void fp_rdc_basic(fp_t c, dv_t a) { dv_t t0, t1, t2, t3; dv_null(t0); dv_null(t1); dv_null(t2); dv_null(t3); TRY { dv_new(t0); dv_new(t1); dv_new(t2); dv_new(t3); dv_copy(t2, a, 2 * FP_DIGS); dv_copy(t3, fp_prime_get(), FP_DIGS); bn_divn_low(t0, t1, t2, 2 * FP_DIGS, t3, FP_DIGS); fp_copy(c, t1); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t0); dv_free(t1); dv_free(t2); dv_free(t3); } }
void fp2_mul_basic(fp2_t c, fp2_t a, fp2_t b) { dv_t t0, t1, t2, t3, t4; dv_null(t0); dv_null(t1); dv_null(t2); dv_null(t3); dv_null(t4); TRY { dv_new(t0); dv_new(t1); dv_new(t2); dv_new(t3); dv_new(t4); /* Karatsuba algorithm. */ /* t2 = a_0 + a_1, t1 = b0 + b1. */ fp_add(t2, a[0], a[1]); fp_add(t1, b[0], b[1]); /* t3 = (a_0 + a_1) * (b0 + b1). */ fp_muln_low(t3, t2, t1); /* t0 = a_0 * b0, t4 = a_1 * b1. */ fp_muln_low(t0, a[0], b[0]); fp_muln_low(t4, a[1], b[1]); /* t2 = (a_0 * b0) + (a_1 * b1). */ fp_addc_low(t2, t0, t4); /* t1 = (a_0 * b0) + u^2 * (a_1 * b1). */ fp_subc_low(t1, t0, t4); /* t1 = u^2 * (a_1 * b1). */ for (int i = -1; i > fp_prime_get_qnr(); i--) { fp_subc_low(t1, t1, t4); } /* c_0 = t1 mod p. */ fp_rdc(c[0], t1); /* t4 = t3 - t2. */ fp_subc_low(t4, t3, t2); /* c_1 = t4 mod p. */ fp_rdc(c[1], t4); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t0); dv_free(t1); dv_free(t2); dv_free(t3); dv_free(t4); } }
/** * Multiplies two binary field elements using right-to-left comb multiplication. * * @param c - the result. * @param a - the first binary field element. * @param b - the second binary field element. * @param size - the number of digits to multiply. */ static void fb_mul_rcomb_imp(dig_t *c, const dig_t *a, const dig_t *b, int size) { dv_t _b; dv_null(_b); TRY { dv_new(_b); dv_zero(c, 2 * size); for (int i = 0; i < size; i++) _b[i] = b[i]; _b[size] = 0; for (int i = 0; i < FB_DIGIT; i++) { for (int j = 0; j < size; j++) { if (a[j] & ((dig_t)1 << i)) { fb_addd_low(c + j, c + j, _b, size + 1); } } if (i != FB_DIGIT - 1) { bn_lsh1_low(_b, _b, size + 1); } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(_b); } }
void fp_prime_back(bn_t c, const fp_t a) { dv_t t; int i; dv_null(t); TRY { dv_new(t); bn_grow(c, FP_DIGS); for (i = 0; i < FP_DIGS; i++) { c->dp[i] = a[i]; } #if FP_RDC == MONTY dv_zero(t, 2 * FP_DIGS + 1); dv_copy(t, a, FP_DIGS); fp_rdc(c->dp, t); #endif c->used = FP_DIGS; c->sign = BN_POS; bn_trim(c); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fp_prime_conv_dig(fp_t c, dig_t a) { dv_t t; ctx_t *ctx = core_get(); bn_null(t); TRY { dv_new(t); #if FP_RDC == MONTY if (a != 1) { dv_zero(t, 2 * FP_DIGS + 1); t[FP_DIGS] = fp_mul1_low(t, ctx->conv.dp, a); fp_rdc(c, t); } else { dv_copy(c, ctx->one.dp, FP_DIGS); } #else (void)ctx; fp_zero(c); c[0] = a; #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
/** * Multiplies two binary field elements using shift-and-add multiplication. * * @param c - the result. * @param a - the first binary field element. * @param b - the second binary field element. * @param size - the number of digits to multiply. */ static void fb_mul_basic_imp(dig_t *c, const dig_t *a, const dig_t *b, int size) { int i; dv_t s; dv_null(s); TRY { /* We need a temporary variable so that c can be a or b. */ dv_new(s); dv_zero(s, 2 * FB_DIGS); dv_copy(s, b, size); dv_zero(c, 2 * size); if (a[0] & 1) { dv_copy(c, b, size); } for (i = 1; i <= (FB_DIGIT * size) - 1; i++) { fb_lsh1_low(s, s); fb_rdc(s, s); if (fb_get_bit(a, i)) { fb_add(c, c, s); } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(s); } }
void fp_mul_karat(fp_t c, const fp_t a, const fp_t b) { dv_t t; dv_null(t); TRY { /* We need a temporary variable so that c can be a or b. */ dv_new(t); dv_zero(t, 2 * FP_DIGS); if (FP_DIGS > 1) { fp_mul_karat_imp(t, a, b, FP_DIGS, FP_KARAT); } else { fp_muln_low(t, a, b); } fp_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fp_mul_basic(fp_t c, const fp_t a, const fp_t b) { int i; dv_t t; dig_t carry; dv_null(t); TRY { /* We need a temporary variable so that c can be a or b. */ dv_new(t); dv_zero(t, 2 * FP_DIGS); for (i = 0; i < FP_DIGS; i++) { carry = fp_mula_low(t + i, b, *(a + i)); *(t + i + FP_DIGS) = carry; } fp_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fb_mul_lcomb(fb_t c, const fb_t a, const fb_t b) { dv_t t; dig_t carry; dv_null(t); TRY { dv_new(t); dv_zero(t, 2 * FB_DIGS); for (int i = FB_DIGIT - 1; i >= 0; i--) { for (int j = 0; j < FB_DIGS; j++) { if (a[j] & ((dig_t)1 << i)) { /* This cannot use fb_addn_low() because there is no * guarantee that operands will be aligned. */ fb_addd_low(t + j, t + j, b, FB_DIGS); } } if (i != 0) { carry = fb_lsh1_low(t, t); fb_lsh1_low(t + FB_DIGS, t + FB_DIGS); t[FB_DIGS] |= carry; } } fb_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fb_mul_rcomb(fb_t c, const fb_t a, const fb_t b) { dv_t t, _b; dig_t carry; dv_null(t); dv_null(_b); TRY { dv_new(t); dv_new(_b); dv_zero(t, 2 * FB_DIGS); dv_zero(_b, FB_DIGS + 1); fb_copy(_b, b); for (int i = 0; i < FB_DIGIT; i++) { for (int j = 0; j < FB_DIGS; j++) { if (a[j] & ((dig_t)1 << i)) { fb_addd_low(t + j, t + j, _b, FB_DIGS + 1); } } if (i != FB_DIGIT - 1) { carry = fb_lsh1_low(_b, _b); _b[FB_DIGS] = (_b[FB_DIGS] << 1) | carry; } } fb_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); dv_free(_b); } }
void fp_mul_dig(fp_t c, const fp_t a, dig_t b) { dv_t t; dv_null(t); TRY { dv_new(t); fp_prime_conv_dig(t, b); fp_mul(c, a, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fb_sqr_table(fb_t c, const fb_t a) { dv_t t; dv_null(t); TRY { /* We need a temporary variable so that c can be a or b. */ dv_new(t); fb_sqrl_low(t, a); fb_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fb_rdc_basic(fb_t c, dv_t a) { int j, k; dig_t *tmpa; dv_t r; dv_null(r); TRY { dv_new(r); tmpa = a + FB_DIGS; /* First reduce the high part. */ for (int i = fb_bits(tmpa) - 1; i >= 0; i--) { if (fb_get_bit(tmpa, i)) { SPLIT(k, j, i - FB_BITS, FB_DIG_LOG); if (k <= 0) { fb_addd_low(tmpa + j, tmpa + j, fb_poly_get(), FB_DIGS); } else { r[FB_DIGS] = fb_lshb_low(r, fb_poly_get(), k); fb_addd_low(tmpa + j, tmpa + j, r, FB_DIGS + 1); } } } for (int i = fb_bits(a) - 1; i >= FB_BITS; i--) { if (fb_get_bit(a, i)) { SPLIT(k, j, i - FB_BITS, FB_DIG_LOG); if (k == 0) { fb_addd_low(a + j, a + j, fb_poly_get(), FB_DIGS); } else { r[FB_DIGS] = fb_lshb_low(r, fb_poly_get(), k); fb_addd_low(a + j, a + j, r, FB_DIGS + 1); } } } fb_copy(c, a); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(r); } }
void fb_mul_lodah(fb_t c, const fb_t a, const fb_t b) { dv_t t; dv_null(t); TRY { dv_new(t); fb_muln_low(t, a, b); fb_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fp_sqr_comba(fp_t c, const fp_t a) { dv_t t; dv_null(t); TRY { dv_new(t); fp_sqrn_low(t, a); fp_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } }
void fb_mul_basic(fb_t c, const fb_t a, const fb_t b) { int i; dv_t s; fb_t t; dv_null(s); fb_null(t); TRY { /* We need a temporary variable so that c can be a or b. */ fb_new(t); dv_new(s); fb_zero(t); dv_zero(s + FB_DIGS, FB_DIGS); fb_copy(s, b); if (a[0] & 1) { fb_copy(t, b); } for (i = 1; i < FB_BITS; i++) { /* We are already shifting a temporary value, so this is more efficient * than calling fb_lsh(). */ s[FB_DIGS] = fb_lsh1_low(s, s); fb_rdc(s, s); if (fb_get_bit(a, i)) { fb_add(t, t, s); } } if (fb_bits(t) > FB_BITS) { fb_poly_add(c, t); } else { fb_copy(c, t); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t); fb_free(s); } }
void fb_mul_dig(fb_t c, fb_t a, dig_t b) { dv_t t; dv_null(t); TRY { /* We need a temporary variable so that c can be a or b. */ dv_new(t); fb_mul1_low(t, a, b); fb_rdc1_low(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fb_mul_karat(fb_t c, const fb_t a, const fb_t b) { dv_t t; dv_null(t); TRY { /* We need a temporary variable so that c can be a or b. */ dv_new(t); dv_zero(t, 2 * FB_DIGS); fb_mul_karat_imp(t, a, b, FB_DIGS, FB_KARAT); fb_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fp_mul_comba(fp_t c, const fp_t a, const fp_t b) { dv_t t; dv_null(t); TRY { /* We need a temporary variable so that c can be a or b. */ dv_new(t); fp_muln_low(t, a, b); fp_rdc(c, t); dv_free(t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fp_sqr_basic(fp_t c, const fp_t a) { int i; dv_t t; dv_null(t); TRY { dv_new(t); dv_zero(t, 2 * RLC_FP_DIGS); for (i = 0; i < RLC_FP_DIGS; i++) { bn_sqra_low(t + (2 * i), a + i, RLC_FP_DIGS - i); } fp_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t); } }
void fp_sqr_karat(fp_t c, const fp_t a) { dv_t t; dv_null(t); TRY { dv_new(t); dv_zero(t, 2 * RLC_FP_DIGS); if (RLC_FP_DIGS > 1) { fp_sqr_karat_imp(t, a, RLC_FP_DIGS, FP_KARAT); } else { fp_sqrn_low(t, a); } fp_rdc(c, t); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); } }
void fp3_mul_basic(fp3_t c, fp3_t a, fp3_t b) { dv_t t, t0, t1, t2, t3, t4, t5, t6; dv_null(t); dv_null(t0); dv_null(t1); dv_null(t2); dv_null(t3); dv_null(t4); dv_null(t5); dv_null(t6); TRY { dv_new(t); dv_new(t0); dv_new(t1); dv_new(t2); dv_new(t3); dv_new(t4); dv_new(t5); dv_new(t6); /* Karatsuba algorithm. */ /* t0 = a_0 * b_0, t1 = a_1 * b_1, t2 = a_2 * b_2. */ fp_muln_low(t0, a[0], b[0]); fp_muln_low(t1, a[1], b[1]); fp_muln_low(t2, a[2], b[2]); /* t3 = (a_1 + a_2) * (b_1 + b_2). */ fp_add(t3, a[1], a[2]); fp_add(t4, b[1], b[2]); fp_muln_low(t, t3, t4); fp_addd_low(t6, t1, t2); fp_subc_low(t4, t, t6); fp_subc_low(t3, t0, t4); for (int i = -1; i > fp_prime_get_cnr(); i--) { fp_subc_low(t3, t3, t4); } fp_add(t4, a[0], a[1]); fp_add(t5, b[0], b[1]); fp_muln_low(t, t4, t5); fp_addd_low(t4, t0, t1); fp_subc_low(t4, t, t4); fp_subc_low(t4, t4, t2); for (int i = -1; i > fp_prime_get_cnr(); i--) { fp_subc_low(t4, t4, t2); } fp_add(t5, a[0], a[2]); fp_add(t6, b[0], b[2]); fp_muln_low(t, t5, t6); fp_addd_low(t6, t0, t2); fp_subc_low(t5, t, t6); fp_addc_low(t5, t5, t1); /* c_0 = t3 mod p. */ fp_rdc(c[0], t3); /* c_1 = t4 mod p. */ fp_rdc(c[1], t4); /* c_2 = t5 mod p. */ fp_rdc(c[2], t5); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t); dv_free(t0); dv_free(t1); dv_free(t2); dv_free(t3); dv_free(t4); dv_free(t5); dv_free(t6); } }
/** * Multiplies two prime field elements using recursive Karatsuba * multiplication. * * @param[out] c - the result. * @param[in] a - the first prime field element. * @param[in] b - the second prime field element. * @param[in] size - the number of digits to multiply. * @param[in] level - the number of Karatsuba steps to apply. */ static void fp_mul_karat_imp(dv_t c, const fp_t a, const fp_t b, int size, int level) { int i, h, h1; dv_t a1, b1, a0b0, a1b1, t; dig_t carry; /* Compute half the digits of a or b. */ h = size >> 1; h1 = size - h; dv_null(a1); dv_null(b1); dv_null(a0b0); dv_null(a1b1); TRY { /* Allocate the temp variables. */ dv_new(a1); dv_new(b1); dv_new(a0b0); dv_new(a1b1); dv_new(t); dv_zero(a1, h1 + 1); dv_zero(b1, h1 + 1); dv_zero(a0b0, 2 * h); dv_zero(a1b1, 2 * h1); dv_zero(t, 2 * h1 + 1); /* a0b0 = a0 * b0 and a1b1 = a1 * b1 */ if (level <= 1) { #if FP_MUL == BASIC for (i = 0; i < h; i++) { carry = bn_mula_low(a0b0 + i, a, *(b + i), h); *(a0b0 + i + h) = carry; } for (i = 0; i < h1; i++) { carry = bn_mula_low(a1b1 + i, a + h, *(b + h + i), h1); *(a1b1 + i + h1) = carry; } #elif FP_MUL == COMBA || FP_MUL == INTEG bn_muln_low(a0b0, a, b, h); bn_muln_low(a1b1, a + h, b + h, h1); #endif } else { fp_mul_karat_imp(a0b0, a, b, h, level - 1); fp_mul_karat_imp(a1b1, a + h, b + h, h1, level - 1); } for (i = 0; i < 2 * h; i++) { c[i] = a0b0[i]; } for (i = 0; i < 2 * h1 + 1; i++) { c[2 * h + i] = a1b1[i]; } /* a1 = (a1 + a0) */ carry = bn_addn_low(a1, a, a + h, h); bn_add1_low(a1 + h, a1 + h, carry, 2); if (h1 > h) { bn_add1_low(a1 + h, a1 + h, *(a + 2 * h), 2); } /* b1 = (b1 + b0) */ carry = bn_addn_low(b1, b, b + h, h); bn_add1_low(b1 + h, b1 + h, carry, 2); if (h1 > h) { bn_add1_low(b1 + h, b1 + h, *(b + 2 * h), 2); } if (level <= 1) { /* t = (a1 + a0)*(b1 + b0) */ #if FP_MUL == BASIC for (i = 0; i < h1 + 1; i++) { carry = bn_mula_low(t + i, a1, *(b1 + i), h1 + 1); *(t + i + h1 + 1) = carry; } #elif FP_MUL == COMBA || FP_MUL == INTEG bn_muln_low(t, a1, b1, h1 + 1); #endif } else { fp_mul_karat_imp(t, a1, b1, h1 + 1, level - 1); } /* t = t - (a0*b0 << h digits) */ carry = bn_subn_low(t, t, a0b0, 2 * h); bn_sub1_low(t + 2 * h, t + 2 * h, carry, 2 * (h1 + 1) - 2 * h); /* t = t - (a1*b1 << h digits) */ carry = bn_subn_low(t, t, a1b1, 2 * h1); bn_sub1_low(t + 2 * h1, t + 2 * h1, carry, 2 * (h1 + 1) - 2 * h1); /* c = c + [(a1 + a0)*(b1 + b0) << digits] */ c += h; carry = bn_addn_low(c, c, t, 2 * (h1 + 1)); c += 2 * (h1 + 1); bn_add1_low(c, c, carry, 2 * size - h - 2 * (h1 + 1)); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(a1); dv_free(b1); dv_free(a0b0); dv_free(a1b1); dv_free(t); } }
/** * Computes the square of a multiple precision integer using recursive Karatsuba * squaring. * * @param[out] c - the result. * @param[in] a - the prime field element to square. * @param[in] size - the number of digits to square. * @param[in] level - the number of Karatsuba steps to apply. */ static void fp_sqr_karat_imp(dv_t c, const fp_t a, int size, int level) { int i, h, h1; dv_t t0, t1, a0a0, a1a1; dig_t carry; /* Compute half the digits of a or b. */ h = size >> 1; h1 = size - h; dv_null(t0); dv_null(t1); dv_null(a0a0); dv_null(a1a1); TRY { /* Allocate the temp variables. */ dv_new(t0); dv_new(t1); dv_new(a0a0); dv_new(a1a1); dv_zero(t0, 2 * h1); dv_zero(t1, 2 * (h1 + 1)); dv_zero(a0a0, 2 * h); dv_zero(a1a1, 2 * h1); if (level <= 1) { /* a0a0 = a0 * a0 and a1a1 = a1 * a1 */ #if FP_SQR == BASIC for (i = 0; i < h; i++) { bn_sqra_low(a0a0 + (2 * i), a + i, h - i); } for (i = 0; i < h1; i++) { bn_sqra_low(a1a1 + (2 * i), a + h + i, h1 - i); } #elif FP_SQR == COMBA || FP_SQR == INTEG bn_sqrn_low(a0a0, a, h); bn_sqrn_low(a1a1, a + h, h1); #elif FP_SQR == MULTP bn_muln_low(a0a0, a, a, h); bn_muln_low(a1a1, a + h, a + h, h1); #endif } else { fp_sqr_karat_imp(a0a0, a, h, level - 1); fp_sqr_karat_imp(a1a1, a + h, h1, level - 1); } /* t2 = a1 * a1 << 2*h digits + a0 * a0. */ for (i = 0; i < 2 * h; i++) { c[i] = a0a0[i]; } for (i = 0; i < 2 * h1; i++) { c[2 * h + i] = a1a1[i]; } /* t = (a1 + a0) */ carry = bn_addn_low(t0, a, a + h, h); carry = bn_add1_low(t0 + h, t0 + h, carry, 2); if (h1 > h) { carry = bn_add1_low(t0 + h, t0 + h, *(a + 2 * h), 2); } if (level <= 1) { /* a1a1 = (a1 + a0)*(a1 + a0) */ #if FP_SQR == BASIC for (i = 0; i < h1 + 1; i++) { bn_sqra_low(t1 + (2 * i), t0 + i, h1 + 1 - i); } #elif FP_SQR == COMBA || FP_SQR == INTEG bn_sqrn_low(t1, t0, h1 + 1); #elif FP_SQR == MULTP bn_muln_low(t1, t0, t0, h1 + 1); #endif } else { fp_sqr_karat_imp(t1, t0, h1 + 1, level - 1); } /* t = t - (a0*a0 << h digits) */ carry = bn_subn_low(t1, t1, a0a0, 2 * h); bn_sub1_low(t1 + 2 * h, t1 + 2 * h, carry, 2 * (h1 + 1) - 2 * h); /* t = t - (a1*a1 << h digits) */ carry = bn_subn_low(t1, t1, a1a1, 2 * h1); bn_sub1_low(t1 + 2 * h, t1 + 2 * h, carry, 2 * (h1 + 1) - 2 * h); /* c = c + [(a1 + a0)*(a1 + a0) << digits] */ c += h; carry = bn_addn_low(c, c, t1, 2 * (h1 + 1)); c += 2 * (h1 + 1); carry = bn_add1_low(c, c, carry, 2 * size - h - 2 * (h1 + 1)); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t0); dv_free(t1); dv_free(a0a0); dv_free(a1a1); } }
void test_mult(void) { bsc_hist_t *H; csc_mat_t *M; dv_t *x, *x2, *y; int i; printf("Testing matrix-vector multiplication..."); fflush(stdout); x= dv_new(RC_NCOLS); x2= dv_new(RC_NCOLS); y= dv_new(RC_NROWS); if(!x || !x2 || !y) { perror("dv_new"); abort(); } dv_uniform(y, 1.0); H= bsc_random(RC_NROWS, RC_NCOLS, RC_NENT, 1); M= bsc_normalise(H); bsc_hist_destroy(H); if(!csc_check(M, 1)) abort(); mult_csc_dv(x, y, M); for(i= 0; i < RC_NCOLS; i++) { int j; float s= 0.0; for(j= M->ci[i]; j < M->ci[i+1]; j++) s+= M->entries[j]; assert(abs(s - x->entries[i]) - PROB_DELTA); } printf(" done.\n"); #if 0 printf("Testing strided (%d) matrix-vector multiplication...", RC_STRIDE); fflush(stdout); csc_stride(M, RC_STRIDE); if(!csc_check(M, 1)) abort(); csc_str_mult_nv(x2, y, M); for(i= 0; i < x->length; i++) assert(x->entries[i] == x2->entries[i]); printf(" done.\n"); printf("Testing strided (%d) collision-free multiplication...", RC_STRIDE); fflush(stdout); csc_make_cfree(M, RC_CFSPAN); if(!csc_check(M, 1)) abort(); csc_mult_cf(x2, y, M); for(i= 0; i < x->length; i++) assert(x->entries[i] == x2->entries[i]); printf(" done.\n"); #endif csc_mat_destroy(M); dv_destroy(x); dv_destroy(x2); dv_destroy(y); }
void fp3_sqr_basic(fp3_t c, fp3_t a) { dv_t t0, t1, t2, t3, t4, t5; dv_null(t0); dv_null(t1); dv_null(t2); dv_null(t3); dv_null(t4); dv_null(t5); TRY { dv_new(t0); dv_new(t1); dv_new(t2); dv_new(t3); dv_new(t4); dv_new(t5); /* t0 = a_0^2. */ fp_sqrn_low(t0, a[0]); /* t1 = 2 * a_1 * a_2. */ fp_dbl(t2, a[1]); fp_muln_low(t1, t2, a[2]); /* t2 = a_2^2. */ fp_sqrn_low(t2, a[2]); /* t3 = (a_0 + a_2 + a_1)^2, t4 = (a_0 + a_2 - a_1)^2. */ fp_add(t3, a[0], a[2]); fp_add(t4, t3, a[1]); fp_sub(t5, t3, a[1]); fp_sqrn_low(t3, t4); fp_sqrn_low(t4, t5); /* t4 = (t4 + t3)/2. */ fp_addd_low(t4, t4, t3); fp_hlvd_low(t4, t4); /* t3 = t3 - t4 - t1. */ fp_addc_low(t5, t1, t4); fp_subc_low(t3, t3, t5); /* c_2 = t4 - t0 - t2. */ fp_addc_low(t5, t0, t2); fp_subc_low(t4, t4, t5); fp_rdc(c[2], t4); /* c_0 = t0 + t1 * B. */ fp_subc_low(t0, t0, t1); for (int i = -1; i > fp_prime_get_cnr(); i--) { fp_subc_low(t0, t0, t1); } fp_rdc(c[0], t0); /* c_1 = t3 + t2 * B. */ fp_subc_low(t3, t3, t2); for (int i = -1; i > fp_prime_get_cnr(); i--) { fp_subc_low(t3, t3, t2); } fp_rdc(c[1], t3); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(t0); dv_free(t1); dv_free(t2); dv_free(t3); dv_free(t4); dv_free(t5); } }
void fb_sqrm_low(dig_t *c, const dig_t *a) { dv_t t; dv_new(t); fb_sqri_low(c, t, a); }
/** * Assigns the prime field modulus. * * @param[in] p - the new prime field modulus. */ static void fp_prime_set(const bn_t p) { dv_t s, q; bn_t t; ctx_t *ctx = core_get(); if (p->used != FP_DIGS) { THROW(ERR_NO_VALID); } dv_null(s); bn_null(t); dv_null(q); TRY { dv_new(s); bn_new(t); dv_new(q); bn_copy(&(ctx->prime), p); bn_mod_dig(&(ctx->mod8), &(ctx->prime), 8); switch (ctx->mod8) { case 3: case 7: ctx->qnr = -1; /* The current code for extensions of Fp^3 relies on qnr being * also a cubic non-residue. */ ctx->cnr = 0; break; case 1: case 5: ctx->qnr = ctx->cnr = -2; break; default: ctx->qnr = ctx->cnr = 0; THROW(ERR_NO_VALID); break; } #ifdef FP_QNRES if (ctx->mod8 != 3) { THROW(ERR_NO_VALID); } #endif #if FP_RDC == MONTY || !defined(STRIP) bn_mod_pre_monty(t, &(ctx->prime)); ctx->u = t->dp[0]; dv_zero(s, 2 * FP_DIGS); s[2 * FP_DIGS] = 1; dv_zero(q, 2 * FP_DIGS + 1); dv_copy(q, ctx->prime.dp, FP_DIGS); bn_divn_low(t->dp, ctx->conv.dp, s, 2 * FP_DIGS + 1, q, FP_DIGS); ctx->conv.used = FP_DIGS; bn_trim(&(ctx->conv)); bn_set_dig(&(ctx->one), 1); bn_lsh(&(ctx->one), &(ctx->one), ctx->prime.used * BN_DIGIT); bn_mod(&(ctx->one), &(ctx->one), &(ctx->prime)); #endif fp_prime_calc(); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(t); dv_free(s); dv_free(q); } }
/** * Multiplies two binary field elements using recursive Karatsuba * multiplication. * * @param[out] c - the result. * @param[in] a - the first binary field element. * @param[in] b - the second binary field element. * @param[in] size - the number of digits to multiply. * @param[in] level - the number of Karatsuba steps to apply. */ static void fb_mul_karat_imp(dv_t c, const fb_t a, const fb_t b, int size, int level) { int i, h, h1; dv_t a1, b1, ab; dig_t *a0b0, *a1b1; dv_null(a1); dv_null(b1); dv_null(ab); /* Compute half the digits of a or b. */ h = size >> 1; h1 = size - h; TRY { /* Allocate the temp variables. */ dv_new(a1); dv_new(b1); dv_new(ab); a0b0 = ab; a1b1 = ab + 2 * h; /* a0b0 = a0 * b0 and a1b1 = a1 * b1 */ if (level <= 1) { #if FB_MUL == BASIC fb_mul_basic_imp(a0b0, a, b, h); fb_mul_basic_imp(a1b1, a + h, b + h, h1); #elif FB_MUL == LCOMB fb_mul_lcomb_imp(a0b0, a, b, h); fb_mul_lcomb_imp(a1b1, a + h, b + h, h1); #elif FB_MUL == RCOMB fb_mul_rcomb_imp(a0b0, a, b, h); fb_mul_rcomb_imp(a1b1, a + h, b + h, h1); #elif FB_MUL == INTEG || FB_MUL == LODAH fb_muld_low(a0b0, a, b, h); fb_muld_low(a1b1, a + h, b + h, h1); #endif } else { fb_mul_karat_imp(a0b0, a, b, h, level - 1); fb_mul_karat_imp(a1b1, a + h, b + h, h1, level - 1); } for (i = 0; i < 2 * size; i++) { c[i] = ab[i]; } /* c = c - (a0*b0 << h digits) */ fb_addd_low(c + h, c + h, a0b0, 2 * h); /* c = c - (a1*b1 << h digits) */ fb_addd_low(c + h, c + h, a1b1, 2 * h1); /* a1 = (a1 + a0) */ fb_addd_low(a1, a, a + h, h); /* b1 = (b1 + b0) */ fb_addd_low(b1, b, b + h, h); if (h1 > h) { a1[h1 - 1] = a[h + h1 - 1]; b1[h1 - 1] = b[h + h1 - 1]; } if (level <= 1) { /* a1b1 = (a1 + a0)*(b1 + b0) */ #if FB_MUL == BASIC fb_mul_basic_imp(a1b1, a1, b1, h1); #elif FB_MUL == LCOMB fb_mul_lcomb_imp(a1b1, a1, b1, h1); #elif FB_MUL == RCOMB fb_mul_rcomb_imp(a1b1, a1, b1, h1); #elif FB_MUL == INTEG || FB_MUL == LODAH fb_muld_low(a1b1, a1, b1, h1); #endif } else { fb_mul_karat_imp(a1b1, a1, b1, h1, level - 1); } /* c = c + [(a1 + a0)*(b1 + b0) << digits] */ fb_addd_low(c + h, c + h, a1b1, 2 * h1); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { dv_free(a1); dv_free(b1); dv_free(ab); } }
void pp_dbl_k2_projc_lazyr(fp2_t l, ep_t r, ep_t p, ep_t q) { fp_t t0, t1, t2, t3, t4, t5; dv_t u0, u1; fp_null(t0); fp_null(t1); fp_null(t2); fp_null(t3); fp_null(t4); fp_null(t5); dv_null(u0); dv_null(u1); TRY { fp_new(t0); fp_new(t1); fp_new(t2); fp_new(t3); fp_new(t4); fp_new(t5); dv_new(u0); dv_new(u1); /* For these curves, we always can choose a = -3. */ /* dbl-2001-b formulas: 3M + 5S + 8add + 1*4 + 2*8 + 1*3 */ /* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b */ /* t0 = delta = z1^2. */ fp_sqr(t0, p->z); /* t1 = gamma = y1^2. */ fp_sqr(t1, p->y); /* t2 = beta = x1 * y1^2. */ fp_mul(t2, p->x, t1); /* t3 = alpha = 3 * (x1 - z1^2) * (x1 + z1^2). */ fp_sub(t3, p->x, t0); fp_add(t4, p->x, t0); fp_mul(t4, t3, t4); fp_dbl(t3, t4); fp_add(t3, t3, t4); /* t2 = 4 * beta. */ fp_dbl(t2, t2); fp_dbl(t2, t2); /* z3 = (y1 + z1)^2 - gamma - delta. */ fp_add(r->z, p->y, p->z); fp_sqr(r->z, r->z); fp_sub(r->z, r->z, t1); fp_sub(r->z, r->z, t0); /* l0 = 2 * gamma - alpha * (delta * xq + x1). */ fp_dbl(t1, t1); fp_mul(t5, t0, q->x); fp_add(t5, t5, p->x); fp_mul(t5, t5, t3); fp_sub(l[0], t1, t5); /* x3 = alpha^2 - 8 * beta. */ fp_dbl(t5, t2); fp_sqr(r->x, t3); fp_sub(r->x, r->x, t5); /* y3 = alpha * (4 * beta - x3) - 8 * gamma^2. */ fp_sqrn_low(u0, t1); fp_addc_low(u0, u0, u0); fp_subm_low(r->y, t2, r->x); fp_muln_low(u1, r->y, t3); fp_subc_low(u1, u1, u0); fp_rdcn_low(r->y, u1); /* l1 = - z3 * delta * yq. */ fp_mul(l[1], r->z, t0); fp_mul(l[1], l[1], q->y); r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fp_free(t0); fp_free(t1); fp_free(t2); fp_free(t3); fp_free(t4); fp_free(t5); dv_free(u0); dv_free(u1); } }