/* Subroutine */ int dpptri_(char *uplo, integer *n, doublereal *ap, integer * info) { /* System generated locals */ integer i__1, i__2; /* Local variables */ integer j, jc, jj; doublereal ajj; integer jjn; logical upper; /* -- LAPACK routine (version 3.2) -- */ /* November 2006 */ /* Purpose */ /* ======= */ /* DPPTRI computes the inverse of a real symmetric positive definite */ /* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */ /* computed by DPPTRF. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangular factor is stored in AP; */ /* = 'L': Lower triangular factor is stored in AP. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ /* On entry, the triangular factor U or L from the Cholesky */ /* factorization A = U**T*U or A = L*L**T, packed columnwise as */ /* a linear array. The j-th column of U or L is stored in the */ /* array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ /* On exit, the upper or lower triangle of the (symmetric) */ /* inverse of A, overwriting the input factor U or L. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the (i,i) element of the factor U or L is */ /* zero, and the inverse could not be computed. */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("DPPTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Invert the triangular Cholesky factor U or L. */ dtptri_(uplo, "Non-unit", n, &ap[1], info); if (*info > 0) { return 0; } if (upper) { /* Compute the product inv(U) * inv(U)'. */ jj = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { jc = jj + 1; jj += j; if (j > 1) { i__2 = j - 1; dspr_("Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1]); } ajj = ap[jj]; dscal_(&j, &ajj, &ap[jc], &c__1); } } else { /* Compute the product inv(L)' * inv(L). */ jj = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { jjn = jj + *n - j + 1; i__2 = *n - j + 1; ap[jj] = ddot_(&i__2, &ap[jj], &c__1, &ap[jj], &c__1); if (j < *n) { i__2 = *n - j; dtpmv_("Lower", "Transpose", "Non-unit", &i__2, &ap[jjn], &ap[ jj + 1], &c__1); } jj = jjn; } } return 0; /* End of DPPTRI */ } /* dpptri_ */
/* Subroutine */ int dpptri_(char *uplo, integer *n, doublereal *ap, integer * info) { /* System generated locals */ integer i__1, i__2; /* Local variables */ integer j, jc, jj; doublereal ajj; integer jjn; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); extern /* Subroutine */ int dspr_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *), dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, doublereal *, doublereal *, integer *); logical upper; extern /* Subroutine */ int xerbla_(char *, integer *), dtptri_( char *, char *, integer *, doublereal *, integer *); /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("DPPTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Invert the triangular Cholesky factor U or L. */ dtptri_(uplo, "Non-unit", n, &ap[1], info); if (*info > 0) { return 0; } if (upper) { /* Compute the product inv(U) * inv(U)**T. */ jj = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { jc = jj + 1; jj += j; if (j > 1) { i__2 = j - 1; dspr_("Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1]); } ajj = ap[jj]; dscal_(&j, &ajj, &ap[jc], &c__1); /* L10: */ } } else { /* Compute the product inv(L)**T * inv(L). */ jj = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { jjn = jj + *n - j + 1; i__2 = *n - j + 1; ap[jj] = ddot_(&i__2, &ap[jj], &c__1, &ap[jj], &c__1); if (j < *n) { i__2 = *n - j; dtpmv_("Lower", "Transpose", "Non-unit", &i__2, &ap[jjn], &ap[ jj + 1], &c__1); } jj = jjn; /* L20: */ } } return 0; /* End of DPPTRI */ }
/* Subroutine */ int dchktp_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublereal *ap, doublereal *ainvp, doublereal *b, doublereal *x, doublereal *xact, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'" ", N=\002,i5,\002, type \002,i2,\002, test(\002,i2,\002)= \002,g1" "2.5)"; static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002" "', DIAG='\002,a1,\002', N=\002,i5,\002', NRHS=\002,i5,\002, type " "\002,i2,\002, test(\002,i2,\002)= \002,g12.5)"; static char fmt_9997[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002',\002,i5,\002, ... ), type \002,i2,\002, test(\002" ",i2,\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2," "\002, test(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2], a__2[3], a__3[4]; integer i__1, i__2[2], i__3, i__4[3], i__5[4]; char ch__1[2], ch__2[3], ch__3[4]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *, char **, integer *, integer *, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, n, in, lda, lap; char diag[1]; integer imat, info; char path[3]; integer irhs, nrhs; char norm[1], uplo[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer idiag; doublereal scale; extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer nfail, iseed[4]; extern logical lsame_(char *, char *); doublereal rcond, anorm; integer itran; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dtpt01_(char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), dtpt02_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dtpt03_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dtpt05_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *), dtpt06_( doublereal *, doublereal *, char *, char *, integer *, doublereal *, doublereal *, doublereal *); char trans[1]; integer iuplo, nerrs; char xtype[1]; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal rcondi; extern /* Subroutine */ int dlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *); extern doublereal dlantp_(char *, char *, char *, integer *, doublereal *, doublereal *); doublereal rcondo; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *), dlatps_(char *, char *, char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *); doublereal ainvnm; extern /* Subroutine */ int dlattp_(integer *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), dtpcon_(char *, char *, char * , integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), derrtr_(char *, integer *), dtprfs_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dtptri_(char *, char *, integer *, doublereal *, integer *); doublereal result[9]; extern /* Subroutine */ int dtptrs_(char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___26 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DCHKTP tests DTPTRI, -TRS, -RFS, and -CON, and DLATPS */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The leading dimension of the work arrays. NMAX >= the */ /* maximumm value of N in NVAL. */ /* AP (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AINVP (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainvp; --ap; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "TP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { derrtr_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL */ n = nval[in]; lda = max(1,n); lap = lda * (lda + 1) / 2; *(unsigned char *)xtype = 'N'; for (imat = 1; imat <= 10; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L70; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Call DLATTP to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "DLATTP", (ftnlen)32, (ftnlen)6); dlattp_(&imat, uplo, "No transpose", diag, iseed, &n, &ap[1], &x[1], &work[1], &info); /* Set IDIAG = 1 for non-unit matrices, 2 for unit. */ if (lsame_(diag, "N")) { idiag = 1; } else { idiag = 2; } /* + TEST 1 */ /* Form the inverse of A. */ if (n > 0) { dcopy_(&lap, &ap[1], &c__1, &ainvp[1], &c__1); } s_copy(srnamc_1.srnamt, "DTPTRI", (ftnlen)32, (ftnlen)6); dtptri_(uplo, diag, &n, &ainvp[1], &info); /* Check error code from DTPTRI. */ if (info != 0) { /* Writing concatenation */ i__2[0] = 1, a__1[0] = uplo; i__2[1] = 1, a__1[1] = diag; s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2); alaerh_(path, "DTPTRI", &info, &c__0, ch__1, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } /* Compute the infinity-norm condition number of A. */ anorm = dlantp_("I", uplo, diag, &n, &ap[1], &rwork[1]); ainvnm = dlantp_("I", uplo, diag, &n, &ainvp[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anorm / ainvnm; } /* Compute the residual for the triangular matrix times its */ /* inverse. Also compute the 1-norm condition number of A. */ dtpt01_(uplo, diag, &n, &ap[1], &ainvp[1], &rcondo, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[ itran - 1]; if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } /* + TEST 2 */ /* Solve and compute residual for op(A)*x = b. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen) 6); dlarhs_(path, xtype, uplo, trans, &n, &n, &c__0, & idiag, &nrhs, &ap[1], &lap, &xact[1], &lda, & b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "DTPTRS", (ftnlen)32, (ftnlen) 6); dtptrs_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], & lda, &info); /* Check error code from DTPTRS. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = uplo; i__4[1] = 1, a__2[1] = trans; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "DTPTRS", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } dtpt02_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], & lda, &b[1], &lda, &work[1], &result[1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution and */ /* compute error bounds. */ s_copy(srnamc_1.srnamt, "DTPRFS", (ftnlen)32, (ftnlen) 6); dtprfs_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], & lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &iwork[1], &info); /* Check error code from DTPRFS. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = uplo; i__4[1] = 1, a__2[1] = trans; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "DTPRFS", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); dtpt05_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[1], & rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += 5; /* L30: */ } /* L40: */ } /* + TEST 7 */ /* Get an estimate of RCOND = 1/CNDNUM. */ for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } s_copy(srnamc_1.srnamt, "DTPCON", (ftnlen)32, (ftnlen)6); dtpcon_(norm, uplo, diag, &n, &ap[1], &rcond, &work[1], & iwork[1], &info); /* Check error code from DTPCON. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = norm; i__4[1] = 1, a__2[1] = uplo; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "DTPCON", &info, &c__0, ch__2, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } dtpt06_(&rcond, &rcondc, uplo, diag, &n, &ap[1], &rwork[1] , &result[6]); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, "DTPCON", (ftnlen)6); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } /* L60: */ } L70: ; } /* Use pathological test matrices to test DLATPS. */ for (imat = 11; imat <= 18; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; /* Call DLATTP to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "DLATTP", (ftnlen)32, (ftnlen)6); dlattp_(&imat, uplo, trans, diag, iseed, &n, &ap[1], &x[1] , &work[1], &info); /* + TEST 8 */ /* Solve the system op(A)*x = b. */ s_copy(srnamc_1.srnamt, "DLATPS", (ftnlen)32, (ftnlen)6); dcopy_(&n, &x[1], &c__1, &b[1], &c__1); dlatps_(uplo, trans, diag, "N", &n, &ap[1], &b[1], &scale, &rwork[1], &info); /* Check error code from DLATPS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__3[0] = uplo; i__5[1] = 1, a__3[1] = trans; i__5[2] = 1, a__3[2] = diag; i__5[3] = 1, a__3[3] = "N"; s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4); alaerh_(path, "DLATPS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } dtpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, & rwork[1], &c_b103, &b[1], &lda, &x[1], &lda, & work[1], &result[7]); /* + TEST 9 */ /* Solve op(A)*x = b again with NORMIN = 'Y'. */ dcopy_(&n, &x[1], &c__1, &b[n + 1], &c__1); dlatps_(uplo, trans, diag, "Y", &n, &ap[1], &b[n + 1], & scale, &rwork[1], &info); /* Check error code from DLATPS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__3[0] = uplo; i__5[1] = 1, a__3[1] = trans; i__5[2] = 1, a__3[2] = diag; i__5[3] = 1, a__3[3] = "Y"; s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4); alaerh_(path, "DLATPS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } dtpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, & rwork[1], &c_b103, &b[n + 1], &lda, &x[1], &lda, & work[1], &result[8]); /* Print information about the tests that did not pass */ /* the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, "DLATPS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } if (result[8] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, "DLATPS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "Y", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } nrun += 2; /* L80: */ } /* L90: */ } L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of DCHKTP */ } /* dchktp_ */