Exemple #1
0
/**
 * Point size attenuation computation.
 */
static void build_atten_pointsize( struct tnl_program *p )
{
   struct ureg eye = get_eye_position_z(p);
   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
   struct ureg ut = get_temp(p);

   /* dist = |eyez| */
   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
   /* p1 + dist * (p2 + dist * p3); */
   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
		ut, swizzle1(state_attenuation, X));

   /* 1 / sqrt(factor) */
   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );

#if 0
   /* out = pointSize / sqrt(factor) */
   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
#else
   /* this is a good place to clamp the point size since there's likely
    * no hardware registers to clamp point size at rasterization time.
    */
   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
#endif

   release_temp(p, ut);
}
Exemple #2
0
/* Seems like it could be tighter:
 */
static void build_pointsize( struct tnl_program *p )
{
   struct ureg eye = get_eye_position(p);
   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
   struct ureg ut = get_temp(p);

   /* 1, Z, Z * Z, 1 */      
   emit_op1(p, OPCODE_MOV, ut, WRITEMASK_XW, swizzle1(get_identity_param(p), W));
   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_YZ, swizzle1(eye, Z));
   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_Z, ut, ut);


   /* p1 +  p2 * dist + p3 * dist * dist, 0 */
   emit_op2(p, OPCODE_DP3, ut, WRITEMASK_X, ut, state_attenuation);

   /* 1 / sqrt(factor) */
   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut ); 

   /* ut = pointSize / factor */
   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size); 

   /* Clamp to min/max - state_size.[yz]
    */
   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y)); 
   emit_op2(p, OPCODE_MIN, out, 0, swizzle1(ut, X), swizzle1(state_size, Z)); 
   
   release_temp(p, ut);
}
static void build_pointsize( struct tnl_program *p )
{
   struct ureg eye = get_eye_position(p);
   struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
   struct ureg ut = get_temp(p);

   /* dist = |eyez| */
   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
   /* p1 + dist * (p2 + dist * p3); */
   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
		ut, swizzle1(state_attenuation, X));

   /* 1 / sqrt(factor) */
   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );

#if 1
   /* out = pointSize / sqrt(factor) */
   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
#else
   /* not sure, might make sense to do clamping here,
      but it's not done in t_vb_points neither */
   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
#endif

   release_temp(p, ut);
}
Exemple #4
0
static void emit_normalize_vec3( struct tnl_program *p,
				 struct ureg dest,
				 struct ureg src )
{
   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_W, src, src);
   emit_op1(p, OPCODE_RSQ, dest, WRITEMASK_W, swizzle1(dest,W));
   emit_op2(p, OPCODE_MUL, dest, WRITEMASK_XYZ, src, swizzle1(dest,W));
}
Exemple #5
0
static void emit_matrix_transform_vec3( struct tnl_program *p,
					struct ureg dest,
					const struct ureg *mat,
					struct ureg src)
{
   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
}
Exemple #6
0
static void build_fog( struct tnl_program *p )
{
   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
   struct ureg input;
   GLuint useabs = p->state->fog_source_is_depth && p->state->fog_option &&
		   (p->state->fog_option != FOG_EXP2);

   if (p->state->fog_source_is_depth) {
      input = swizzle1(get_eye_position(p), Z);
   }
   else {
      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
   }

   if (p->state->fog_option &&
       p->state->tnl_do_vertex_fog) {
      struct ureg params = register_param2(p, STATE_INTERNAL,
					   STATE_FOG_PARAMS_OPTIMIZED);
      struct ureg tmp = get_temp(p);
      struct ureg id = get_identity_param(p);

      emit_op1(p, OPCODE_MOV, fog, 0, id);

      if (useabs) {
	 emit_op1(p, OPCODE_ABS, tmp, 0, input);
      }

      switch (p->state->fog_option) {
      case FOG_LINEAR: {
	 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
			swizzle1(params,X), swizzle1(params,Y));
	 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
	 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
	 break;
      }
      case FOG_EXP:
	 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
			swizzle1(params,Z));
	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, ureg_negate(tmp));
	 break;
      case FOG_EXP2:
	 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, ureg_negate(tmp));
	 break;
      }

      release_temp(p, tmp);
   }
   else {
      /* results = incoming fog coords (compute fog per-fragment later) 
       *
       * KW:  Is it really necessary to do anything in this case?
       */
      emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, 0, input);
   }
}
static void build_fog( struct tnl_program *p )
{
   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
   struct ureg input;

   if (p->state->fog_source_is_depth) {
      input = swizzle1(get_eye_position(p), Z);
   }
   else {
      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
   }

   if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
      struct ureg params = register_param2(p, STATE_INTERNAL,
					   STATE_FOG_PARAMS_OPTIMIZED);
      struct ureg tmp = get_temp(p);
      GLboolean useabs = (p->state->fog_mode != FOG_EXP2);

      if (useabs) {
	 emit_op1(p, OPCODE_ABS, tmp, 0, input);
      }

      switch (p->state->fog_mode) {
      case FOG_LINEAR: {
	 struct ureg id = get_identity_param(p);
	 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
			swizzle1(params,X), swizzle1(params,Y));
	 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
	 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
	 break;
      }
      case FOG_EXP:
	 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
			swizzle1(params,Z));
	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
	 break;
      case FOG_EXP2:
	 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
	 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
	 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
	 break;
      }

      release_temp(p, tmp);
   }
   else {
      /* results = incoming fog coords (compute fog per-fragment later) 
       *
       * KW:  Is it really necessary to do anything in this case?
       * BP: Yes, we always need to compute the absolute value, unless
       * we want to push that down into the fragment program...
       */
      GLboolean useabs = GL_TRUE;
      emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
   }
}
Exemple #8
0
static void emit_normalize_vec3( struct tnl_program *p,
				 struct ureg dest,
				 struct ureg src )
{
   struct ureg tmp = get_temp(p);
   emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
   emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
   emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
   release_temp(p, tmp);
}
Exemple #9
0
static void emit_normalize_vec3( struct tnl_program *p,
				 struct ureg dest,
				 struct ureg src )
{
#if 0
   /* XXX use this when drivers are ready for NRM3 */
   emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
#else
   struct ureg tmp = get_temp(p);
   emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
   emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
   emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
   release_temp(p, tmp);
#endif
}
Exemple #10
0
static struct ureg get_eye_normal( struct tnl_program *p )
{
   if (is_undef(p->eye_normal)) {
      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
      struct ureg mvinv[3];

      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
			      STATE_MATRIX_INVTRANS, mvinv );

      p->eye_normal = reserve_temp(p);

      /* Transform to eye space:
       */
      emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );

      /* Normalize/Rescale:
       */
      if (p->state->normalize) {
	 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
      }
      else if (p->state->rescale_normals) {
	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
					       STATE_NORMAL_SCALE);

	 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, p->eye_normal, 
		   swizzle1(rescale, X));
      }
   }

   return p->eye_normal;
}
Exemple #11
0
static void build_fog( struct tnl_program *p )
{
   struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
   struct ureg input;

   if (p->state->fog_source_is_depth) {

      switch (p->state->fog_distance_mode) {
      case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
	input = get_eye_position(p);
	emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
	emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
	emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
	break;
      case FDM_EYE_PLANE: /* Z = Ze */
	input = get_eye_position_z(p);
	emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
	break;
      case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
	input = get_eye_position_z(p);
	emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
	break;
      default: assert(0); break; /* can't happen */
      }

   }
   else {
      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
      emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
   }

   emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
}
Exemple #12
0
static void build_reflect_texgen( struct tnl_program *p,
				  struct ureg dest,
				  GLuint writemask )
{
   struct ureg normal = get_transformed_normal(p);
   struct ureg eye_hat = get_eye_position_normalized(p);
   struct ureg tmp = get_temp(p);

   /* n.u */
   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
   /* 2n.u */
   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
   /* (-2n.u)n + u */
   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);

   release_temp(p, tmp);
}
Exemple #13
0
/**
 * Compute:
 *   lit.y = MAX(0, dots.x)
 *   lit.z = SLT(0, dots.x)
 */
static void emit_degenerate_lit( struct tnl_program *p,
                                 struct ureg lit,
                                 struct ureg dots )
{
   struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */

   /* Note that lit.x & lit.w will not be examined.  Note also that
    * dots.xyzw == dots.xxxx.
    */

   /* MAX lit, id, dots;
    */
   emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);

   /* result[2] = (in > 0 ? 1 : 0)
    * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
    */
   emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
}
Exemple #14
0
static struct ureg calculate_light_attenuation( struct tnl_program *p,
						GLuint i,
						struct ureg VPpli,
						struct ureg dist )
{
   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
					     STATE_ATTENUATION);
   struct ureg att = undef;

   /* Calculate spot attenuation:
    */
   if (!p->state->unit[i].light_spotcutoff_is_180) {
      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
      struct ureg spot = get_temp(p);
      struct ureg slt = get_temp(p);

      att = get_temp(p);

      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
      emit_op1(p, OPCODE_ABS, spot, 0, spot);
      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);

      release_temp(p, spot);
      release_temp(p, slt);
   }

   /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
    *
    * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
    */
   if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
      if (is_undef(att))
         att = get_temp(p);
      /* 1/d,d,d,1/d */
      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
      /* 1,d,d*d,1/d */
      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
      /* 1/dist-atten */
      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);

      if (!p->state->unit[i].light_spotcutoff_is_180) {
	 /* dist-atten */
	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
	 /* spot-atten * dist-atten */
	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
      }
      else {
	 /* dist-atten */
	 emit_op1(p, OPCODE_RCP, att, 0, dist);
      }
   }

   return att;
}
Exemple #15
0
static void build_sphere_texgen( struct tnl_program *p,
				 struct ureg dest,
				 GLuint writemask )
{
   struct ureg normal = get_transformed_normal(p);
   struct ureg eye_hat = get_eye_position_normalized(p);
   struct ureg tmp = get_temp(p);
   struct ureg half = register_scalar_const(p, .5);
   struct ureg r = get_temp(p);
   struct ureg inv_m = get_temp(p);
   struct ureg id = get_identity_param(p);

   /* Could share the above calculations, but it would be
    * a fairly odd state for someone to set (both sphere and
    * reflection active for different texture coordinate
    * components.  Of course - if two texture units enable
    * reflect and/or sphere, things start to tilt in favour
    * of seperating this out:
    */

   /* n.u */
   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
   /* 2n.u */
   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
   /* (-2n.u)n + u */
   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
   /* r + 0,0,1 */
   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
   /* rx^2 + ry^2 + (rz+1)^2 */
   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
   /* 2/m */
   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
   /* 1/m */
   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
   /* r/m + 1/2 */
   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);

   release_temp(p, tmp);
   release_temp(p, r);
   release_temp(p, inv_m);
}
Exemple #16
0
static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
				  GLuint side, GLuint property )
{
   GLuint attrib = material_attrib(side, property);
   if (p->materials & (1<<attrib)) {
      struct ureg light_value =
	 register_param3(p, STATE_LIGHT, light, property);
      struct ureg material_value = get_material(p, side, property);
      struct ureg tmp = get_temp(p);
      emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
      return tmp;
   }
   else
      return register_param4(p, STATE_LIGHTPROD, light, side, property);
}
Exemple #17
0
static struct ureg calculate_light_attenuation( struct tnl_program *p,
						GLuint i,
						struct ureg VPpli,
						struct ureg dist )
{
   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
					     STATE_ATTENUATION);
   struct ureg att = get_temp(p);

   /* Calculate spot attenuation:
    */
   if (!p->state->unit[i].light_spotcutoff_is_180) {
      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
      struct ureg spot = get_temp(p);
      struct ureg slt = get_temp(p);

      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);

      release_temp(p, spot);
      release_temp(p, slt);
   }

   /* Calculate distance attenuation:
    */
   if (p->state->unit[i].light_attenuated) {
      /* 1/d,d,d,1/d */
      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
      /* 1,d,d*d,1/d */
      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
      /* 1/dist-atten */
      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);

      if (!p->state->unit[i].light_spotcutoff_is_180) {
	 /* dist-atten */
	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
	 /* spot-atten * dist-atten */
	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
      }
      else {
	 /* dist-atten */
	 emit_op1(p, OPCODE_RCP, att, 0, dist);
      }
   }

   return att;
}
Exemple #18
0
static struct ureg get_transformed_normal( struct tnl_program *p )
{
   if (is_undef(p->transformed_normal) &&
       !p->state->need_eye_coords &&
       !p->state->normalize &&
       !(p->state->need_eye_coords == p->state->rescale_normals))
   {
      p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
   }
   else if (is_undef(p->transformed_normal))
   {
      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
      struct ureg mvinv[3];
      struct ureg transformed_normal = reserve_temp(p);

      if (p->state->need_eye_coords) {
         register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
                                 STATE_MATRIX_INVTRANS, mvinv );

         /* Transform to eye space:
          */
         emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
         normal = transformed_normal;
      }

      /* Normalize/Rescale:
       */
      if (p->state->normalize) {
	 emit_normalize_vec3( p, transformed_normal, normal );
         normal = transformed_normal;
      }
      else if (p->state->need_eye_coords == p->state->rescale_normals) {
         /* This is already adjusted for eye/non-eye rendering:
          */
	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
                                               STATE_NORMAL_SCALE);

	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
         normal = transformed_normal;
      }

      assert(normal.file == PROGRAM_TEMPORARY);
      p->transformed_normal = normal;
   }

   return p->transformed_normal;
}
Exemple #19
0
static struct ureg get_eye_position_z( struct tnl_program *p )
{
   if (!is_undef(p->eye_position))
      return swizzle1(p->eye_position, Z);

   if (is_undef(p->eye_position_z)) {
      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
      struct ureg modelview[4];

      p->eye_position_z = reserve_temp(p);

      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
                              0, modelview );

      emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
   }

   return p->eye_position_z;
}
Exemple #20
0
/**
 * Emit code for TXP.
 */
static void precalc_txp( struct brw_wm_compile *c,
			 struct brw_fp_dst dst,
			 unsigned target,
			 unsigned unit,
			 struct brw_fp_src src0,
                         struct brw_fp_src sampler )
{
   if (projtex(c, target, src0)) {
      struct brw_fp_dst tmp = get_temp(c);

      /* tmp0.w = RCP inst.arg[0][3]
       */
      emit_op1(c,
	      TGSI_OPCODE_RCP,
	      dst_mask(tmp, BRW_WRITEMASK_W),
	      src_scalar(src0, W));

      /* tmp0.xyz =  MUL inst.arg[0], tmp0.wwww
       */
      emit_op2(c,
	       TGSI_OPCODE_MUL,
	       dst_mask(tmp, BRW_WRITEMASK_XYZ),
	       src0,
	       src_scalar(src_reg_from_dst(tmp), W));

      /* dst = TEX tmp0
       */
      precalc_tex(c, 
		  dst,
		  target,
		  unit,
		  src_reg_from_dst(tmp),
                  sampler );

      release_temp(c, tmp);
   }
   else
   {
      /* dst = TEX src0
       */
      precalc_tex(c, dst, target, unit, src0, sampler);
   }
}
Exemple #21
0
static struct ureg get_eye_z( struct tnl_program *p )
{
   if (!is_undef(p->eye_position)) {
      return swizzle1(p->eye_position, Z);
   }
   else if (!is_undef(p->eye_z)) {
      struct ureg pos = register_input( p, BRW_ATTRIB_POS ); 
      struct ureg modelview2;

      p->eye_z = reserve_temp(p);

      register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 2, 1, 
			      STATE_MATRIX, &modelview2 );

      emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
      emit_op2(p, OPCODE_DP4, p->eye_z, WRITEMASK_Z, pos, modelview2);
   }
   
   return swizzle1(p->eye_z, Z)
}
Exemple #22
0
/* This version is much easier to implement if writemasks are not
 * supported natively on the target or (like SSE), the target doesn't
 * have a clean/obvious dotproduct implementation.
 */
static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
						  struct ureg dest,
						  const struct ureg *mat,
						  struct ureg src)
{
   struct ureg tmp;

   if (dest.file != PROGRAM_TEMPORARY)
      tmp = get_temp(p);
   else
      tmp = dest;

   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);

   if (dest.file != PROGRAM_TEMPORARY)
      release_temp(p, tmp);
}
Exemple #23
0
/***********************************************************************
 * Expand various instructions here to simpler forms.  
 */
static void precalc_dst( struct brw_wm_compile *c,
			 struct brw_fp_dst dst,
			 struct brw_fp_src src0,
			 struct brw_fp_src src1 )
{
   if (dst.writemask & BRW_WRITEMASK_Y) {      
      /* dst.y = mul src0.y, src1.y
       */
      emit_op2(c,
	       TGSI_OPCODE_MUL,
	       dst_mask(dst, BRW_WRITEMASK_Y),
	       src0,
	       src1);
   }

   if (dst.writemask & BRW_WRITEMASK_XZ) {
      /* dst.z = mov src0.zzzz
       */
      emit_op1(c,
	      TGSI_OPCODE_MOV,
	      dst_mask(dst, BRW_WRITEMASK_Z),
	      src_scalar(src0, Z));

      /* dst.x = imm1f(1.0)
       */
      emit_op1(c,
	      TGSI_OPCODE_MOV,
	      dst_saturate(dst_mask(dst, BRW_WRITEMASK_X), 0),
	      src_imm1f(c, 1.0));
   }
   if (dst.writemask & BRW_WRITEMASK_W) {
      /* dst.w = mov src1.w
       */
      emit_op1(c,
	       TGSI_OPCODE_MOV,
	       dst_mask(dst, BRW_WRITEMASK_W),
	       src1);
   }
}
Exemple #24
0
/* Need to add some addtional parameters to allow lighting in object
 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
 * space lighting.
 */
static void build_lighting( struct tnl_program *p )
{
   const GLboolean twoside = p->state->light_twoside;
   const GLboolean separate = p->state->separate_specular;
   GLuint nr_lights = 0, count = 0;
   struct ureg normal = get_eye_normal(p);
   struct ureg lit = get_temp(p);
   struct ureg dots = get_temp(p);
   struct ureg _col0 = undef, _col1 = undef;
   struct ureg _bfc0 = undef, _bfc1 = undef;
   GLuint i;

   for (i = 0; i < MAX_LIGHTS; i++) 
      if (p->state->unit[i].light_enabled)
	 nr_lights++;
   
   set_material_flags(p);

   {
      struct ureg shininess = get_material(p, 0, STATE_SHININESS);
      emit_op1(p, OPCODE_MOV, dots,  WRITEMASK_W, swizzle1(shininess,X));
      release_temp(p, shininess);

      _col0 = make_temp(p, get_scenecolor(p, 0));
      if (separate)
	 _col1 = make_temp(p, get_identity_param(p));
      else
	 _col1 = _col0;

   }

   if (twoside) {
      struct ureg shininess = get_material(p, 1, STATE_SHININESS);
      emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z, 
	       ureg_negate(swizzle1(shininess,X)));
      release_temp(p, shininess);

      _bfc0 = make_temp(p, get_scenecolor(p, 1));
      if (separate)
	 _bfc1 = make_temp(p, get_identity_param(p));
      else
	 _bfc1 = _bfc0;
   }


   /* If no lights, still need to emit the scenecolor.
    */
   /* KW: changed to do this always - v1.17 "Fix lighting alpha result"? 
    */
   if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
   {
      struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
      emit_op1(p, OPCODE_MOV, res0, 0, _col0);

      if (twoside) {
	 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
	 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
      }
   }

   if (separate && (p->state->fragprog_inputs_read & FRAG_BIT_COL1)) {

      struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
      emit_op1(p, OPCODE_MOV, res1, 0, _col1);
      
      if (twoside) {
	 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
	 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
      }
   }
      
   if (nr_lights == 0) {
      release_temps(p);
      return;
   }


   for (i = 0; i < MAX_LIGHTS; i++) {
      if (p->state->unit[i].light_enabled) {
	 struct ureg half = undef;
	 struct ureg att = undef, VPpli = undef;
	  
	 count++;

	 if (p->state->unit[i].light_eyepos3_is_zero) {
	    /* Can used precomputed constants in this case.
	     * Attenuation never applies to infinite lights.
	     */
	    VPpli = register_param3(p, STATE_LIGHT, i, 
				    STATE_POSITION_NORMALIZED); 
            if (p->state->light_local_viewer) {
                struct ureg eye_hat = get_eye_position_normalized(p);
                half = get_temp(p);
                emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
                emit_normalize_vec3(p, half, half);
            } else {
                half = register_param3(p, STATE_LIGHT, i, STATE_HALF_VECTOR);
            }
	 } 
	 else {
	    struct ureg Ppli = register_param3(p, STATE_LIGHT, i, 
					       STATE_POSITION); 
	    struct ureg V = get_eye_position(p);
	    struct ureg dist = get_temp(p);

	    VPpli = get_temp(p); 
	    half = get_temp(p);
 
	    /* Calulate VPpli vector
	     */
	    emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V); 

	    /* Normalize VPpli.  The dist value also used in
	     * attenuation below.
	     */
	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);


	    /* Calculate  attenuation:
	     */ 
	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
		p->state->unit[i].light_attenuated) {
	       att = calculate_light_attenuation(p, i, VPpli, dist);
	    }
	 
      
	    /* Calculate viewer direction, or use infinite viewer:
	     */
	    if (p->state->light_local_viewer) {
	       struct ureg eye_hat = get_eye_position_normalized(p);
	       emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
	    }
	    else {
	       struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z); 
	       emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
	    }

	    emit_normalize_vec3(p, half, half);

	    release_temp(p, dist);
	 }

	 /* Calculate dot products:
	  */
	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
	 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);

	
	 /* Front face lighting:
	  */
	 {
	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
	    struct ureg res0, res1;
	    GLuint mask0, mask1;

	    emit_op1(p, OPCODE_LIT, lit, 0, dots);
   
	    if (!is_undef(att)) 
	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);


	    mask0 = 0;
	    mask1 = 0;
	    res0 = _col0;
	    res1 = _col1;
	    
	    if (count == nr_lights) {
	       if (separate) {
		  mask0 = WRITEMASK_XYZ;
		  mask1 = WRITEMASK_XYZ;

		  if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
		     res0 = register_output( p, VERT_RESULT_COL0 );

		  if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
		     res1 = register_output( p, VERT_RESULT_COL1 );
	       }
	       else {
		  mask1 = WRITEMASK_XYZ;

		  if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
		     res1 = register_output( p, VERT_RESULT_COL0 );
	       }
	    } 

	    emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
      
	    release_temp(p, ambient);
	    release_temp(p, diffuse);
	    release_temp(p, specular);
	 }

	 /* Back face lighting:
	  */
	 if (twoside) {
	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
	    struct ureg res0, res1;
	    GLuint mask0, mask1;
	       
	    emit_op1(p, OPCODE_LIT, lit, 0, ureg_negate(swizzle(dots,X,Y,W,Z)));

	    if (!is_undef(att)) 
	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);

	    mask0 = 0;
	    mask1 = 0;
	    res0 = _bfc0;
	    res1 = _bfc1;

	    if (count == nr_lights) {
	       if (separate) {
		  mask0 = WRITEMASK_XYZ;
		  mask1 = WRITEMASK_XYZ;
		  if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
		     res0 = register_output( p, VERT_RESULT_BFC0 );

		  if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
		     res1 = register_output( p, VERT_RESULT_BFC1 );
	       }
	       else {
		  mask1 = WRITEMASK_XYZ;

		  if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
		     res1 = register_output( p, VERT_RESULT_BFC0 );
	       }
	    }

	    emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);

	    release_temp(p, ambient);
	    release_temp(p, diffuse);
	    release_temp(p, specular);
	 }

	 release_temp(p, half);
	 release_temp(p, VPpli);
	 release_temp(p, att);
      }
   }

   release_temps( p );
}
Exemple #25
0
static void emit_insn( struct brw_wm_compile *c,
		       const struct tgsi_full_instruction *inst )
{
   unsigned opcode = inst->Instruction.Opcode;
   struct brw_fp_dst dst;
   struct brw_fp_src src[3];
   int i;

   dst = translate_dst( c, &inst->Dst[0],
			inst->Instruction.Saturate );

   for (i = 0; i < inst->Instruction.NumSrcRegs; i++)
      src[i] = translate_src( c, &inst->Src[i] );
   
   switch (opcode) {
   case TGSI_OPCODE_ABS:
      emit_op1(c, TGSI_OPCODE_MOV,
	       dst, 
	       src_abs(src[0]));
      break;

   case TGSI_OPCODE_SUB: 
      emit_op2(c, TGSI_OPCODE_ADD,
	       dst,
	       src[0],
	       src_negate(src[1]));
      break;

   case TGSI_OPCODE_SCS: 
      emit_op1(c, TGSI_OPCODE_SCS,
	       dst_mask(dst, BRW_WRITEMASK_XY),
	       src[0]);
      break;
	 
   case TGSI_OPCODE_DST:
      precalc_dst(c, dst, src[0], src[1]);
      break;

   case TGSI_OPCODE_LIT:
      precalc_lit(c, dst, src[0]);
      break;

   case TGSI_OPCODE_TEX:
      precalc_tex(c, dst,
		  inst->Texture.Texture,
		  src[1].index,	/* use sampler unit for tex idx */
		  src[0],       /* coord */
                  src[1]);      /* sampler */
      break;

   case TGSI_OPCODE_TXP:
      precalc_txp(c, dst,
		  inst->Texture.Texture,
		  src[1].index,	/* use sampler unit for tex idx */
		  src[0],       /* coord */
                  src[1]);      /* sampler */
      break;

   case TGSI_OPCODE_TXB:
      /* XXX: TXB not done
       */
      precalc_tex(c, dst,
		  inst->Texture.Texture,
		  src[1].index,	/* use sampler unit for tex idx*/
		  src[0],
                  src[1]);
      break;

   case TGSI_OPCODE_XPD: 
      emit_op2(c, TGSI_OPCODE_XPD,
	       dst_mask(dst, BRW_WRITEMASK_XYZ),
	       src[0], 
	       src[1]);
      break;

   case TGSI_OPCODE_KIL: 
      emit_op1(c, TGSI_OPCODE_KIL,
	       dst_mask(dst_undef(), 0),
	       src[0]);
      break;

   case TGSI_OPCODE_END:
      emit_fb_write(c);
      break;
   default:
      if (!c->key.has_flow_control &&
	  brw_wm_is_scalar_result(opcode))
	 emit_scalar_insn(c, opcode, dst, src[0], src[1], src[2]);
      else
	 emit_op3(c, opcode, dst, src[0], src[1], src[2]);
      break;
   }
}
Exemple #26
0
static void build_texture_transform( struct tnl_program *p )
{
   GLuint i, j;

   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {

      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
	 continue;

      if (p->state->unit[i].texgen_enabled ||
	  p->state->unit[i].texmat_enabled) {

	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
	 struct ureg out_texgen = undef;

	 if (p->state->unit[i].texgen_enabled) {
	    GLuint copy_mask = 0;
	    GLuint sphere_mask = 0;
	    GLuint reflect_mask = 0;
	    GLuint normal_mask = 0;
	    GLuint modes[4];

	    if (texmat_enabled)
	       out_texgen = get_temp(p);
	    else
	       out_texgen = out;

	    modes[0] = p->state->unit[i].texgen_mode0;
	    modes[1] = p->state->unit[i].texgen_mode1;
	    modes[2] = p->state->unit[i].texgen_mode2;
	    modes[3] = p->state->unit[i].texgen_mode3;

	    for (j = 0; j < 4; j++) {
	       switch (modes[j]) {
	       case TXG_OBJ_LINEAR: {
		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
		  struct ureg plane =
		     register_param3(p, STATE_TEXGEN, i,
				     STATE_TEXGEN_OBJECT_S + j);

		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
			   obj, plane );
		  break;
	       }
	       case TXG_EYE_LINEAR: {
		  struct ureg eye = get_eye_position(p);
		  struct ureg plane =
		     register_param3(p, STATE_TEXGEN, i,
				     STATE_TEXGEN_EYE_S + j);

		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
			   eye, plane );
		  break;
	       }
	       case TXG_SPHERE_MAP:
		  sphere_mask |= WRITEMASK_X << j;
		  break;
	       case TXG_REFLECTION_MAP:
		  reflect_mask |= WRITEMASK_X << j;
		  break;
	       case TXG_NORMAL_MAP:
		  normal_mask |= WRITEMASK_X << j;
		  break;
	       case TXG_NONE:
		  copy_mask |= WRITEMASK_X << j;
	       }
	    }

	    if (sphere_mask) {
	       build_sphere_texgen(p, out_texgen, sphere_mask);
	    }

	    if (reflect_mask) {
	       build_reflect_texgen(p, out_texgen, reflect_mask);
	    }

	    if (normal_mask) {
	       struct ureg normal = get_transformed_normal(p);
	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
	    }

	    if (copy_mask) {
	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
	    }
	 }

	 if (texmat_enabled) {
	    struct ureg texmat[4];
	    struct ureg in = (!is_undef(out_texgen) ?
			      out_texgen :
			      register_input(p, VERT_ATTRIB_TEX0+i));
	    if (p->mvp_with_dp4) {
	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
				       0, texmat );
	       emit_matrix_transform_vec4( p, out, texmat, in );
	    }
	    else {
	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
				       STATE_MATRIX_TRANSPOSE, texmat );
	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
	    }
	 }

	 release_temps(p);
      }
      else {
	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
      }
   }
}
Exemple #27
0
static void emit_interp( struct brw_wm_compile *c,
			 GLuint idx,
			 GLuint semantic,
			 GLuint interp_mode )
{
   struct brw_fp_dst dst = dst_reg(TGSI_FILE_INPUT, idx);
   struct brw_fp_src interp = src_reg(BRW_FILE_PAYLOAD, idx);
   struct brw_fp_src deltas = get_delta_xy(c);

   /* Need to use PINTERP on attributes which have been
    * multiplied by 1/W in the SF program, and LINTERP on those
    * which have not:
    */
   switch (semantic) {
   case TGSI_SEMANTIC_POSITION:
      /* Have to treat wpos.xy specially:
       */
      emit_op1(c,
	      WM_WPOSXY,
	      dst_mask(dst, BRW_WRITEMASK_XY),
	      get_pixel_xy(c));
      
      /* TGSI_FILE_INPUT.attr.xyzw = INTERP payload.interp[attr].x, deltas.xyw
       */
      emit_op2(c,
	       WM_LINTERP,
	       dst_mask(dst, BRW_WRITEMASK_ZW),
	       interp,
	       deltas);
      break;

   case TGSI_SEMANTIC_COLOR:
      if (c->key.flat_shade) {
	 emit_op1(c,
		 WM_CINTERP,
		 dst,
		 interp);
      }
      else if (interp_mode == TGSI_INTERPOLATE_LINEAR) {
	 emit_op2(c,
		  WM_LINTERP,
		  dst,
		  interp,
		  deltas);
      }
      else {
	 emit_op3(c,
		  WM_PINTERP,
		  dst,
		  interp,
		  deltas,
		  get_pixel_w(c));
      }

      break;

   case TGSI_SEMANTIC_FOG:
      /* Interpolate the fog coordinate */
      emit_op3(c,
	      WM_PINTERP,
	      dst_mask(dst, BRW_WRITEMASK_X),
	      interp,
	      deltas,
	      get_pixel_w(c));

      emit_op1(c,
	       TGSI_OPCODE_MOV,
	       dst_mask(dst, BRW_WRITEMASK_YZ),
	       src_imm1f(c, 0.0));

      emit_op1(c,
	       TGSI_OPCODE_MOV,
	       dst_mask(dst, BRW_WRITEMASK_W),
	       src_imm1f(c, 1.0));
      break;

   case TGSI_SEMANTIC_FACE:
      /* XXX review/test this case */
      emit_op0(c,
	       WM_FRONTFACING,
	       dst_mask(dst, BRW_WRITEMASK_X));
      
      emit_op1(c,
	      TGSI_OPCODE_MOV,
	      dst_mask(dst, BRW_WRITEMASK_YZ),
	       src_imm1f(c, 0.0));

      emit_op1(c,
	      TGSI_OPCODE_MOV,
	      dst_mask(dst, BRW_WRITEMASK_W),
	       src_imm1f(c, 1.0));
      break;

   case TGSI_SEMANTIC_PSIZE:
      /* XXX review/test this case */
      emit_op3(c,
	       WM_PINTERP,
	       dst_mask(dst, BRW_WRITEMASK_XY),
	       interp,
	       deltas,
	       get_pixel_w(c));

      emit_op1(c,
	      TGSI_OPCODE_MOV,
	      dst_mask(dst, BRW_WRITEMASK_Z),
	      src_imm1f(c, 0.0f));

      emit_op1(c,
	      TGSI_OPCODE_MOV,
	      dst_mask(dst, BRW_WRITEMASK_W),
	      src_imm1f(c, 1.0f));
      break;

   default: 
      switch (interp_mode) {
      case TGSI_INTERPOLATE_CONSTANT:
	 emit_op1(c,
		  WM_CINTERP,
		  dst,
		  interp);
	 break;

      case TGSI_INTERPOLATE_LINEAR:
	 emit_op2(c,
		  WM_LINTERP,
		  dst,
		  interp,
		  deltas);
	 break;

      case TGSI_INTERPOLATE_PERSPECTIVE:
	 emit_op3(c,
		  WM_PINTERP,
		  dst,
		  interp,
		  deltas,
		  get_pixel_w(c));
	 break;
      }
      break;
   }
}
Exemple #28
0
/* Need to add some addtional parameters to allow lighting in object
 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
 * space lighting.
 */
static void build_lighting( struct tnl_program *p )
{
   const GLboolean twoside = p->state->light_twoside;
   const GLboolean separate = p->state->separate_specular;
   GLuint nr_lights = 0, count = 0;
   struct ureg normal = get_transformed_normal(p);
   struct ureg lit = get_temp(p);
   struct ureg dots = get_temp(p);
   struct ureg _col0 = undef, _col1 = undef;
   struct ureg _bfc0 = undef, _bfc1 = undef;
   GLuint i;

   /*
    * NOTE:
    * dots.x = dot(normal, VPpli)
    * dots.y = dot(normal, halfAngle)
    * dots.z = back.shininess
    * dots.w = front.shininess
    */

   for (i = 0; i < MAX_LIGHTS; i++)
      if (p->state->unit[i].light_enabled)
	 nr_lights++;

   set_material_flags(p);

   {
      if (!p->state->material_shininess_is_zero) {
         struct ureg shininess = get_material(p, 0, STATE_SHININESS);
         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
         release_temp(p, shininess);
      }

      _col0 = make_temp(p, get_scenecolor(p, 0));
      if (separate)
	 _col1 = make_temp(p, get_identity_param(p));
      else
	 _col1 = _col0;
   }

   if (twoside) {
      if (!p->state->material_shininess_is_zero) {
         /* Note that we negate the back-face specular exponent here.
          * The negation will be un-done later in the back-face code below.
          */
         struct ureg shininess = get_material(p, 1, STATE_SHININESS);
         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
                  negate(swizzle1(shininess,X)));
         release_temp(p, shininess);
      }

      _bfc0 = make_temp(p, get_scenecolor(p, 1));
      if (separate)
	 _bfc1 = make_temp(p, get_identity_param(p));
      else
	 _bfc1 = _bfc0;
   }

   /* If no lights, still need to emit the scenecolor.
    */
   {
      struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
      emit_op1(p, OPCODE_MOV, res0, 0, _col0);
   }

   if (separate) {
      struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
      emit_op1(p, OPCODE_MOV, res1, 0, _col1);
   }

   if (twoside) {
      struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
      emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
   }

   if (twoside && separate) {
      struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
      emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
   }

   if (nr_lights == 0) {
      release_temps(p);
      return;
   }

   for (i = 0; i < MAX_LIGHTS; i++) {
      if (p->state->unit[i].light_enabled) {
	 struct ureg half = undef;
	 struct ureg att = undef, VPpli = undef;

	 count++;

	 if (p->state->unit[i].light_eyepos3_is_zero) {
	    /* Can used precomputed constants in this case.
	     * Attenuation never applies to infinite lights.
	     */
	    VPpli = register_param3(p, STATE_INTERNAL,
				    STATE_LIGHT_POSITION_NORMALIZED, i);

            if (!p->state->material_shininess_is_zero) {
               if (p->state->light_local_viewer) {
                  struct ureg eye_hat = get_eye_position_normalized(p);
                  half = get_temp(p);
                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
                  emit_normalize_vec3(p, half, half);
               }
               else {
                  half = register_param3(p, STATE_INTERNAL,
                                         STATE_LIGHT_HALF_VECTOR, i);
               }
            }
	 }
	 else {
	    struct ureg Ppli = register_param3(p, STATE_INTERNAL,
					       STATE_LIGHT_POSITION, i);
	    struct ureg V = get_eye_position(p);
	    struct ureg dist = get_temp(p);

	    VPpli = get_temp(p);

	    /* Calculate VPpli vector
	     */
	    emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);

	    /* Normalize VPpli.  The dist value also used in
	     * attenuation below.
	     */
	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);

	    /* Calculate attenuation:
	     */
	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
		p->state->unit[i].light_attenuated) {
	       att = calculate_light_attenuation(p, i, VPpli, dist);
	    }

	    /* Calculate viewer direction, or use infinite viewer:
	     */
            if (!p->state->material_shininess_is_zero) {
               half = get_temp(p);

               if (p->state->light_local_viewer) {
                  struct ureg eye_hat = get_eye_position_normalized(p);
                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
               }
               else {
                  struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
                  emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
               }

               emit_normalize_vec3(p, half, half);
            }

	    release_temp(p, dist);
	 }

	 /* Calculate dot products:
	  */
         if (p->state->material_shininess_is_zero) {
            emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
         }
         else {
            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
         }

	 /* Front face lighting:
	  */
	 {
	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
	    struct ureg res0, res1;
	    GLuint mask0, mask1;

	    if (count == nr_lights) {
	       if (separate) {
		  mask0 = WRITEMASK_XYZ;
		  mask1 = WRITEMASK_XYZ;
		  res0 = register_output( p, VERT_RESULT_COL0 );
		  res1 = register_output( p, VERT_RESULT_COL1 );
	       }
	       else {
		  mask0 = 0;
		  mask1 = WRITEMASK_XYZ;
		  res0 = _col0;
		  res1 = register_output( p, VERT_RESULT_COL0 );
	       }
	    }
            else {
	       mask0 = 0;
	       mask1 = 0;
	       res0 = _col0;
	       res1 = _col1;
	    }

	    if (!is_undef(att)) {
               /* light is attenuated by distance */
               emit_op1(p, OPCODE_LIT, lit, 0, dots);
               emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
               emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
            }
            else if (!p->state->material_shininess_is_zero) {
               /* there's a non-zero specular term */
               emit_op1(p, OPCODE_LIT, lit, 0, dots);
               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
            }
            else {
               /* no attenutation, no specular */
               emit_degenerate_lit(p, lit, dots);
               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
            }

	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);

	    release_temp(p, ambient);
	    release_temp(p, diffuse);
	    release_temp(p, specular);
	 }

	 /* Back face lighting:
	  */
	 if (twoside) {
	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
	    struct ureg res0, res1;
	    GLuint mask0, mask1;

	    if (count == nr_lights) {
	       if (separate) {
		  mask0 = WRITEMASK_XYZ;
		  mask1 = WRITEMASK_XYZ;
		  res0 = register_output( p, VERT_RESULT_BFC0 );
		  res1 = register_output( p, VERT_RESULT_BFC1 );
	       }
	       else {
		  mask0 = 0;
		  mask1 = WRITEMASK_XYZ;
		  res0 = _bfc0;
		  res1 = register_output( p, VERT_RESULT_BFC0 );
	       }
	    }
            else {
	       res0 = _bfc0;
	       res1 = _bfc1;
	       mask0 = 0;
	       mask1 = 0;
	    }

            /* For the back face we need to negate the X and Y component
             * dot products.  dots.Z has the negated back-face specular
             * exponent.  We swizzle that into the W position.  This
             * negation makes the back-face specular term positive again.
             */
            dots = negate(swizzle(dots,X,Y,W,Z));

	    if (!is_undef(att)) {
               emit_op1(p, OPCODE_LIT, lit, 0, dots);
	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
               emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
            }
            else if (!p->state->material_shininess_is_zero) {
               emit_op1(p, OPCODE_LIT, lit, 0, dots);
               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
            }
            else {
               emit_degenerate_lit(p, lit, dots);
               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
            }

	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
            /* restore dots to its original state for subsequent lights
             * by negating and swizzling again.
             */
            dots = negate(swizzle(dots,X,Y,W,Z));

	    release_temp(p, ambient);
	    release_temp(p, diffuse);
	    release_temp(p, specular);
	 }

	 release_temp(p, half);
	 release_temp(p, VPpli);
	 release_temp(p, att);
      }
   }

   release_temps( p );
}
Exemple #29
0
/**
 * Some TEX instructions require extra code, cube map coordinate
 * normalization, or coordinate scaling for RECT textures, etc.
 * This function emits those extra instructions and the TEX
 * instruction itself.
 */
static void precalc_tex( struct brw_wm_compile *c,
			 struct brw_fp_dst dst,
			 unsigned target,
			 unsigned unit,
			 struct brw_fp_src src0,
			 struct brw_fp_src sampler )
{
   struct brw_fp_src coord;
   struct brw_fp_dst tmp = dst_undef();

   assert(unit < BRW_MAX_TEX_UNIT);

   /* Cubemap: find longest component of coord vector and normalize
    * it.
    */
   if (target == TGSI_TEXTURE_CUBE) {
      struct brw_fp_src tmpsrc;

      tmp = get_temp(c);
      tmpsrc = src_reg_from_dst(tmp);

      /* tmp = abs(src0) */
      emit_op1(c, 
	       TGSI_OPCODE_MOV,
	       tmp,
	       src_abs(src0));

      /* tmp.X = MAX(tmp.X, tmp.Y) */
      emit_op2(c, TGSI_OPCODE_MAX,
	       dst_mask(tmp, BRW_WRITEMASK_X),
	       src_scalar(tmpsrc, X),
	       src_scalar(tmpsrc, Y));

      /* tmp.X = MAX(tmp.X, tmp.Z) */
      emit_op2(c, TGSI_OPCODE_MAX,
	       dst_mask(tmp, BRW_WRITEMASK_X),
	       tmpsrc,
	       src_scalar(tmpsrc, Z));

      /* tmp.X = 1 / tmp.X */
      emit_op1(c, TGSI_OPCODE_RCP,
	      dst_mask(tmp, BRW_WRITEMASK_X),
	      tmpsrc);

      /* tmp = src0 * tmp.xxxx */
      emit_op2(c, TGSI_OPCODE_MUL,
	       tmp,
	       src0,
	       src_scalar(tmpsrc, X));

      coord = tmpsrc;
   }
   else if (target == TGSI_TEXTURE_RECT ||
	    target == TGSI_TEXTURE_SHADOWRECT) {
      /* XXX: need a mechanism for internally generated constants.
       */
      coord = src0;
   }
   else {
      coord = src0;
   }

   /* Need to emit YUV texture conversions by hand.  Probably need to
    * do this here - the alternative is in brw_wm_emit.c, but the
    * conversion requires allocating a temporary variable which we
    * don't have the facility to do that late in the compilation.
    */
   if (c->key.yuvtex_mask & (1 << unit)) {
      /* convert ycbcr to RGBA */
      GLboolean  swap_uv = c->key.yuvtex_swap_mask & (1<<unit);
      struct brw_fp_dst tmp = get_temp(c);
      struct brw_fp_src tmpsrc = src_reg_from_dst(tmp);
      struct brw_fp_src C0 = src_imm4f( c,  -.5, -.0625, -.5, 1.164 );
      struct brw_fp_src C1 = src_imm4f( c, 1.596, -0.813, 2.018, -.391 );
     
      /* tmp     = TEX ...
       */
      emit_tex_op(c, 
                  TGSI_OPCODE_TEX,
                  dst_saturate(tmp, dst.saturate),
                  unit,
                  target,
                  sampler.index,
                  coord,
                  src_undef(),
                  src_undef());

      /* tmp.xyz =  ADD TMP, C0
       */
      emit_op2(c, TGSI_OPCODE_ADD,
	       dst_mask(tmp, BRW_WRITEMASK_XYZ),
	       tmpsrc,
	       C0);

      /* YUV.y   = MUL YUV.y, C0.w
       */
      emit_op2(c, TGSI_OPCODE_MUL,
	       dst_mask(tmp, BRW_WRITEMASK_Y),
	       tmpsrc,
	       src_scalar(C0, W));

      /* 
       * if (UV swaped)
       *     RGB.xyz = MAD YUV.zzx, C1, YUV.y
       * else
       *     RGB.xyz = MAD YUV.xxz, C1, YUV.y
       */

      emit_op3(c, TGSI_OPCODE_MAD,
	       dst_mask(dst, BRW_WRITEMASK_XYZ),
	       ( swap_uv ? 
		 src_swizzle(tmpsrc, Z,Z,X,X) : 
		 src_swizzle(tmpsrc, X,X,Z,Z)),
	       C1,
	       src_scalar(tmpsrc, Y));

      /*  RGB.y   = MAD YUV.z, C1.w, RGB.y
       */
      emit_op3(c,
	       TGSI_OPCODE_MAD,
	       dst_mask(dst, BRW_WRITEMASK_Y),
	       src_scalar(tmpsrc, Z),
	       src_scalar(C1, W),
	       src_scalar(src_reg_from_dst(dst), Y));

      release_temp(c, tmp);
   }
   else {
      /* ordinary RGBA tex instruction */
      emit_tex_op(c, 
                  TGSI_OPCODE_TEX,
                  dst,
                  unit,
                  target,
                  sampler.index,
                  coord,
                  src_undef(),
                  src_undef());
   }

   /* XXX: add GL_EXT_texture_swizzle support to gallium -- by
    * generating shader variants in mesa state tracker.
    */

   /* Release this temp if we ended up allocating it:
    */
   if (!dst_is_undef(tmp))
      release_temp(c, tmp);
}