void use_case_5_generate_mesh(
  const std::string& mesh_options ,
  stk::mesh::BulkData & mesh ,
  const VectorFieldType & node_coord ,
  stk::mesh::Part & hex_block ,
  stk::mesh::Part & quad_shell_block )
{
  mesh.modification_begin();

  const unsigned parallel_size = mesh.parallel_size();
  const unsigned parallel_rank = mesh.parallel_rank();

  double t = 0 ;
  size_t num_hex = 0 ;
  size_t num_shell = 0 ;
  size_t num_nodes = 0 ;
  size_t num_block = 0 ;
  int error_flag = 0 ;

  try {

    Iogn::GeneratedMesh gmesh( mesh_options, parallel_size, parallel_rank );

    num_nodes = gmesh.node_count_proc();
    num_block = gmesh.block_count();

    t = stk::wall_time();

    std::vector<int> node_map( num_nodes , 0 );

    gmesh.node_map( node_map );

    {

      for ( size_t i = 1 ; i <= num_block ; ++i ) {
        const size_t                        num_elem = gmesh.element_count_proc(i);
        const std::pair<std::string,int> top_info = gmesh.topology_type(i);

	std::vector<int> elem_map( num_elem , 0 );
        std::vector<int> elem_conn( num_elem * top_info.second );

	gmesh.element_map( i, elem_map );
        gmesh.connectivity( i , elem_conn );

        if ( top_info.second == 8 ) {

          for ( size_t j = 0 ; j < num_elem ; ++j ) {

            const int * const local_node_id = & elem_conn[ j * 8 ] ;

            const stk::mesh::EntityId node_id[8] = {
              local_node_id[0] ,
              local_node_id[1] ,
              local_node_id[2] ,
              local_node_id[3] ,
              local_node_id[4] ,
              local_node_id[5] ,
              local_node_id[6] ,
              local_node_id[7]
            };

            const stk::mesh::EntityId elem_id = elem_map[ j ];

            stk::mesh::fem::declare_element( mesh , hex_block , elem_id , node_id );

            ++num_hex ;
          }
        }
        else if ( top_info.second == 4 ) {

          for ( size_t j = 0 ; j < num_elem ; ++j ) {

            const int * const local_node_id = & elem_conn[ j * 4 ] ;

            const stk::mesh::EntityId node_id[4] = {
              local_node_id[0] ,
              local_node_id[1] ,
              local_node_id[2] ,
              local_node_id[3]
            };

            const stk::mesh::EntityId elem_id = elem_map[ j ];

            stk::mesh::fem::declare_element( mesh , quad_shell_block , elem_id , node_id );

            ++num_shell ;
          }
        }
      }
    }

    std::vector<double> node_coordinates( 3 * node_map.size() );

    gmesh.coordinates( node_coordinates );

    if ( 3 * node_map.size() != node_coordinates.size() ) {
      std::ostringstream msg ;
      msg << "  P" << mesh.parallel_rank()
          << ": ERROR, node_map.size() = "
          << node_map.size()
          << " , node_coordinates.size() / 3 = "
          << ( node_coordinates.size() / 3 );
      throw std::runtime_error( msg.str() );
    }

    for ( unsigned i = 0 ; i < node_map.size() ; ++i ) {
      const unsigned i3 = i * 3 ;

      stk::mesh::Entity * const node = mesh.get_entity( stk::mesh::fem::FEMMetaData::NODE_RANK , node_map[i] );

      if ( NULL == node ) {
        std::ostringstream msg ;
        msg << "  P:" << mesh.parallel_rank()
            << " ERROR, Node not found: "
            << node_map[i] << " = node_map[" << i << "]" ;
        throw std::runtime_error( msg.str() );
      }

      double * const data = field_data( node_coord , *node );
      data[0] = node_coordinates[ i3 + 0 ];
      data[1] = node_coordinates[ i3 + 1 ];
      data[2] = node_coordinates[ i3 + 2 ];
    }
  }
  catch ( const std::exception & X ) {
    std::cout << "  P:" << mesh.parallel_rank() << ": " << X.what()
              << std::endl ;
    std::cout.flush();
    error_flag = 1 ;
  }
  catch( ... ) {
    std::cout << "  P:" << mesh.parallel_rank()
              << " Caught unknown exception"
              << std::endl ;
    std::cout.flush();
    error_flag = 1 ;
  }

  stk::all_reduce( mesh.parallel() , stk::ReduceMax<1>( & error_flag ) );

  if ( error_flag ) {
    std::string msg( "Failed mesh generation" );
    throw std::runtime_error( msg );
  }

  mesh.modification_end();

  double dt = stk::wall_dtime( t );

  stk::all_reduce( mesh.parallel() , stk::ReduceMax<1>( & dt ) );

  std::cout << "  P" << mesh.parallel_rank()
            << ": Meshed Hex = " << num_hex
            << " , Shell = " << num_shell
            << " , Node = " << num_nodes
            << " in " << dt << " sec"
            << std::endl ;
  std::cout.flush();
}
int write_vis(std::string &nemI_out_file,
	      std::string &exoII_inp_file,
	      Machine_Description* machine,
	      Problem_Description* prob,
	      Mesh_Description<INT>* mesh,
	      LB_Description<INT>* lb)
{
  int    exid_vis, exid_inp;

  char  title[MAX_LINE_LENGTH+1];
  const char   *coord_names[] = {"X", "Y", "Z"};

  /*-----------------------------Execution Begins------------------------------*/

  /* Generate the file name for the visualization file */
  std::string vis_file_name = remove_extension(nemI_out_file);
  vis_file_name += "-vis.exoII";

  /* Generate the title for the file */
  strcpy(title, UTIL_NAME);
  strcat(title, " ");
  strcat(title, ELB_VERSION);
  strcat(title, " load balance visualization file");

  /*
   * If the vis technique is to be by element block then calculate the
   * number of element blocks.
   */
  int    vis_nelem_blks;
  if(prob->type == ELEMENTAL)
    vis_nelem_blks = machine->num_procs;
  else
    vis_nelem_blks = machine->num_procs + 1;

  /* Create the ExodusII file */
  std::cout << "Outputting load balance visualization file " << vis_file_name.c_str() << "\n";
  int cpu_ws = 0;
  int io_ws = 0;
  int mode = EX_CLOBBER;
  if (prob->int64db|prob->int64api) {
    mode |= EX_NETCDF4|EX_NOCLASSIC|prob->int64db|prob->int64api;
  }
  if((exid_vis=ex_create(vis_file_name.c_str(), mode, &cpu_ws, &io_ws)) < 0) {
    Gen_Error(0, "fatal: unable to create visualization output file");
    return 0;
  }
  ON_BLOCK_EXIT(ex_close, exid_vis);

  /*
   * Open the original input ExodusII file, read the values for the
   * element blocks and output them to the visualization file.
   */
  int icpu_ws=0;
  int iio_ws=0;
  float vers=0.0;
  mode = EX_READ | prob->int64api;
  if((exid_inp=ex_open(exoII_inp_file.c_str(), mode, &icpu_ws, &iio_ws, &vers)) < 0) {
    Gen_Error(0, "fatal: unable to open input ExodusII file");
    return 0;
  }
  ON_BLOCK_EXIT(ex_close, exid_inp);
  
  char **elem_type  = (char**)array_alloc(2, mesh->num_el_blks, MAX_STR_LENGTH+1,
					  sizeof(char));
  if(!elem_type) {
    Gen_Error(0, "fatal: insufficient memory");
    return 0;
  }
  ON_BLOCK_EXIT(free, elem_type);

  std::vector<INT> el_blk_ids(mesh->num_el_blks);
  std::vector<INT> el_cnt_blk(mesh->num_el_blks);
  std::vector<INT> node_pel_blk(mesh->num_el_blks);
  std::vector<INT> nattr_el_blk(mesh->num_el_blks);

  if(ex_get_elem_blk_ids(exid_inp, TOPTR(el_blk_ids)) < 0) {
    Gen_Error(0, "fatal: unable to get element block IDs");
    return 0;
  }

  int acc_vis = ELB_TRUE; // Output a different element block per processor
  if (prob->vis_out == 2)
    acc_vis = ELB_FALSE; // Output a nodal/element variable showing processor

  size_t nsize = 0;

  /*
   * Find out if the mesh consists of mixed elements. If not then
   * element blocks will be used to visualize the partitioning. Otherwise
   * nodal/element results will be used.
   */
  for(size_t ecnt=0; ecnt < mesh->num_el_blks; ecnt++) {
    if(ex_get_elem_block(exid_inp, el_blk_ids[ecnt], elem_type[ecnt],
			 &el_cnt_blk[ecnt], &node_pel_blk[ecnt],
			 &nattr_el_blk[ecnt]) < 0) {
      Gen_Error(0, "fatal: unable to get element block parameters");
      return 0;
    }

    nsize += el_cnt_blk[ecnt]*node_pel_blk[ecnt];

    if(strcmp(elem_type[0], elem_type[ecnt]) == 0) {
      if(node_pel_blk[0] != node_pel_blk[ecnt])
	acc_vis = ELB_FALSE;
    }
    else
      acc_vis = ELB_FALSE;
  }

  if(acc_vis == ELB_TRUE) {
    /* Output the initial information */
    if(ex_put_init(exid_vis, title, mesh->num_dims, mesh->num_nodes,
		   mesh->num_elems, vis_nelem_blks, 0, 0) < 0) {
      Gen_Error(0, "fatal: unable to output initial params to vis file");
      return 0;
    }
	
    /* Output the nodal coordinates */
    float *xptr = nullptr;
    float *yptr = nullptr;
    float *zptr = nullptr;
    switch(mesh->num_dims) {
    case 3:
      zptr = (mesh->coords) + 2*mesh->num_nodes;
      /* FALLTHRU */
    case 2:
      yptr = (mesh->coords) + mesh->num_nodes;
      /* FALLTHRU */
    case 1:
      xptr = mesh->coords;
    }
    if(ex_put_coord(exid_vis, xptr, yptr, zptr) < 0) {
      Gen_Error(0, "fatal: unable to output coords to vis file");
      return 0;
    }
	
    if(ex_put_coord_names(exid_vis, (char**)coord_names) < 0) {
      Gen_Error(0, "fatal: unable to output coordinate names");
      return 0;
    }

    std::vector<INT> elem_block(mesh->num_elems);
    std::vector<INT> elem_map(mesh->num_elems);
    std::vector<INT> tmp_connect(nsize);
    for(size_t ecnt=0; ecnt < mesh->num_elems; ecnt++) {
      elem_map[ecnt] = ecnt+1;
      if(prob->type == ELEMENTAL)
	elem_block[ecnt] = lb->vertex2proc[ecnt];
      else {
	int proc   = lb->vertex2proc[mesh->connect[ecnt][0]];
	int nnodes = get_elem_info(NNODES, mesh->elem_type[ecnt]);
	elem_block[ecnt] = proc;
	for(int ncnt=1; ncnt < nnodes; ncnt++) {
	  if(lb->vertex2proc[mesh->connect[ecnt][ncnt]] != proc) {
	    elem_block[ecnt] = machine->num_procs;
	    break;
	  }
	}
      }
    }

    int ccnt = 0;
    std::vector<INT> vis_el_blk_ptr(vis_nelem_blks+1);
    for(INT bcnt=0; bcnt < vis_nelem_blks; bcnt++) {
      vis_el_blk_ptr[bcnt] = ccnt;
      int pos = 0;
      int old_pos = 0;
      INT* el_ptr = TOPTR(elem_block);
      size_t ecnt   = mesh->num_elems;
      while(pos != -1) {
	pos = in_list(bcnt, ecnt, el_ptr);
	if(pos != -1) {
	  old_pos += pos + 1;
	  ecnt     = mesh->num_elems - old_pos;
	  el_ptr   = TOPTR(elem_block) + old_pos;
	  int nnodes = get_elem_info(NNODES, mesh->elem_type[old_pos-1]);
	  for(int ncnt=0; ncnt < nnodes; ncnt++)
	    tmp_connect[ccnt++] = mesh->connect[old_pos-1][ncnt] + 1;
	}
      }
    }
    vis_el_blk_ptr[vis_nelem_blks] = ccnt;
	
    /* Output the element map */
    if(ex_put_map(exid_vis, TOPTR(elem_map)) < 0) {
      Gen_Error(0, "fatal: unable to output element number map");
      return 0;
    }
	
    /* Output the visualization element blocks */
    for(int bcnt=0; bcnt < vis_nelem_blks; bcnt++) {
      /*
       * Note this assumes all the blocks contain the same type
       * element.
       */
      int ecnt = (vis_el_blk_ptr[bcnt+1]-vis_el_blk_ptr[bcnt])/node_pel_blk[0];
      if(ex_put_elem_block(exid_vis, bcnt+1, elem_type[0],
			   ecnt, node_pel_blk[0], 0) < 0) {
	Gen_Error(0, "fatal: unable to output element block params");
	return 0;
      }
	  
      /* Output the connectivity */
      if(ex_put_elem_conn(exid_vis, bcnt+1,
			  &tmp_connect[vis_el_blk_ptr[bcnt]]) < 0) {
	Gen_Error(0, "fatal: unable to output element connectivity");
	return 0;
      }
    }
  }

  else {	/* For nodal/element results visualization of the partioning. */
    // Copy the mesh portion to the vis file.
    ex_copy(exid_inp, exid_vis);

    /* Set up the file for nodal/element results */
    float time_val = 0.0;
    if(ex_put_time(exid_vis, 1, &time_val) < 0) {
      Gen_Error(0, "fatal: unable to output time to vis file");
      return 0;
    }

    const char  *var_names[] = {"proc"};
    if(prob->type == NODAL) {
      /* Allocate memory for the nodal values */
      std::vector<float> proc_vals(mesh->num_nodes);

      if(ex_put_variable_param(exid_vis, EX_NODAL, 1) < 0) {
	Gen_Error(0, "fatal: unable to output var params to vis file");
	return 0;
      }

      if(ex_put_variable_names(exid_vis, EX_NODAL, 1, (char**)var_names) < 0) {
	Gen_Error(0, "fatal: unable to output variable name");
	return 0;
      }

      /* Do some problem specific assignment */
      for(size_t ncnt=0; ncnt < mesh->num_nodes; ncnt++)
	proc_vals[ncnt] = lb->vertex2proc[ncnt];

      for(int pcnt=0; pcnt < machine->num_procs; pcnt++) {
	for(auto & elem : lb->bor_nodes[pcnt])
	  proc_vals[elem] = machine->num_procs + 1;
      }

      /* Output the nodal variables */
      if(ex_put_nodal_var(exid_vis, 1, 1, mesh->num_nodes, TOPTR(proc_vals)) < 0) {
	Gen_Error(0, "fatal: unable to output nodal variables");
	return 0;
      }
    }
    else if(prob->type == ELEMENTAL) {
      /* Allocate memory for the element values */
      std::vector<float> proc_vals(mesh->num_elems);

      if(ex_put_variable_param(exid_vis, EX_ELEM_BLOCK, 1) < 0) {
	Gen_Error(0, "fatal: unable to output var params to vis file");
	return 0;
      }

      if(ex_put_variable_names(exid_vis, EX_ELEM_BLOCK, 1, (char**)var_names) < 0) {
	Gen_Error(0, "fatal: unable to output variable name");
	return 0;
      }

      /* Do some problem specific assignment */
      for(int proc=0; proc < machine->num_procs; proc++) {
	for (size_t e = 0; e < lb->int_elems[proc].size(); e++) {
	  size_t ecnt = lb->int_elems[proc][e];
	  proc_vals[ecnt] = proc;
	}

	for (size_t e = 0; e < lb->bor_elems[proc].size(); e++) {
	  size_t ecnt = lb->bor_elems[proc][e];
	  proc_vals[ecnt] = proc;
	}
      }

      /* Output the element variables */
      size_t offset = 0;
      for (size_t i=0; i < mesh->num_el_blks; i++) {
	if(ex_put_var(exid_vis, 1, EX_ELEM_BLOCK, 1, el_blk_ids[i],
		      el_cnt_blk[i], &proc_vals[offset]) < 0) {
	  Gen_Error(0, "fatal: unable to output nodal variables");
	  return 0;
	}
	offset += el_cnt_blk[i];
      }
    }
  }
  return 1;
} /*---------------------------End write_vis()-------------------------------*/