Exemple #1
0
void IdwInterpolator::_buildModel()
{
  _index.reset();

  if (_p < 0.0)
  {
    NelderMead optimizer(1, new IdwOptimizeFunction(*this), _stopDelta);
    Vector result;
    result.prepare(1);

    _p = 1.0;
    result[0] = _p;
    optimizer.step(result, -estimateError());

    _p = 4.0;
    result[0] = _p;
    optimizer.step(result, -estimateError());

    int iterations = 0;
    while (optimizer.done() == false && iterations <= _maxAllowedPerLoopOptimizationIterations)
    {
      double e = -estimateError();
      //cout << "error: " << e << " count: " << iterations << endl;
      result = optimizer.step(result, e);
      iterations++;
      _p = result[0];
    }
    if (iterations > _iterations)
    {
      _iterations = iterations;
    }
  }
}
void IdwInterpolator::_buildModel()
{
  _index.reset();

  if (_p < 0.0)
  {
    NelderMead optimizer(1, new IdwOptimizeFunction(*this), _stopDelta);
    Vector result;
    result.prepare(1);

    _p = 1.0;
    result[0] = _p;
    optimizer.step(result, -estimateError());

    _p = 4.0;
    result[0] = _p;
    optimizer.step(result, -estimateError());

    int count = 0;
    while (optimizer.done() == false)
    {
      double e = -estimateError();
      cout << "error: " << e << " count: " << count++ << endl;
      result = optimizer.step(result, e);
      _p = result[0];
    }
  }
}
void KernelEstimationInterpolator::_buildModel()
{
  const DataFrame& df = *_df;

  _index.reset();

  if (_sigma < 0)
  {
    // calculate the standard deviation in x
    double mean = 0;
    size_t n = df.getNumDataVectors();
    for (size_t i = 0; i < n; ++i)
    {
      double v = df.getDataVector(i)[_indColumns[0]];
      mean += v;
    }
    mean /= df.getNumDataVectors();

    double sumDiff = 0;
    for (size_t i = 0; i < n; ++i)
    {
      double v = df.getDataVector(i)[_indColumns[0]];
      sumDiff += (v - mean) * (v - mean);
    }

    double sdx = sqrt(1.0 / (n - 1) * sumDiff);

    // calculate a reasonable starting point w/ silverman's rule of thumb. Put a minimum at 1m to
    // prevent some edge conditions.
    double silvermans = max(1.0, 1.06 * sdx * pow(n, -.2));

    NelderMead optimizer(1, new OptimizeFunction(*this), _stopDelta);
    Vector result;
    result.prepare(1);

    // silverman's rule of thumb tends to over estimate and we're faster at evaluating smaller sigma
    // so start with two smallish values to seed nelder-mead.
    _sigma = silvermans * 0.6;
    result[0] = _sigma;
    optimizer.step(result, -estimateError());

    _sigma = silvermans * 0.2;
    result[0] = _sigma;
    optimizer.step(result, -estimateError());

    while (optimizer.done() == false)
    {
      double e = -estimateError();
      result = optimizer.step(result, e);
      _sigma = result[0];
    }
  }
}
Exemple #4
0
/* genEllipticPath:
 * Approximate an elliptical arc via Beziers of given degree
 * threshold indicates quality of approximation
 * if isSlice is true, the path begins and ends with line segments
 * to the center of the ellipse.
 * Returned path must be freed by the caller.
 */
static Ppolyline_t *genEllipticPath(ellipse_t * ep, int degree,
				    double threshold, boolean isSlice)
{
    double dEta;
    double etaB;
    double cosEtaB;
    double sinEtaB;
    double aCosEtaB;
    double bSinEtaB;
    double aSinEtaB;
    double bCosEtaB;
    double xB;
    double yB;
    double xBDot;
    double yBDot;
    double t;
    double alpha;
    Ppolyline_t *path = NEW(Ppolyline_t);

    // find the number of Bezier curves needed
    boolean found = FALSE;
    int i, n = 1;
    while ((!found) && (n < 1024)) {
	double dEta = (ep->eta2 - ep->eta1) / n;
	if (dEta <= 0.5 * M_PI) {
	    double etaB = ep->eta1;
	    found = TRUE;
	    for (i = 0; found && (i < n); ++i) {
		double etaA = etaB;
		etaB += dEta;
		found =
		    (estimateError(ep, degree, etaA, etaB) <= threshold);
	    }
	}
	n = n << 1;
    }

    dEta = (ep->eta2 - ep->eta1) / n;
    etaB = ep->eta1;

    cosEtaB = cos(etaB);
    sinEtaB = sin(etaB);
    aCosEtaB = ep->a * cosEtaB;
    bSinEtaB = ep->b * sinEtaB;
    aSinEtaB = ep->a * sinEtaB;
    bCosEtaB = ep->b * cosEtaB;
    xB = ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta;
    yB = ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta;
    xBDot = -aSinEtaB * ep->cosTheta - bCosEtaB * ep->sinTheta;
    yBDot = -aSinEtaB * ep->sinTheta + bCosEtaB * ep->cosTheta;

    if (isSlice) {
	moveTo(path, ep->cx, ep->cy);
	lineTo(path, xB, yB);
    } else {
	moveTo(path, xB, yB);
    }

    t = tan(0.5 * dEta);
    alpha = sin(dEta) * (sqrt(4 + 3 * t * t) - 1) / 3;

    for (i = 0; i < n; ++i) {

	double xA = xB;
	double yA = yB;
	double xADot = xBDot;
	double yADot = yBDot;

	etaB += dEta;
	cosEtaB = cos(etaB);
	sinEtaB = sin(etaB);
	aCosEtaB = ep->a * cosEtaB;
	bSinEtaB = ep->b * sinEtaB;
	aSinEtaB = ep->a * sinEtaB;
	bCosEtaB = ep->b * cosEtaB;
	xB = ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta;
	yB = ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta;
	xBDot = -aSinEtaB * ep->cosTheta - bCosEtaB * ep->sinTheta;
	yBDot = -aSinEtaB * ep->sinTheta + bCosEtaB * ep->cosTheta;

	if (degree == 1) {
	    lineTo(path, xB, yB);
#if DO_QUAD
	} else if (degree == 2) {
	    double k = (yBDot * (xB - xA) - xBDot * (yB - yA))
		/ (xADot * yBDot - yADot * xBDot);
	    quadTo(path, (xA + k * xADot), (yA + k * yADot), xB, yB);
#endif
	} else {
	    curveTo(path, (xA + alpha * xADot), (yA + alpha * yADot),
		    (xB - alpha * xBDot), (yB - alpha * yBDot), xB, yB);
	}

    }

    endPath(path, isSlice);

    return path;
}