void ed_mul_basic(ed_t r, const ed_t p, const bn_t k) { ed_t t; ed_null(t); if (bn_is_zero(k) || ed_is_infty(p)) { ed_set_infty(r); return; } TRY { ed_new(t); ed_copy(t, p); for (int i = bn_bits(k) - 2; i >= 0; i--) { ed_dbl(t, t); if (bn_get_bit(k, i)) { ed_add(t, t, p); } } ed_norm(r, t); if (bn_sign(k) == RLC_NEG) { ed_neg(r, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { ed_free(t); } }
void ed_mul_monty(ed_t r, const ed_t p, const bn_t k) { ed_t t[2]; ed_null(t[0]); ed_null(t[1]); if (bn_is_zero(k) || ed_is_infty(p)) { ed_set_infty(r); return; } TRY { ed_new(t[0]); ed_new(t[1]); ed_set_infty(t[0]); ed_copy(t[1], p); for (int i = bn_bits(k) - 1; i >= 0; i--) { int j = bn_get_bit(k, i); dv_swap_cond(t[0]->x, t[1]->x, RLC_FP_DIGS, j ^ 1); dv_swap_cond(t[0]->y, t[1]->y, RLC_FP_DIGS, j ^ 1); dv_swap_cond(t[0]->z, t[1]->z, RLC_FP_DIGS, j ^ 1); #if ED_ADD == EXTND dv_swap_cond(t[0]->t, t[1]->t, RLC_FP_DIGS, j ^ 1); #endif ed_add(t[0], t[0], t[1]); ed_dbl(t[1], t[1]); dv_swap_cond(t[0]->x, t[1]->x, RLC_FP_DIGS, j ^ 1); dv_swap_cond(t[0]->y, t[1]->y, RLC_FP_DIGS, j ^ 1); dv_swap_cond(t[0]->z, t[1]->z, RLC_FP_DIGS, j ^ 1); #if ED_ADD == EXTND dv_swap_cond(t[0]->t, t[1]->t, RLC_FP_DIGS, j ^ 1); #endif } ed_norm(r, t[0]); if (bn_sign(k) == RLC_NEG) { ed_neg(r, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { ed_free(t[1]); ed_free(t[0]); } }
/** * Multiplies a prime elliptic curve point by an integer using the COMBS * method. * * @param[out] r - the result. * @param[in] t - the precomputed table. * @param[in] k - the integer. */ static void ed_mul_combs_endom(ed_t r, const ed_t *t, const bn_t k) { int i, j, l, w0, w1, n0, n1, p0, p1, s0, s1; bn_t n, k0, k1, v1[3], v2[3]; ed_t u; bn_null(n); bn_null(k0); bn_null(k1); ed_null(u); TRY { bn_new(n); bn_new(k0); bn_new(k1); ed_new(u); for (i = 0; i < 3; i++) { bn_null(v1[i]); bn_null(v2[i]); bn_new(v1[i]); bn_new(v2[i]); } ed_curve_get_ord(n); ed_curve_get_v1(v1); ed_curve_get_v2(v2); l = bn_bits(n); l = ((l % (2 * ED_DEPTH)) == 0 ? (l / (2 * ED_DEPTH)) : (l / (2 * ED_DEPTH)) + 1); bn_rec_glv(k0, k1, k, n, (const bn_t *)v1, (const bn_t *)v2); s0 = bn_sign(k0); s1 = bn_sign(k1); bn_abs(k0, k0); bn_abs(k1, k1); n0 = bn_bits(k0); n1 = bn_bits(k1); p0 = (ED_DEPTH) * l - 1; ed_set_infty(r); for (i = l - 1; i >= 0; i--) { ed_dbl(r, r); w0 = 0; w1 = 0; p1 = p0--; for (j = ED_DEPTH - 1; j >= 0; j--, p1 -= l) { w0 = w0 << 1; w1 = w1 << 1; if (p1 < n0 && bn_get_bit(k0, p1)) { w0 = w0 | 1; } if (p1 < n1 && bn_get_bit(k1, p1)) { w1 = w1 | 1; } } if (w0 > 0) { if (s0 == BN_POS) { ed_add(r, r, t[w0]); } else { ed_sub(r, r, t[w0]); } } if (w1 > 0) { ed_copy(u, t[w1]); fp_mul(u->x, u->x, ed_curve_get_beta()); if (s1 == BN_NEG) { ed_neg(u, u); } ed_add(r, r, u); } } ed_norm(r, r); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(n); bn_free(k0); bn_free(k1); ed_free(u); for (i = 0; i < 3; i++) { bn_free(v1[i]); bn_free(v2[i]); } } }
static void ed_mul_naf_imp(ed_t r, const ed_t p, const bn_t k) { int l, i, n; int8_t naf[RLC_FP_BITS + 1]; ed_t t[1 << (ED_WIDTH - 2)]; if (bn_is_zero(k)) { ed_set_infty(r); return; } TRY { /* Prepare the precomputation table. */ for (i = 0; i < (1 << (ED_WIDTH - 2)); i++) { ed_null(t[i]); ed_new(t[i]); } /* Compute the precomputation table. */ ed_tab(t, p, ED_WIDTH); /* Compute the w-NAF representation of k. */ l = sizeof(naf); bn_rec_naf(naf, &l, k, EP_WIDTH); ed_set_infty(r); for (i = l - 1; i > 0; i--) { n = naf[i]; if (n == 0) { /* This point will be doubled in the previous iteration. */ r->norm = 2; ed_dbl(r, r); } else { ed_dbl(r, r); if (n > 0) { ed_add(r, r, t[n / 2]); } else if (n < 0) { ed_sub(r, r, t[-n / 2]); } } } /* Last iteration. */ n = naf[0]; ed_dbl(r, r); if (n > 0) { ed_add(r, r, t[n / 2]); } else if (n < 0) { ed_sub(r, r, t[-n / 2]); } /* Convert r to affine coordinates. */ ed_norm(r, r); if (bn_sign(k) == RLC_NEG) { ed_neg(r, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { /* Free the precomputation table. */ for (i = 0; i < (1 << (ED_WIDTH - 2)); i++) { ed_free(t[i]); } } }
void ed_mul_slide(ed_t r, const ed_t p, const bn_t k) { ed_t t[1 << (EP_WIDTH - 1)], q; int i, j, l; uint8_t win[RLC_FP_BITS + 1]; ed_null(q); if (bn_is_zero(k) || ed_is_infty(p)) { ed_set_infty(r); return; } TRY { for (i = 0; i < (1 << (EP_WIDTH - 1)); i ++) { ed_null(t[i]); ed_new(t[i]); } ed_new(q); ed_copy(t[0], p); ed_dbl(q, p); #if defined(EP_MIXED) ed_norm(q, q); #endif /* Create table. */ for (i = 1; i < (1 << (EP_WIDTH - 1)); i++) { ed_add(t[i], t[i - 1], q); } #if defined(EP_MIXED) ed_norm_sim(t + 1, (const ed_t *)t + 1, (1 << (EP_WIDTH - 1)) - 1); #endif ed_set_infty(q); l = RLC_FP_BITS + 1; bn_rec_slw(win, &l, k, EP_WIDTH); for (i = 0; i < l; i++) { if (win[i] == 0) { ed_dbl(q, q); } else { for (j = 0; j < util_bits_dig(win[i]); j++) { ed_dbl(q, q); } ed_add(q, q, t[win[i] >> 1]); } } ed_norm(r, q); if (bn_sign(k) == RLC_NEG) { ed_neg(r, r); } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { for (i = 0; i < (1 << (EP_WIDTH - 1)); i++) { ed_free(t[i]); } ed_free(q); } }