp->dx_id; dxp->dx_ptrid.di_attr = _dtrace_defattr; dxp->dx_ptrid.di_ops = &dt_idops_thaw; dxp->dx_ptrid.di_data = dxp; dxp->dx_ptrid.di_ctfp = ptr.dtt_ctfp; dxp->dx_ptrid.di_type = ptr.dtt_type; dxp->dx_ptrid.di_gen = dtp->dt_gen; /* * If a deferred pragma is pending on the keyword "translator", run all * the deferred pragmas on dx_souid and then copy results to dx_ptrid. * See the code in dt_pragma.c for details on deferred ident pragmas. */ if (dtp->dt_globals->dh_defer != NULL && yypcb->pcb_pragmas != NULL && dt_idhash_lookup(yypcb->pcb_pragmas, "translator") != NULL) { dtp->dt_globals->dh_defer(dtp->dt_globals, &dxp->dx_souid); dxp->dx_ptrid.di_attr = dxp->dx_souid.di_attr; dxp->dx_ptrid.di_vers = dxp->dx_souid.di_vers; } dxp->dx_src_ctfp = src->dtt_ctfp; dxp->dx_src_type = src->dtt_type; dxp->dx_src_base = ctf_type_resolve(src->dtt_ctfp, src->dtt_type); dxp->dx_dst_ctfp = dst->dtt_ctfp; dxp->dx_dst_type = dst->dtt_type; dxp->dx_dst_base = ctf_type_resolve(dst->dtt_ctfp, dst->dtt_type); kind = ctf_type_kind(dst->dtt_ctfp, dxp->dx_dst_base); assert(kind == CTF_K_STRUCT || kind == CTF_K_UNION); /* * If no input parameter is given, we're making a dynamic translator: * create member nodes for every member of the output type. Otherwise * retain the member and allocation node lists presented by the parser. */ if (name == NULL) { if (ctf_member_iter(dxp->dx_dst_ctfp, dxp->dx_dst_base, dt_xlator_create_member, dxp) != 0) goto err; } else { dxp->dx_members = members; dxp->dx_nodes = nodes; } /* * Assign member IDs to each member and allocate space for DIFOs * if and when this translator is eventually compiled. */ for (dnp = dxp->dx_members; dnp != NULL; dnp = dnp->dn_list) { dnp->dn_membxlator = dxp; dnp->dn_membid = dxp->dx_nmembers++; } dxp->dx_membdif = dt_zalloc(dtp, sizeof (dtrace_difo_t *) * dxp->dx_nmembers); if (dxp->dx_membdif == NULL) { dxp->dx_nmembers = 0; goto err; } return (dxp); err: dt_xlator_destroy(dtp, dxp); return (NULL); }
static int dtread_readline(const char *line, struct cuckoo_ctx *cu, unsigned int *maxid) { struct dtread_data *dr, *drp; struct dt_dentry *d; unsigned int pid, id, fid, items; unsigned long long size; const char *s; char *name; switch (line[0]) { case '0': if ((dr = dtread_data_alloc()) == NULL) return 0; if ((dr->de->id = atoi(&line[2])) == 0 ) { LOG_ERR("parsing failed for line %s\n", line); dtread_data_free(dr); return 0; } if (!cuckoo_insert(cu, dr->de->id, (void *) dr)) { LOG_ERR("cuckoo_insert() failed at line %s\n", line); dtread_data_free(dr); return 0; } if (dr->de->id > *maxid) *maxid = dr->de->id; break; case '1': s = strchr(line, ' '); if ((s == NULL) || (sscanf(++s, "%u", &pid) < 1 )) { LOG_ERR("parsing pid failed for line %s\n", line); return 0; } if (pid != 0) { drp = (struct dtread_data *) cuckoo_lookup(cu, pid); if (drp == NULL) { LOG_ERR("cuckoo_lookup() returned null for id %u line %s\n", pid, line); return 0; } } s = strchr(s, ' '); if ((s == NULL) || (sscanf(++s, "%u", &fid) < 1)) { LOG_ERR("Parsing fid failed for line %s\n", line); return 0; } s = strchr(s, ' '); if ((s == NULL) || (sscanf(++s, "%llu", &size) < 1)) { LOG_ERR("Parsing size failed for line %s\n", line); return 0; } s = strchr(s, ' '); if ((s == NULL) || (sscanf(++s, "%u", &id) < 1)) { LOG_ERR("Parsing id failed for line %s\n", line); return 0; } s = strchr(s, ' '); if ((s == NULL) || (sscanf(++s, "%u", &items) < 1)) { LOG_ERR("Parsing items failed for line %s\n", line); return 0; } s = strchr(s, ' '); if ((s == NULL) || ((name = strdup(++s))== NULL)) { LOG_ERR("Parsing name failed for line %s\n", line); return 0; } if (id == 0) { /* file */ LOG_ASSERT(pid != 0, "File with parent id=0 " "(only root dir has parent id=0). Line %s\n", line); if ((d = dt_alloc()) == NULL) { free(name); return 0; } d->type = DT_FILE; d->fid = fid; d->size = size; d->name = name; d->parent = drp->de; if (drp->file_child) drp->file_child->sibling = d; else drp->de->file_child = d; drp->file_child = d; } else { /* directory */ dr = (struct dtread_data *) cuckoo_lookup(cu, id); if (dr == NULL) { LOG_ERR("cuckoo_lookup() returned null for id %u\n", id); return 0; } d = dr->de; d->type = DT_DIR; d->fid = fid; d->size = size; d->name = name; d->items = items; if (pid != 0){ if (drp->child) drp->child->sibling = d; else drp->de->child = d; drp->child = d; d->parent = drp->de; cuckoo_delete(cu, id); free(dr); } } break; case '+': case '-': case '*': return 1; default: LOG_ERR("Unknown line format: %s\n", line); return 0; } return 1; }
static int dt_strdata_add(dtrace_hdl_t *dtp, dtrace_recdesc_t *rec, void ***data, int *max) { int maxformat; dtrace_fmtdesc_t fmt; void *result; if (rec->dtrd_format == 0) return (0); if (rec->dtrd_format <= *max && (*data)[rec->dtrd_format - 1] != NULL) { return (0); } bzero(&fmt, sizeof (fmt)); fmt.dtfd_format = rec->dtrd_format; fmt.dtfd_string = NULL; fmt.dtfd_length = 0; if (dt_ioctl(dtp, DTRACEIOC_FORMAT, &fmt) == -1) return (dt_set_errno(dtp, errno)); if ((fmt.dtfd_string = dt_alloc(dtp, fmt.dtfd_length)) == NULL) return (dt_set_errno(dtp, EDT_NOMEM)); if (dt_ioctl(dtp, DTRACEIOC_FORMAT, &fmt) == -1) { free(fmt.dtfd_string); return (dt_set_errno(dtp, errno)); } while (rec->dtrd_format > (maxformat = *max)) { int new_max = maxformat ? (maxformat << 1) : 1; size_t nsize = new_max * sizeof (void *); size_t osize = maxformat * sizeof (void *); void **new_data = dt_zalloc(dtp, nsize); if (new_data == NULL) { dt_free(dtp, fmt.dtfd_string); return (dt_set_errno(dtp, EDT_NOMEM)); } bcopy(*data, new_data, osize); free(*data); *data = new_data; *max = new_max; } switch (rec->dtrd_action) { case DTRACEACT_DIFEXPR: result = fmt.dtfd_string; break; case DTRACEACT_PRINTA: result = dtrace_printa_create(dtp, fmt.dtfd_string); dt_free(dtp, fmt.dtfd_string); break; default: result = dtrace_printf_create(dtp, fmt.dtfd_string); dt_free(dtp, fmt.dtfd_string); break; } if (result == NULL) return (-1); (*data)[rec->dtrd_format - 1] = result; return (0); }