int arch_compat_trampoline(struct kexec_info *info) { if ((info->kexec_flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_X86_64) { if (!info->rhdr.e_shdr) { fprintf(stderr, "A trampoline is required for cross architecture support\n"); return -1; } elf_rel_set_symbol(&info->rhdr, "compat_x86_64_entry32", &info->entry, sizeof(info->entry)); info->entry = (void *)elf_rel_get_addr(&info->rhdr, "compat_x86_64"); } return 0; }
int elf_x86_load(int argc, char **argv, const char *buf, off_t len, struct kexec_info *info) { struct mem_ehdr ehdr; char *command_line = NULL, *modified_cmdline = NULL; const char *append = NULL; char *tmp_cmdline = NULL; char *error_msg = NULL; int result; int command_line_len; const char *ramdisk; unsigned long entry, max_addr; int arg_style; #define ARG_STYLE_ELF 0 #define ARG_STYLE_LINUX 1 #define ARG_STYLE_NONE 2 int opt; /* See options.h -- add any more there, too. */ static const struct option options[] = { KEXEC_ARCH_OPTIONS { "command-line", 1, NULL, OPT_APPEND }, { "append", 1, NULL, OPT_APPEND }, { "reuse-cmdline", 0, NULL, OPT_REUSE_CMDLINE }, { "initrd", 1, NULL, OPT_RAMDISK }, { "ramdisk", 1, NULL, OPT_RAMDISK }, { "args-elf", 0, NULL, OPT_ARGS_ELF }, { "args-linux", 0, NULL, OPT_ARGS_LINUX }, { "args-none", 0, NULL, OPT_ARGS_NONE }, { 0, 0, NULL, 0 }, }; static const char short_options[] = KEXEC_OPT_STR ""; /* * Parse the command line arguments */ arg_style = ARG_STYLE_ELF; ramdisk = 0; result = 0; while((opt = getopt_long(argc, argv, short_options, options, 0)) != -1) { switch(opt) { default: /* Ignore core options */ if (opt < OPT_ARCH_MAX) { break; } case OPT_APPEND: append = optarg; break; case OPT_REUSE_CMDLINE: tmp_cmdline = get_command_line(); break; case OPT_RAMDISK: ramdisk = optarg; break; case OPT_ARGS_ELF: arg_style = ARG_STYLE_ELF; break; case OPT_ARGS_LINUX: arg_style = ARG_STYLE_LINUX; break; case OPT_ARGS_NONE: #ifdef __i386__ arg_style = ARG_STYLE_NONE; #else die("--args-none only works on arch i386\n"); #endif break; } } command_line = concat_cmdline(tmp_cmdline, append); if (tmp_cmdline) { free(tmp_cmdline); } command_line_len = 0; if (command_line) { command_line_len = strlen(command_line) +1; } else { command_line = strdup("\0"); command_line_len = 1; } /* Need to append some command line parameters internally in case of * taking crash dumps. */ if (info->kexec_flags & (KEXEC_ON_CRASH|KEXEC_PRESERVE_CONTEXT)) { modified_cmdline = xmalloc(COMMAND_LINE_SIZE); memset((void *)modified_cmdline, 0, COMMAND_LINE_SIZE); if (command_line) { strncpy(modified_cmdline, command_line, COMMAND_LINE_SIZE); modified_cmdline[COMMAND_LINE_SIZE - 1] = '\0'; } } /* Load the ELF executable */ elf_exec_build_load(info, &ehdr, buf, len, 0); entry = ehdr.e_entry; max_addr = elf_max_addr(&ehdr); /* Do we want arguments? */ if (arg_style != ARG_STYLE_NONE) { /* Load the setup code */ elf_rel_build_load(info, &info->rhdr, purgatory, purgatory_size, 0, ULONG_MAX, 1, 0); } if (arg_style == ARG_STYLE_NONE) { info->entry = (void *)entry; } else if (arg_style == ARG_STYLE_ELF) { unsigned long note_base; struct entry32_regs regs; uint32_t arg1, arg2; /* Setup the ELF boot notes */ note_base = elf_boot_notes(info, max_addr, command_line, command_line_len); /* Initialize the stack arguments */ arg2 = 0; /* No return address */ arg1 = note_base; elf_rel_set_symbol(&info->rhdr, "stack_arg32_1", &arg1, sizeof(arg1)); elf_rel_set_symbol(&info->rhdr, "stack_arg32_2", &arg2, sizeof(arg2)); /* Initialize the registers */ elf_rel_get_symbol(&info->rhdr, "entry32_regs", ®s, sizeof(regs)); regs.eip = entry; /* The entry point */ regs.esp = elf_rel_get_addr(&info->rhdr, "stack_arg32_2"); elf_rel_set_symbol(&info->rhdr, "entry32_regs", ®s, sizeof(regs)); if (ramdisk) { error_msg = "Ramdisks not supported with generic elf arguments"; goto out; } } else if (arg_style == ARG_STYLE_LINUX) { struct x86_linux_faked_param_header *hdr; unsigned long param_base; const char *ramdisk_buf; off_t ramdisk_length; struct entry32_regs regs; int rc = 0; /* Get the linux parameter header */ hdr = xmalloc(sizeof(*hdr)); /* Hack: With some ld versions, vmlinux program headers show * a gap of two pages between bss segment and data segment * but effectively kernel considers it as bss segment and * overwrites the any data placed there. Hence bloat the * memsz of parameter segment to 16K to avoid being placed * in such gaps. * This is a makeshift solution until it is fixed in kernel */ param_base = add_buffer(info, hdr, sizeof(*hdr), 16*1024, 16, 0, max_addr, 1); /* Initialize the parameter header */ memset(hdr, 0, sizeof(*hdr)); init_linux_parameters(&hdr->hdr); /* Add a ramdisk to the current image */ ramdisk_buf = NULL; ramdisk_length = 0; if (ramdisk) { ramdisk_buf = slurp_file(ramdisk, &ramdisk_length); } /* If panic kernel is being loaded, additional segments need * to be created. */ if (info->kexec_flags & (KEXEC_ON_CRASH|KEXEC_PRESERVE_CONTEXT)) { rc = load_crashdump_segments(info, modified_cmdline, max_addr, 0); if (rc < 0) { result = -1; goto out; } /* Use new command line. */ free(command_line); command_line = modified_cmdline; command_line_len = strlen(modified_cmdline) + 1; modified_cmdline = NULL; } /* Tell the kernel what is going on */ setup_linux_bootloader_parameters(info, &hdr->hdr, param_base, offsetof(struct x86_linux_faked_param_header, command_line), command_line, command_line_len, ramdisk_buf, ramdisk_length); /* Fill in the information bios calls would usually provide */ setup_linux_system_parameters(info, &hdr->hdr); /* Initialize the registers */ elf_rel_get_symbol(&info->rhdr, "entry32_regs", ®s, sizeof(regs)); regs.ebx = 0; /* Bootstrap processor */ regs.esi = param_base; /* Pointer to the parameters */ regs.eip = entry; /* The entry point */ regs.esp = elf_rel_get_addr(&info->rhdr, "stack_end"); /* Stack, unused */ elf_rel_set_symbol(&info->rhdr, "entry32_regs", ®s, sizeof(regs)); } else {
static int ppc_load_bare_bits(int argc, char **argv, const char *buf, off_t len, struct kexec_info *info, unsigned int load_addr, unsigned int ep) { char *command_line; int command_line_len; char *dtb; unsigned int addr; unsigned long dtb_addr; #define FIXUP_ENTRYS (20) char *fixup_nodes[FIXUP_ENTRYS + 1]; int cur_fixup = 0; int opt; int ret; command_line = NULL; dtb = NULL; while ((opt = getopt_long(argc, argv, short_options, options, 0)) != -1) { switch (opt) { default: /* Ignore core options */ if (opt < OPT_ARCH_MAX) { break; } case '?': usage(); return -1; case OPT_APPEND: command_line = optarg; break; case OPT_DTB: dtb = optarg; break; case OPT_NODES: if (cur_fixup >= FIXUP_ENTRYS) { fprintf(stderr, "The number of entries for the fixup is too large\n"); exit(1); } fixup_nodes[cur_fixup] = optarg; cur_fixup++; break; } } command_line_len = 0; if (command_line) command_line_len = strlen(command_line) + 1; fixup_nodes[cur_fixup] = NULL; /* * len contains the length of the whole kernel image except the bss * section. The 3 MiB should cover it. The purgatory and the dtb are * allocated from memtop down towards zero so we should never get too * close to the bss :) */ ret = valid_memory_range(info, load_addr, len + 3 * 1024 * 1024); if (!ret) { printf("Can't add kernel to addr 0x%08x len %ld\n", load_addr, len + 3 * 1024 * 1024); return -1; } add_segment(info, buf, len, load_addr, len + 3 * 1024 * 1024); if (dtb) { char *blob_buf; off_t blob_size = 0; /* Grab device tree from buffer */ blob_buf = slurp_file(dtb, &blob_size); if (!blob_buf || !blob_size) die("Device tree seems to be an empty file.\n"); blob_buf = fixup_dtb_nodes(blob_buf, &blob_size, fixup_nodes, command_line); dtb_addr = add_buffer(info, blob_buf, blob_size, blob_size, 0, 0, KERNEL_ACCESS_TOP, -1); } else { dtb_addr = 0; } elf_rel_build_load(info, &info->rhdr, (const char *)purgatory, purgatory_size, 0, -1, -1, 0); /* set various variables for the purgatory */ addr = ep; elf_rel_set_symbol(&info->rhdr, "kernel", &addr, sizeof(addr)); addr = dtb_addr; elf_rel_set_symbol(&info->rhdr, "dt_offset", &addr, sizeof(addr)); addr = rmo_top; elf_rel_set_symbol(&info->rhdr, "mem_size", &addr, sizeof(addr)); #define PUL_STACK_SIZE (16 * 1024) addr = locate_hole(info, PUL_STACK_SIZE, 0, 0, -1, 1); addr += PUL_STACK_SIZE; elf_rel_set_symbol(&info->rhdr, "pul_stack", &addr, sizeof(addr)); /* No allocation past here in order not to overwrite the stack */ #undef PUL_STACK_SIZE addr = elf_rel_get_addr(&info->rhdr, "purgatory_start"); info->entry = (void *)addr; return 0; }
int do_bzImage_load(struct kexec_info *info, const char *kernel, off_t kernel_len, const char *command_line, off_t command_line_len, const char *initrd, off_t initrd_len, int real_mode_entry, int debug) { struct x86_linux_header setup_header; struct x86_linux_param_header *real_mode; int setup_sects; char *kernel_version; size_t size; int kern16_size; unsigned long setup_base, setup_size; struct entry32_regs regs32; struct entry16_regs regs16; unsigned int relocatable_kernel = 0; unsigned long kernel32_load_addr; char *modified_cmdline; /* * Find out about the file I am about to load. */ if (kernel_len < sizeof(setup_header)) { return -1; } memcpy(&setup_header, kernel, sizeof(setup_header)); setup_sects = setup_header.setup_sects; if (setup_sects == 0) { setup_sects = 4; } kern16_size = (setup_sects +1) *512; kernel_version = ((unsigned char *)&setup_header) + 512 + setup_header.kver_addr; if (kernel_len < kern16_size) { fprintf(stderr, "BzImage truncated?\n"); return -1; } if (setup_header.protocol_version >= 0x0205) { relocatable_kernel = setup_header.relocatable_kernel; dfprintf(stdout, "bzImage is relocatable\n"); } /* Can't use bzImage for crash dump purposes with real mode entry */ if((info->kexec_flags & KEXEC_ON_CRASH) && real_mode_entry) { fprintf(stderr, "Can't use bzImage for crash dump purposes" " with real mode entry\n"); return -1; } if((info->kexec_flags & KEXEC_ON_CRASH) && !relocatable_kernel) { fprintf(stderr, "BzImage is not relocatable. Can't be used" " as capture kernel.\n"); return -1; } /* Need to append some command line parameters internally in case of * taking crash dumps. */ if (info->kexec_flags & KEXEC_ON_CRASH) { modified_cmdline = xmalloc(COMMAND_LINE_SIZE); memset((void *)modified_cmdline, 0, COMMAND_LINE_SIZE); if (command_line) { strncpy(modified_cmdline, command_line, COMMAND_LINE_SIZE); modified_cmdline[COMMAND_LINE_SIZE - 1] = '\0'; } /* If panic kernel is being loaded, additional segments need * to be created. load_crashdump_segments will take care of * loading the segments as high in memory as possible, hence * in turn as away as possible from kernel to avoid being * stomped by the kernel. */ if (load_crashdump_segments(info, modified_cmdline, -1, 0) < 0) return -1; /* Use new command line buffer */ command_line = modified_cmdline; command_line_len = strlen(command_line) +1; } /* Load the trampoline. This must load at a higher address * the the argument/parameter segment or the kernel will stomp * it's gdt. * * x86_64 purgatory code has got relocations type R_X86_64_32S * that means purgatory got to be loaded within first 2G otherwise * overflow takes place while applying relocations. */ if (!real_mode_entry && relocatable_kernel) elf_rel_build_load(info, &info->rhdr, purgatory, purgatory_size, 0x3000, 0x7fffffff, -1, 0); else elf_rel_build_load(info, &info->rhdr, purgatory, purgatory_size, 0x3000, 640*1024, -1, 0); dfprintf(stdout, "Loaded purgatory at addr 0x%lx\n", info->rhdr.rel_addr); /* The argument/parameter segment */ setup_size = kern16_size + command_line_len; real_mode = xmalloc(setup_size); memcpy(real_mode, kernel, kern16_size); if (info->kexec_flags & KEXEC_ON_CRASH) { /* If using bzImage for capture kernel, then we will not be * executing real mode code. setup segment can be loaded * anywhere as we will be just reading command line. */ setup_base = add_buffer(info, real_mode, setup_size, setup_size, 16, 0x3000, -1, 1); } else if (real_mode->protocol_version >= 0x0200) { /* Careful setup_base must be greater than 8K */ setup_base = add_buffer(info, real_mode, setup_size, setup_size, 16, 0x3000, 640*1024, 1); } else { add_segment(info, real_mode, setup_size, SETUP_BASE, setup_size); setup_base = SETUP_BASE; } dfprintf(stdout, "Loaded real-mode code and command line at 0x%lx\n", setup_base); /* Verify purgatory loads higher than the parameters */ if (info->rhdr.rel_addr < setup_base) { die("Could not put setup code above the kernel parameters\n"); } /* The main kernel segment */ size = kernel_len - kern16_size; if (real_mode->protocol_version >=0x0205 && relocatable_kernel) { /* Relocatable bzImage */ unsigned long kern_align = real_mode->kernel_alignment; unsigned long kernel32_max_addr = DEFAULT_BZIMAGE_ADDR_MAX; if (real_mode->protocol_version >= 0x0203) { if (kernel32_max_addr > real_mode->initrd_addr_max) kernel32_max_addr = real_mode->initrd_addr_max; } kernel32_load_addr = add_buffer(info, kernel + kern16_size, size, size, kern_align, 0x100000, kernel32_max_addr, 1); } else { kernel32_load_addr = KERN32_BASE; add_segment(info, kernel + kern16_size, size, kernel32_load_addr, size); } dfprintf(stdout, "Loaded 32bit kernel at 0x%lx\n", kernel32_load_addr); /* Tell the kernel what is going on */ setup_linux_bootloader_parameters(info, real_mode, setup_base, kern16_size, command_line, command_line_len, initrd, initrd_len); /* Get the initial register values */ elf_rel_get_symbol(&info->rhdr, "entry16_regs", ®s16, sizeof(regs16)); elf_rel_get_symbol(&info->rhdr, "entry32_regs", ®s32, sizeof(regs32)); /* * Initialize the 32bit start information. */ regs32.eax = 0; /* unused */ regs32.ebx = 0; /* 0 == boot not AP processor start */ regs32.ecx = 0; /* unused */ regs32.edx = 0; /* unused */ regs32.esi = setup_base; /* kernel parameters */ regs32.edi = 0; /* unused */ regs32.esp = elf_rel_get_addr(&info->rhdr, "stack_end"); /* stack, unused */ regs32.ebp = 0; /* unused */ regs32.eip = kernel32_load_addr; /* kernel entry point */ /* * Initialize the 16bit start information. */ regs16.cs = (setup_base>>4) + 0x20; regs16.ip = 0; regs16.ss = (elf_rel_get_addr(&info->rhdr, "stack_end") - 64*1024) >> 4; regs16.esp = 0xFFFC; if (real_mode_entry) { printf("Starting the kernel in real mode\n"); regs32.eip = elf_rel_get_addr(&info->rhdr, "entry16"); } if (real_mode_entry && debug) { unsigned long entry16_debug, pre32, first32; uint32_t old_first32; /* Find the location of the symbols */ entry16_debug = elf_rel_get_addr(&info->rhdr, "entry16_debug"); pre32 = elf_rel_get_addr(&info->rhdr, "entry16_debug_pre32"); first32 = elf_rel_get_addr(&info->rhdr, "entry16_debug_first32"); /* Hook all of the linux kernel hooks */ real_mode->rmode_switch_cs = entry16_debug >> 4; real_mode->rmode_switch_ip = pre32 - entry16_debug; old_first32 = real_mode->kernel_start; real_mode->kernel_start = first32; elf_rel_set_symbol(&info->rhdr, "entry16_debug_old_first32", &old_first32, sizeof(old_first32)); regs32.eip = entry16_debug; }