Exemple #1
0
/* Test point doubling in Jacobian coordinates */
mp_err
testPointDoubleJac(ECGroup *ecgroup)
{
	mp_err res;
	mp_int pz, rx, ry, rz, rx2, ry2, rz2;
	ecfp_jac_pt p, p2;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	MP_DIGITS(&pz) = 0;
	MP_DIGITS(&rx) = 0;
	MP_DIGITS(&ry) = 0;
	MP_DIGITS(&rz) = 0;
	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&rz2) = 0;

	MP_CHECKOK(mp_init(&pz));
	MP_CHECKOK(mp_init(&rx));
	MP_CHECKOK(mp_init(&ry));
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&rz2));

	MP_CHECKOK(mp_set_int(&pz, 5));

	/* Set p2 = 2P */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(p.z, &pz, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	group->pt_dbl_jac(&p, &p2, group);
	M_TimeOperation(group->pt_dbl_jac(&p, &p2, group), 100000);

	/* Calculate doubling to compare against */
	ec_GFp_pt_dbl_jac(&ecgroup->genx, &ecgroup->geny, &pz, &rx2, &ry2,
					  &rz2, ecgroup);
	ec_GFp_pt_jac2aff(&rx2, &ry2, &rz2, &rx2, &ry2, ecgroup);

	/* Do comparison */
	MP_CHECKOK(testJacPoint(&p2, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Doubling - Jacobian\n");
	else
		printf("TEST FAILED - Point Doubling - Jacobian\n");

	mp_clear(&pz);
	mp_clear(&rx);
	mp_clear(&ry);
	mp_clear(&rz);
	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&rz2);

	return res;
}
Exemple #2
0
/* Tests point doubling in Chudnovsky Jacobian coordinates */
mp_err
testPointDoubleChud(ECGroup *ecgroup)
{
	mp_err res;
	mp_int px, py, pz, rx2, ry2, rz2;
	ecfp_aff_pt p;
	ecfp_chud_pt p2;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&rz2) = 0;
	MP_DIGITS(&px) = 0;
	MP_DIGITS(&py) = 0;
	MP_DIGITS(&pz) = 0;

	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&rz2));
	MP_CHECKOK(mp_init(&px));
	MP_CHECKOK(mp_init(&py));
	MP_CHECKOK(mp_init(&pz));

	/* Set p2 = 2P */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	group->pt_dbl_aff2chud(&p, &p2, group);

	/* Calculate doubling to compare against */
	MP_CHECKOK(mp_set_int(&pz, 1));
	ec_GFp_pt_dbl_jac(&ecgroup->genx, &ecgroup->geny, &pz, &rx2, &ry2,
					  &rz2, ecgroup);
	ec_GFp_pt_jac2aff(&rx2, &ry2, &rz2, &rx2, &ry2, ecgroup);

	/* Do comparison and check az^4 */
	MP_CHECKOK(testChudPoint(&p2, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Doubling - Chudnovsky Jacobian\n");
	else
		printf("TEST FAILED - Point Doubling - Chudnovsky Jacobian\n");

	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&rz2);
	mp_clear(&px);
	mp_clear(&py);
	mp_clear(&pz);

	return res;
}
Exemple #3
0
/* Tests point addition of Jacobian + Affine -> Jacobian */
mp_err
testPointAddJacAff(ECGroup *ecgroup)
{
	mp_err res;
	mp_int pz, rx2, ry2, rz2;
	ecfp_jac_pt p, r;
	ecfp_aff_pt q;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	/* Init */
	MP_DIGITS(&pz) = 0;
	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&rz2) = 0;
	MP_CHECKOK(mp_init(&pz));
	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&rz2));

	MP_CHECKOK(mp_set_int(&pz, 5));

	/* Set p */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(p.z, &pz, ecgroup);
	/* Set q */
	ecfp_i2fp(q.x, &ecgroup->geny, ecgroup);
	ecfp_i2fp(q.y, &ecgroup->genx, ecgroup);

	/* Do calculations */
	group->pt_add_jac_aff(&p, &q, &r, group);

	/* Do calculation in integer to compare against */
	MP_CHECKOK(ec_GFp_pt_add_jac_aff
			   (&ecgroup->genx, &ecgroup->geny, &pz, &ecgroup->geny,
				&ecgroup->genx, &rx2, &ry2, &rz2, ecgroup));
	/* convert result R to affine coordinates */
	ec_GFp_pt_jac2aff(&rx2, &ry2, &rz2, &rx2, &ry2, ecgroup);

	MP_CHECKOK(testJacPoint(&r, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Addition - Jacobian & Affine\n");
	else
		printf("TEST FAILED - Point Addition - Jacobian & Affine\n");

	mp_clear(&pz);
	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&rz2);

	return res;
}
Exemple #4
0
/* Tests a point p in Jacobian coordinates, comparing against the
 * expected affine result (x, y). */
mp_err
testJacPoint(ecfp_jac_pt * p, mp_int *x, mp_int *y, ECGroup *ecgroup)
{
	char s[1000];
	mp_int rx, ry, rz;
	mp_err res = MP_OKAY;

	MP_DIGITS(&rx) = 0;
	MP_DIGITS(&ry) = 0;
	MP_DIGITS(&rz) = 0;

	MP_CHECKOK(mp_init(&rx));
	MP_CHECKOK(mp_init(&ry));
	MP_CHECKOK(mp_init(&rz));

	ecfp_fp2i(&rx, p->x, ecgroup);
	ecfp_fp2i(&ry, p->y, ecgroup);
	ecfp_fp2i(&rz, p->z, ecgroup);

	/* convert result R to affine coordinates */
	ec_GFp_pt_jac2aff(&rx, &ry, &rz, &rx, &ry, ecgroup);

	/* Compare to expected result */
	if ((mp_cmp(&rx, x) != 0) || (mp_cmp(&ry, y) != 0)) {
		printf("  Error: Jacobian Floating Point Incorrect.\n");
		MP_CHECKOK(mp_toradix(&rx, s, 16));
		printf("floating point result\nrx    %s\n", s);
		MP_CHECKOK(mp_toradix(&ry, s, 16));
		printf("ry    %s\n", s);
		MP_CHECKOK(mp_toradix(x, s, 16));
		printf("integer result\nx   %s\n", s);
		MP_CHECKOK(mp_toradix(y, s, 16));
		printf("y   %s\n", s);
		res = MP_NO;
		goto CLEANUP;
	}

  CLEANUP:
	mp_clear(&rx);
	mp_clear(&ry);
	mp_clear(&rz);

	return res;
}
Exemple #5
0
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
 * curve points P and R can be identical. Uses mixed Modified-Jacobian
 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
 * additions. Assumes input is already field-encoded using field_enc, and
 * returns output that is still field-encoded. Uses 5-bit window NAF
 * method (algorithm 11) for scalar-point multiplication from Brown,
 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
 * Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
                                          mp_int *rx, mp_int *ry, const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int precomp[16][2], rz, tpx, tpy;
        mp_int raz4;
        mp_int scratch[MAX_SCRATCH];
        signed char *naf = NULL;
        int i, orderBitSize;

        MP_DIGITS(&rz) = 0;
        MP_DIGITS(&raz4) = 0;
        MP_DIGITS(&tpx) = 0;
        MP_DIGITS(&tpy) = 0;
        for (i = 0; i < 16; i++) {
                MP_DIGITS(&precomp[i][0]) = 0;
                MP_DIGITS(&precomp[i][1]) = 0;
        }
        for (i = 0; i < MAX_SCRATCH; i++) {
                MP_DIGITS(&scratch[i]) = 0;
        }

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

        /* initialize precomputation table */
        MP_CHECKOK(mp_init(&tpx, FLAG(n)));
        MP_CHECKOK(mp_init(&tpy, FLAG(n)));;
        MP_CHECKOK(mp_init(&rz, FLAG(n)));
        MP_CHECKOK(mp_init(&raz4, FLAG(n)));

        for (i = 0; i < 16; i++) {
                MP_CHECKOK(mp_init(&precomp[i][0], FLAG(n)));
                MP_CHECKOK(mp_init(&precomp[i][1], FLAG(n)));
        }
        for (i = 0; i < MAX_SCRATCH; i++) {
                MP_CHECKOK(mp_init(&scratch[i], FLAG(n)));
        }

        /* Set out[8] = P */
        MP_CHECKOK(mp_copy(px, &precomp[8][0]));
        MP_CHECKOK(mp_copy(py, &precomp[8][1]));

        /* Set (tpx, tpy) = 2P */
        MP_CHECKOK(group->
                           point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
                                                 group));

        /* Set 3P, 5P, ..., 15P */
        for (i = 8; i < 15; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
                                                         &precomp[i + 1][0], &precomp[i + 1][1],
                                                         group));
        }

        /* Set -15P, -13P, ..., -P */
        for (i = 0; i < 8; i++) {
                MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
                MP_CHECKOK(group->meth->
                                   field_neg(&precomp[15 - i][1], &precomp[i][1],
                                                         group->meth));
        }

        /* R = inf */
        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

        orderBitSize = mpl_significant_bits(&group->order);

        /* Allocate memory for NAF */
#ifdef _KERNEL
        naf = (signed char *) kmem_alloc((orderBitSize + 1), FLAG(n));
#else
        naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
        if (naf == NULL) {
                res = MP_MEM;
                goto CLEANUP;
        }
#endif

        /* Compute 5NAF */
        ec_compute_wNAF(naf, orderBitSize, n, 5);

        /* wNAF method */
        for (i = orderBitSize; i >= 0; i--) {
                /* R = 2R */
                ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
                                             &raz4, scratch, group);
                if (naf[i] != 0) {
                        ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
                                                                 &precomp[(naf[i] + 15) / 2][0],
                                                                 &precomp[(naf[i] + 15) / 2][1], rx, ry,
                                                                 &rz, &raz4, scratch, group);
                }
        }

        /* convert result S to affine coordinates */
        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

  CLEANUP:
        for (i = 0; i < MAX_SCRATCH; i++) {
                mp_clear(&scratch[i]);
        }
        for (i = 0; i < 16; i++) {
                mp_clear(&precomp[i][0]);
                mp_clear(&precomp[i][1]);
        }
        mp_clear(&tpx);
        mp_clear(&tpy);
        mp_clear(&rz);
        mp_clear(&raz4);
#ifdef _KERNEL
        kmem_free(naf, (orderBitSize + 1));
#else
        free(naf);
#endif
        return res;
}
Exemple #6
0
/* Tests point doubling in Modified Jacobian coordinates */
mp_err
testPointDoubleJm(ECGroup *ecgroup)
{
	mp_err res;
	mp_int pz, paz4, rx2, ry2, rz2, raz4;
	ecfp_jm_pt p, r;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	MP_DIGITS(&pz) = 0;
	MP_DIGITS(&paz4) = 0;
	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&rz2) = 0;
	MP_DIGITS(&raz4) = 0;

	MP_CHECKOK(mp_init(&pz));
	MP_CHECKOK(mp_init(&paz4));
	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&rz2));
	MP_CHECKOK(mp_init(&raz4));

	/* Set p */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	/* paz4 = az^4 */
	MP_CHECKOK(mp_set_int(&pz, 5));
	mp_sqrmod(&pz, &ecgroup->meth->irr, &paz4);
	mp_sqrmod(&paz4, &ecgroup->meth->irr, &paz4);
	mp_mulmod(&paz4, &ecgroup->curvea, &ecgroup->meth->irr, &paz4);

	ecfp_i2fp(p.z, &pz, ecgroup);
	ecfp_i2fp(p.az4, &paz4, ecgroup);

	group->pt_dbl_jm(&p, &r, group);

	M_TimeOperation(group->pt_dbl_jm(&p, &r, group), 100000);

	/* Calculate doubling to compare against */
	ec_GFp_pt_dbl_jac(&ecgroup->genx, &ecgroup->geny, &pz, &rx2, &ry2,
					  &rz2, ecgroup);
	ec_GFp_pt_jac2aff(&rx2, &ry2, &rz2, &rx2, &ry2, ecgroup);

	/* Do comparison and check az^4 */
	MP_CHECKOK(testJmPoint(&r, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Doubling - Modified Jacobian\n");
	else
		printf("TEST FAILED - Point Doubling - Modified Jacobian\n");
	mp_clear(&pz);
	mp_clear(&paz4);
	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&rz2);
	mp_clear(&raz4);

	return res;

}
Exemple #7
0
/* Tests point addition in Modified Jacobian + Chudnovsky Jacobian ->
 * Modified Jacobian coordinates. */
mp_err
testPointAddJmChud(ECGroup *ecgroup)
{
	mp_err res;
	mp_int rx2, ry2, ix, iy, iz, test, pz, paz4, qx, qy, qz;
	ecfp_chud_pt q;
	ecfp_jm_pt p, r;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	MP_DIGITS(&qx) = 0;
	MP_DIGITS(&qy) = 0;
	MP_DIGITS(&qz) = 0;
	MP_DIGITS(&pz) = 0;
	MP_DIGITS(&paz4) = 0;
	MP_DIGITS(&iz) = 0;
	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&ix) = 0;
	MP_DIGITS(&iy) = 0;
	MP_DIGITS(&iz) = 0;
	MP_DIGITS(&test) = 0;

	MP_CHECKOK(mp_init(&qx));
	MP_CHECKOK(mp_init(&qy));
	MP_CHECKOK(mp_init(&qz));
	MP_CHECKOK(mp_init(&pz));
	MP_CHECKOK(mp_init(&paz4));
	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&ix));
	MP_CHECKOK(mp_init(&iy));
	MP_CHECKOK(mp_init(&iz));
	MP_CHECKOK(mp_init(&test));

	/* Test Modified Jacobian form addition */
	/* Set p */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);
	/* paz4 = az^4 */
	MP_CHECKOK(mp_set_int(&pz, 5));
	mp_sqrmod(&pz, &ecgroup->meth->irr, &paz4);
	mp_sqrmod(&paz4, &ecgroup->meth->irr, &paz4);
	mp_mulmod(&paz4, &ecgroup->curvea, &ecgroup->meth->irr, &paz4);
	ecfp_i2fp(p.z, &pz, ecgroup);
	ecfp_i2fp(p.az4, &paz4, ecgroup);

	/* Set q */
	MP_CHECKOK(mp_set_int(&qz, 105));
	ecfp_i2fp(q.x, &ecgroup->geny, ecgroup);
	ecfp_i2fp(q.y, &ecgroup->genx, ecgroup);
	ecfp_i2fp(q.z, &qz, ecgroup);
	mp_sqrmod(&qz, &ecgroup->meth->irr, &test);
	ecfp_i2fp(q.z2, &test, ecgroup);
	mp_mulmod(&test, &qz, &ecgroup->meth->irr, &test);
	ecfp_i2fp(q.z3, &test, ecgroup);

	/* Do calculation */
	group->pt_add_jm_chud(&p, &q, &r, group);

	/* Calculate addition to compare against */
	ec_GFp_pt_jac2aff(&ecgroup->geny, &ecgroup->genx, &qz, &qx, &qy,
					  ecgroup);
	ec_GFp_pt_add_jac_aff(&ecgroup->genx, &ecgroup->geny, &pz, &qx, &qy,
						  &ix, &iy, &iz, ecgroup);
	ec_GFp_pt_jac2aff(&ix, &iy, &iz, &rx2, &ry2, ecgroup);

	MP_CHECKOK(testJmPoint(&r, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf
			("  Test Passed - Point Addition - Modified & Chudnovsky Jacobian\n");
	else
		printf
			("TEST FAILED - Point Addition - Modified & Chudnovsky Jacobian\n");

	mp_clear(&qx);
	mp_clear(&qy);
	mp_clear(&qz);
	mp_clear(&pz);
	mp_clear(&paz4);
	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&ix);
	mp_clear(&iy);
	mp_clear(&iz);
	mp_clear(&test);

	return res;
}
Exemple #8
0
/* Tests a point p in Chudnovsky Jacobian coordinates, comparing against
 * the expected affine result (x, y). */
mp_err
testChudPoint(ecfp_chud_pt * p, mp_int *x, mp_int *y, ECGroup *ecgroup)
{

	char s[1000];
	mp_int rx, ry, rz, rz2, rz3, test;
	mp_err res = MP_OKAY;

	/* Initialization */
	MP_DIGITS(&rx) = 0;
	MP_DIGITS(&ry) = 0;
	MP_DIGITS(&rz) = 0;
	MP_DIGITS(&rz2) = 0;
	MP_DIGITS(&rz3) = 0;
	MP_DIGITS(&test) = 0;

	MP_CHECKOK(mp_init(&rx));
	MP_CHECKOK(mp_init(&ry));
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(mp_init(&rz2));
	MP_CHECKOK(mp_init(&rz3));
	MP_CHECKOK(mp_init(&test));

	/* Convert to integers */
	ecfp_fp2i(&rx, p->x, ecgroup);
	ecfp_fp2i(&ry, p->y, ecgroup);
	ecfp_fp2i(&rz, p->z, ecgroup);
	ecfp_fp2i(&rz2, p->z2, ecgroup);
	ecfp_fp2i(&rz3, p->z3, ecgroup);

	/* Verify z2, z3 are valid */
	mp_sqrmod(&rz, &ecgroup->meth->irr, &test);
	if (mp_cmp(&test, &rz2) != 0) {
		printf("  Error: rzp2 not valid\n");
		res = MP_NO;
		goto CLEANUP;
	}
	mp_mulmod(&test, &rz, &ecgroup->meth->irr, &test);
	if (mp_cmp(&test, &rz3) != 0) {
		printf("  Error: rzp2 not valid\n");
		res = MP_NO;
		goto CLEANUP;
	}

	/* convert result R to affine coordinates */
	ec_GFp_pt_jac2aff(&rx, &ry, &rz, &rx, &ry, ecgroup);

	/* Compare against expected result */
	if ((mp_cmp(&rx, x) != 0) || (mp_cmp(&ry, y) != 0)) {
		printf("  Error: Chudnovsky Floating Point Incorrect.\n");
		MP_CHECKOK(mp_toradix(&rx, s, 16));
		printf("floating point result\nrx    %s\n", s);
		MP_CHECKOK(mp_toradix(&ry, s, 16));
		printf("ry    %s\n", s);
		MP_CHECKOK(mp_toradix(x, s, 16));
		printf("integer result\nx   %s\n", s);
		MP_CHECKOK(mp_toradix(y, s, 16));
		printf("y   %s\n", s);
		res = MP_NO;
		goto CLEANUP;
	}

  CLEANUP:
	mp_clear(&rx);
	mp_clear(&ry);
	mp_clear(&rz);
	mp_clear(&rz2);
	mp_clear(&rz3);
	mp_clear(&test);

	return res;
}
Exemple #9
0
/* Tests a point p in Modified Jacobian coordinates, comparing against the 
 * expected affine result (x, y). */
mp_err
testJmPoint(ecfp_jm_pt * r, mp_int *x, mp_int *y, ECGroup *ecgroup)
{

	char s[1000];
	mp_int rx, ry, rz, raz4, test;
	mp_err res = MP_OKAY;

	/* Initialization */
	MP_DIGITS(&rx) = 0;
	MP_DIGITS(&ry) = 0;
	MP_DIGITS(&rz) = 0;
	MP_DIGITS(&raz4) = 0;
	MP_DIGITS(&test) = 0;

	MP_CHECKOK(mp_init(&rx));
	MP_CHECKOK(mp_init(&ry));
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(mp_init(&raz4));
	MP_CHECKOK(mp_init(&test));

	/* Convert to integer */
	ecfp_fp2i(&rx, r->x, ecgroup);
	ecfp_fp2i(&ry, r->y, ecgroup);
	ecfp_fp2i(&rz, r->z, ecgroup);
	ecfp_fp2i(&raz4, r->az4, ecgroup);

	/* Verify raz4 = rz^4 * a */
	mp_sqrmod(&rz, &ecgroup->meth->irr, &test);
	mp_sqrmod(&test, &ecgroup->meth->irr, &test);
	mp_mulmod(&test, &ecgroup->curvea, &ecgroup->meth->irr, &test);
	if (mp_cmp(&test, &raz4) != 0) {
		printf("  Error: a*z^4 not valid\n");
		MP_CHECKOK(mp_toradix(&ecgroup->curvea, s, 16));
		printf("a    %s\n", s);
		MP_CHECKOK(mp_toradix(&rz, s, 16));
		printf("rz   %s\n", s);
		MP_CHECKOK(mp_toradix(&raz4, s, 16));
		printf("raz4    %s\n", s);
		res = MP_NO;
		goto CLEANUP;
	}

	/* convert result R to affine coordinates */
	ec_GFp_pt_jac2aff(&rx, &ry, &rz, &rx, &ry, ecgroup);

	/* Compare against expected result */
	if ((mp_cmp(&rx, x) != 0) || (mp_cmp(&ry, y) != 0)) {
		printf("  Error: Modified Jacobian Floating Point Incorrect.\n");
		MP_CHECKOK(mp_toradix(&rx, s, 16));
		printf("floating point result\nrx    %s\n", s);
		MP_CHECKOK(mp_toradix(&ry, s, 16));
		printf("ry    %s\n", s);
		MP_CHECKOK(mp_toradix(x, s, 16));
		printf("integer result\nx   %s\n", s);
		MP_CHECKOK(mp_toradix(y, s, 16));
		printf("y   %s\n", s);
		res = MP_NO;
		goto CLEANUP;
	}
  CLEANUP:
	mp_clear(&rx);
	mp_clear(&ry);
	mp_clear(&rz);
	mp_clear(&raz4);
	mp_clear(&test);

	return res;
}
Exemple #10
0
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Uses mixed Jacobian-affine coordinates. Input and output values are
 * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
 * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
 * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
				   const mp_int *py, mp_int *rx, mp_int *ry,
				   const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int precomp[4][4][2];
	mp_int rz;
	const mp_int *a, *b;
	unsigned int i, j;
	int ai, bi, d;

	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) {
			MP_DIGITS(&precomp[i][j][0]) = 0;
			MP_DIGITS(&precomp[i][j][1]) = 0;
		}
	}
	MP_DIGITS(&rz) = 0;

	ARGCHK(group != NULL, MP_BADARG);
	ARGCHK(!((k1 == NULL)
			 && ((k2 == NULL) || (px == NULL)
				 || (py == NULL))), MP_BADARG);

	/* if some arguments are not defined used ECPoint_mul */
	if (k1 == NULL) {
		return ECPoint_mul(group, k2, px, py, rx, ry);
	} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
		return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
	}

	/* initialize precomputation table */
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) {
			MP_CHECKOK(mp_init(&precomp[i][j][0]));
			MP_CHECKOK(mp_init(&precomp[i][j][1]));
		}
	}

	/* fill precomputation table */
	/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
	if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
		a = k2;
		b = k1;
		if (group->meth->field_enc) {
			MP_CHECKOK(group->meth->
					   field_enc(px, &precomp[1][0][0], group->meth));
			MP_CHECKOK(group->meth->
					   field_enc(py, &precomp[1][0][1], group->meth));
		} else {
			MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
			MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
		}
		MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
		MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
	} else {
		a = k1;
		b = k2;
		MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
		MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
		if (group->meth->field_enc) {
			MP_CHECKOK(group->meth->
					   field_enc(px, &precomp[0][1][0], group->meth));
			MP_CHECKOK(group->meth->
					   field_enc(py, &precomp[0][1][1], group->meth));
		} else {
			MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
			MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
		}
	}
	/* precompute [*][0][*] */
	mp_zero(&precomp[0][0][0]);
	mp_zero(&precomp[0][0][1]);
	MP_CHECKOK(group->
			   point_dbl(&precomp[1][0][0], &precomp[1][0][1],
						 &precomp[2][0][0], &precomp[2][0][1], group));
	MP_CHECKOK(group->
			   point_add(&precomp[1][0][0], &precomp[1][0][1],
						 &precomp[2][0][0], &precomp[2][0][1],
						 &precomp[3][0][0], &precomp[3][0][1], group));
	/* precompute [*][1][*] */
	for (i = 1; i < 4; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[0][1][0], &precomp[0][1][1],
							 &precomp[i][0][0], &precomp[i][0][1],
							 &precomp[i][1][0], &precomp[i][1][1], group));
	}
	/* precompute [*][2][*] */
	MP_CHECKOK(group->
			   point_dbl(&precomp[0][1][0], &precomp[0][1][1],
						 &precomp[0][2][0], &precomp[0][2][1], group));
	for (i = 1; i < 4; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[0][2][0], &precomp[0][2][1],
							 &precomp[i][0][0], &precomp[i][0][1],
							 &precomp[i][2][0], &precomp[i][2][1], group));
	}
	/* precompute [*][3][*] */
	MP_CHECKOK(group->
			   point_add(&precomp[0][1][0], &precomp[0][1][1],
						 &precomp[0][2][0], &precomp[0][2][1],
						 &precomp[0][3][0], &precomp[0][3][1], group));
	for (i = 1; i < 4; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[0][3][0], &precomp[0][3][1],
							 &precomp[i][0][0], &precomp[i][0][1],
							 &precomp[i][3][0], &precomp[i][3][1], group));
	}

	d = (mpl_significant_bits(a) + 1) / 2;

	/* R = inf */
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

        for (i = d; i-- > 0;) {
		ai = MP_GET_BIT(a, 2 * i + 1);
		ai <<= 1;
		ai |= MP_GET_BIT(a, 2 * i);
		bi = MP_GET_BIT(b, 2 * i + 1);
		bi <<= 1;
		bi |= MP_GET_BIT(b, 2 * i);
		/* R = 2^2 * R */
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		/* R = R + (ai * A + bi * B) */
		MP_CHECKOK(ec_GFp_pt_add_jac_aff
				   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
					rx, ry, &rz, group));
	}

	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

	if (group->meth->field_dec) {
		MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
		MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
	}

  CLEANUP:
	mp_clear(&rz);
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) {
			mp_clear(&precomp[i][j][0]);
			mp_clear(&precomp[i][j][1]);
		}
	}
	return res;
}
Exemple #11
0
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
 * already field-encoded using field_enc, and returns output that is still 
 * field-encoded. Uses 4-bit window method. */
mp_err
ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
				  mp_int *rx, mp_int *ry, const ECGroup *group)
{
	mp_err res = MP_OKAY;
	mp_int precomp[16][2], rz;
	int i, ni, d;

	MP_DIGITS(&rz) = 0;
	for (i = 0; i < 16; i++) {
		MP_DIGITS(&precomp[i][0]) = 0;
		MP_DIGITS(&precomp[i][1]) = 0;
	}

	ARGCHK(group != NULL, MP_BADARG);
	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

	/* initialize precomputation table */
	for (i = 0; i < 16; i++) {
		MP_CHECKOK(mp_init(&precomp[i][0]));
		MP_CHECKOK(mp_init(&precomp[i][1]));
	}

	/* fill precomputation table */
	mp_zero(&precomp[0][0]);
	mp_zero(&precomp[0][1]);
	MP_CHECKOK(mp_copy(px, &precomp[1][0]));
	MP_CHECKOK(mp_copy(py, &precomp[1][1]));
	for (i = 2; i < 16; i++) {
		MP_CHECKOK(group->
				   point_add(&precomp[1][0], &precomp[1][1],
							 &precomp[i - 1][0], &precomp[i - 1][1],
							 &precomp[i][0], &precomp[i][1], group));
	}

	d = (mpl_significant_bits(n) + 3) / 4;

	/* R = inf */
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

	for (i = d - 1; i >= 0; i--) {
		/* compute window ni */
		ni = MP_GET_BIT(n, 4 * i + 3);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 2);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 1);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i);
		/* R = 2^4 * R */
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
		/* R = R + (ni * P) */
		MP_CHECKOK(ec_GFp_pt_add_jac_aff
				   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
					&rz, group));
	}

	/* convert result S to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

  CLEANUP:
	mp_clear(&rz);
	for (i = 0; i < 16; i++) {
		mp_clear(&precomp[i][0]);
		mp_clear(&precomp[i][1]);
	}
	return res;
}
Exemple #12
0
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
 * curve points P and R can be identical. Uses mixed Modified-Jacobian
 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
 * additions. Uses 5-bit window NAF method (algorithm 11) for scalar-point 
 * multiplication from Brown, Hankerson, Lopez, Menezes. Software
 * Implementation of the NIST Elliptic Curves Over Prime Fields. */
mp_err
ec_GFp_point_mul_wNAF_fp(const mp_int *n, const mp_int *px,
						 const mp_int *py, mp_int *rx, mp_int *ry,
						 const ECGroup *ecgroup)
{
	mp_err res = MP_OKAY;
	mp_int sx, sy, sz;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;
	ecfp_chud_pt precomp[16];

	ecfp_aff_pt p;
	ecfp_jm_pt r;

	signed char naf[group->orderBitSize + 1];
	int i;

	MP_DIGITS(&sx) = 0;
	MP_DIGITS(&sy) = 0;
	MP_DIGITS(&sz) = 0;
	MP_CHECKOK(mp_init(&sx));
	MP_CHECKOK(mp_init(&sy));
	MP_CHECKOK(mp_init(&sz));

	/* if n = 0 then r = inf */
	if (mp_cmp_z(n) == 0) {
		mp_zero(rx);
		mp_zero(ry);
		res = MP_OKAY;
		goto CLEANUP;
		/* if n < 0 then out of range error */
	} else if (mp_cmp_z(n) < 0) {
		res = MP_RANGE;
		goto CLEANUP;
	}

	/* Convert from integer to floating point */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &(ecgroup->curvea), ecgroup);

	/* Perform precomputation */
	group->precompute_chud(precomp, &p, group);

	/* Compute 5NAF */
	ec_compute_wNAF(naf, group->orderBitSize, n, 5);

	/* Init R = pt at infinity */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	/* wNAF method */
	for (i = group->orderBitSize; i >= 0; i--) {
		/* R = 2R */
		group->pt_dbl_jm(&r, &r, group);

		if (naf[i] != 0) {
			group->pt_add_jm_chud(&r, &precomp[(naf[i] + 15) / 2], &r,
								  group);
		}
	}

	/* Convert from floating point to integer */
	ecfp_fp2i(&sx, r.x, ecgroup);
	ecfp_fp2i(&sy, r.y, ecgroup);
	ecfp_fp2i(&sz, r.z, ecgroup);

	/* convert result R to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(&sx, &sy, &sz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&sx);
	mp_clear(&sy);
	mp_clear(&sz);
	return res;
}
Exemple #13
0
/* Uses mixed Jacobian-affine coordinates to perform a point
 * multiplication: R = n * P, n scalar. Uses mixed Jacobian-affine
 * coordinates (Jacobian coordinates for doubles and affine coordinates
 * for additions; based on recommendation from Brown et al.). Not very
 * time efficient but quite space efficient, no precomputation needed.
 * group contains the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical. Performs calculations in floating point number format, since 
 * this is faster than the integer operations on the ULTRASPARC III.
 * Uses left-to-right binary method (double & add) (algorithm 9) for
 * scalar-point multiplication from Brown, Hankerson, Lopez, Menezes.
 * Software Implementation of the NIST Elliptic Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jac_fp(const mp_int *n, const mp_int *px, const mp_int *py,
					 mp_int *rx, mp_int *ry, const ECGroup *ecgroup)
{
	mp_err res;
	mp_int sx, sy, sz;

	ecfp_aff_pt p;
	ecfp_jac_pt r;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	int i, l;

	MP_DIGITS(&sx) = 0;
	MP_DIGITS(&sy) = 0;
	MP_DIGITS(&sz) = 0;
	MP_CHECKOK(mp_init(&sx));
	MP_CHECKOK(mp_init(&sy));
	MP_CHECKOK(mp_init(&sz));

	/* if n = 0 then r = inf */
	if (mp_cmp_z(n) == 0) {
		mp_zero(rx);
		mp_zero(ry);
		res = MP_OKAY;
		goto CLEANUP;
		/* if n < 0 then out of range error */
	} else if (mp_cmp_z(n) < 0) {
		res = MP_RANGE;
		goto CLEANUP;
	}

	/* Convert from integer to floating point */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &(ecgroup->curvea), ecgroup);

	/* Init r to point at infinity */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	/* double and add method */
	l = mpl_significant_bits(n) - 1;

	for (i = l; i >= 0; i--) {
		/* R = 2R */
		group->pt_dbl_jac(&r, &r, group);

		/* if n_i = 1, then R = R + Q */
		if (MP_GET_BIT(n, i) != 0) {
			group->pt_add_jac_aff(&r, &p, &r, group);
		}
	}

	/* Convert from floating point to integer */
	ecfp_fp2i(&sx, r.x, ecgroup);
	ecfp_fp2i(&sy, r.y, ecgroup);
	ecfp_fp2i(&sz, r.z, ecgroup);

	/* convert result R to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(&sx, &sy, &sz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&sx);
	mp_clear(&sy);
	mp_clear(&sz);
	return res;
}
Exemple #14
0
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Elliptic curve points P and R can be
 * identical.  Uses Jacobian coordinates. Uses 4-bit window method. */
mp_err
ec_GFp_point_mul_jac_4w_fp(const mp_int *n, const mp_int *px,
						   const mp_int *py, mp_int *rx, mp_int *ry,
						   const ECGroup *ecgroup)
{
	mp_err res = MP_OKAY;
	ecfp_jac_pt precomp[16], r;
	ecfp_aff_pt p;
	EC_group_fp *group;

	mp_int rz;
	int i, ni, d;

	ARGCHK(ecgroup != NULL, MP_BADARG);
	ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

	group = (EC_group_fp *) ecgroup->extra1;
	MP_DIGITS(&rz) = 0;
	MP_CHECKOK(mp_init(&rz));

	/* init p, da */
	ecfp_i2fp(p.x, px, ecgroup);
	ecfp_i2fp(p.y, py, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	/* Do precomputation */
	group->precompute_jac(precomp, &p, group);

	/* Do main body of calculations */
	d = (mpl_significant_bits(n) + 3) / 4;

	/* R = inf */
	for (i = 0; i < group->numDoubles; i++) {
		r.z[i] = 0;
	}

	for (i = d - 1; i >= 0; i--) {
		/* compute window ni */
		ni = MP_GET_BIT(n, 4 * i + 3);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 2);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i + 1);
		ni <<= 1;
		ni |= MP_GET_BIT(n, 4 * i);

		/* R = 2^4 * R */
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);
		group->pt_dbl_jac(&r, &r, group);

		/* R = R + (ni * P) */
		group->pt_add_jac(&r, &precomp[ni], &r, group);
	}

	/* Convert back to integer */
	ecfp_fp2i(rx, r.x, ecgroup);
	ecfp_fp2i(ry, r.y, ecgroup);
	ecfp_fp2i(&rz, r.z, ecgroup);

	/* convert result S to affine coordinates */
	MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, ecgroup));

  CLEANUP:
	mp_clear(&rz);
	return res;
}