void eval_tan(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The tan function is only valid for floating point types."); T t; eval_sin(result, x); eval_cos(t, x); eval_divide(result, t); }
void eval_atan(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The atan function is only valid for floating point types."); typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type; typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; typedef typename mpl::front<typename T::float_types>::type fp_type; switch(eval_fpclassify(x)) { case FP_NAN: result = x; return; case FP_ZERO: result = ui_type(0); return; case FP_INFINITE: if(eval_get_sign(x) < 0) { eval_ldexp(result, get_constant_pi<T>(), -1); result.negate(); } else eval_ldexp(result, get_constant_pi<T>(), -1); return; default: ; } const bool b_neg = eval_get_sign(x) < 0; T xx(x); if(b_neg) xx.negate(); if(xx.compare(fp_type(0.1)) < 0) { T t1, t2, t3; t1 = ui_type(1); t2 = fp_type(0.5f); t3 = fp_type(1.5f); eval_multiply(xx, xx); xx.negate(); hyp2F1(result, t1, t2, t3, xx); eval_multiply(result, x); return; } if(xx.compare(fp_type(10)) > 0) { T t1, t2, t3; t1 = fp_type(0.5f); t2 = ui_type(1u); t3 = fp_type(1.5f); eval_multiply(xx, xx); eval_divide(xx, si_type(-1), xx); hyp2F1(result, t1, t2, t3, xx); eval_divide(result, x); if(!b_neg) result.negate(); eval_ldexp(t1, get_constant_pi<T>(), -1); eval_add(result, t1); if(b_neg) result.negate(); return; } // Get initial estimate using standard math function atan. fp_type d; eval_convert_to(&d, xx); result = fp_type(std::atan(d)); // Newton-Raphson iteration static const boost::int32_t double_digits10_minus_a_few = std::numeric_limits<double>::digits10 - 3; T s, c, t; for(boost::int32_t digits = double_digits10_minus_a_few; digits <= std::numeric_limits<number<T, et_on> >::digits10; digits *= 2) { eval_sin(s, result); eval_cos(c, result); eval_multiply(t, xx, c); eval_subtract(t, s); eval_multiply(s, t, c); eval_add(result, s); } if(b_neg) result.negate(); }
void eval_asin(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types."); typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; typedef typename mpl::front<typename T::float_types>::type fp_type; if(&result == &x) { T t(x); eval_asin(result, t); return; } switch(eval_fpclassify(x)) { case FP_NAN: case FP_INFINITE: if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN) result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); else BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; case FP_ZERO: result = ui_type(0); return; default: ; } const bool b_neg = eval_get_sign(x) < 0; T xx(x); if(b_neg) xx.negate(); int c = xx.compare(ui_type(1)); if(c > 0) { if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN) result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); else BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; } else if(c == 0) { result = get_constant_pi<T>(); eval_ldexp(result, result, -1); if(b_neg) result.negate(); return; } if(xx.compare(fp_type(1e-4)) < 0) { // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/ eval_multiply(xx, xx); T t1, t2; t1 = fp_type(0.5f); t2 = fp_type(1.5f); hyp2F1(result, t1, t1, t2, xx); eval_multiply(result, x); return; } else if(xx.compare(fp_type(1 - 1e-4f)) > 0) { T dx1; T t1, t2; eval_subtract(dx1, ui_type(1), xx); t1 = fp_type(0.5f); t2 = fp_type(1.5f); eval_ldexp(dx1, dx1, -1); hyp2F1(result, t1, t1, t2, dx1); eval_ldexp(dx1, dx1, 2); eval_sqrt(t1, dx1); eval_multiply(result, t1); eval_ldexp(t1, get_constant_pi<T>(), -1); result.negate(); eval_add(result, t1); if(b_neg) result.negate(); return; } #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS typedef typename boost::multiprecision::detail::canonical<long double, T>::type guess_type; #else typedef fp_type guess_type; #endif // Get initial estimate using standard math function asin. guess_type dd; eval_convert_to(&dd, xx); result = (guess_type)(std::asin(dd)); unsigned current_digits = std::numeric_limits<guess_type>::digits - 5; unsigned target_precision = boost::multiprecision::detail::digits2<number<T, et_on> >::value; // Newton-Raphson iteration while(current_digits < target_precision) { T sine, cosine; eval_sin(sine, result); eval_cos(cosine, result); eval_subtract(sine, xx); eval_divide(sine, cosine); eval_subtract(result, sine); current_digits *= 2; /* T lim; eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value); if(eval_get_sign(s) < 0) s.negate(); if(eval_get_sign(lim) < 0) lim.negate(); if(lim.compare(s) >= 0) break; */ } if(b_neg) result.negate(); }
void eval_cos(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The cos function is only valid for floating point types."); if(&result == &x) { T temp; eval_cos(temp, x); result = temp; return; } typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type; typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; typedef typename mpl::front<typename T::float_types>::type fp_type; switch(eval_fpclassify(x)) { case FP_INFINITE: case FP_NAN: if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN) result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); else BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; case FP_ZERO: result = ui_type(1); return; default: ; } // Local copy of the argument T xx = x; // Analyze and prepare the phase of the argument. // Make a local, positive copy of the argument, xx. // The argument xx will be reduced to 0 <= xx <= pi/2. bool b_negate_cos = false; if(eval_get_sign(x) < 0) { xx.negate(); } T n_pi, t; // Remove even multiples of pi. if(xx.compare(get_constant_pi<T>()) > 0) { eval_divide(t, xx, get_constant_pi<T>()); eval_trunc(n_pi, t); BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific)); eval_multiply(t, n_pi, get_constant_pi<T>()); BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific)); eval_subtract(xx, t); BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific)); // Adjust signs if the multiple of pi is not even. t = ui_type(2); eval_fmod(t, n_pi, t); const bool b_n_pi_is_even = eval_get_sign(t) == 0; if(!b_n_pi_is_even) { b_negate_cos = !b_negate_cos; } } // Reduce the argument to 0 <= xx <= pi/2. eval_ldexp(t, get_constant_pi<T>(), -1); int com = xx.compare(t); if(com > 0) { eval_subtract(xx, get_constant_pi<T>(), xx); b_negate_cos = !b_negate_cos; BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific)); } const bool b_zero = eval_get_sign(xx) == 0; const bool b_pi_half = com == 0; // Check if the reduced argument is very close to 0. const bool b_near_zero = xx.compare(fp_type(1e-1)) < 0; if(b_zero) { result = si_type(1); } else if(b_pi_half) { result = si_type(0); } else if(b_near_zero) { eval_multiply(t, xx, xx); eval_divide(t, si_type(-4)); n_pi = fp_type(0.5f); hyp0F1(result, n_pi, t); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); } else { eval_subtract(t, xx); eval_sin(result, t); } if(b_negate_cos) result.negate(); }
void eval_atan(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The atan function is only valid for floating point types."); typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type; typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; typedef typename mpl::front<typename T::float_types>::type fp_type; switch(eval_fpclassify(x)) { case FP_NAN: result = x; errno = EDOM; return; case FP_ZERO: result = x; return; case FP_INFINITE: if(eval_get_sign(x) < 0) { eval_ldexp(result, get_constant_pi<T>(), -1); result.negate(); } else eval_ldexp(result, get_constant_pi<T>(), -1); return; default: ; } const bool b_neg = eval_get_sign(x) < 0; T xx(x); if(b_neg) xx.negate(); if(xx.compare(fp_type(0.1)) < 0) { T t1, t2, t3; t1 = ui_type(1); t2 = fp_type(0.5f); t3 = fp_type(1.5f); eval_multiply(xx, xx); xx.negate(); hyp2F1(result, t1, t2, t3, xx); eval_multiply(result, x); return; } if(xx.compare(fp_type(10)) > 0) { T t1, t2, t3; t1 = fp_type(0.5f); t2 = ui_type(1u); t3 = fp_type(1.5f); eval_multiply(xx, xx); eval_divide(xx, si_type(-1), xx); hyp2F1(result, t1, t2, t3, xx); eval_divide(result, x); if(!b_neg) result.negate(); eval_ldexp(t1, get_constant_pi<T>(), -1); eval_add(result, t1); if(b_neg) result.negate(); return; } // Get initial estimate using standard math function atan. fp_type d; eval_convert_to(&d, xx); result = fp_type(std::atan(d)); // Newton-Raphson iteration, we should double our precision with each iteration, // in practice this seems to not quite work in all cases... so terminate when we // have at least 2/3 of the digits correct on the assumption that the correction // we've just added will finish the job... boost::intmax_t current_precision = eval_ilogb(result); boost::intmax_t target_precision = current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3; T s, c, t; while(current_precision > target_precision) { eval_sin(s, result); eval_cos(c, result); eval_multiply(t, xx, c); eval_subtract(t, s); eval_multiply(s, t, c); eval_add(result, s); current_precision = eval_ilogb(s); if(current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1) break; } if(b_neg) result.negate(); }
void eval_asin(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types."); typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; typedef typename mpl::front<typename T::float_types>::type fp_type; if(&result == &x) { T t(x); eval_asin(result, t); return; } switch(eval_fpclassify(x)) { case FP_NAN: case FP_INFINITE: if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN) { result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); errno = EDOM; } else BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; case FP_ZERO: result = x; return; default: ; } const bool b_neg = eval_get_sign(x) < 0; T xx(x); if(b_neg) xx.negate(); int c = xx.compare(ui_type(1)); if(c > 0) { if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN) { result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); errno = EDOM; } else BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type.")); return; } else if(c == 0) { result = get_constant_pi<T>(); eval_ldexp(result, result, -1); if(b_neg) result.negate(); return; } if(xx.compare(fp_type(1e-4)) < 0) { // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/ eval_multiply(xx, xx); T t1, t2; t1 = fp_type(0.5f); t2 = fp_type(1.5f); hyp2F1(result, t1, t1, t2, xx); eval_multiply(result, x); return; } else if(xx.compare(fp_type(1 - 1e-4f)) > 0) { T dx1; T t1, t2; eval_subtract(dx1, ui_type(1), xx); t1 = fp_type(0.5f); t2 = fp_type(1.5f); eval_ldexp(dx1, dx1, -1); hyp2F1(result, t1, t1, t2, dx1); eval_ldexp(dx1, dx1, 2); eval_sqrt(t1, dx1); eval_multiply(result, t1); eval_ldexp(t1, get_constant_pi<T>(), -1); result.negate(); eval_add(result, t1); if(b_neg) result.negate(); return; } #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS typedef typename boost::multiprecision::detail::canonical<long double, T>::type guess_type; #else typedef fp_type guess_type; #endif // Get initial estimate using standard math function asin. guess_type dd; eval_convert_to(&dd, xx); result = (guess_type)(std::asin(dd)); // Newton-Raphson iteration, we should double our precision with each iteration, // in practice this seems to not quite work in all cases... so terminate when we // have at least 2/3 of the digits correct on the assumption that the correction // we've just added will finish the job... boost::intmax_t current_precision = eval_ilogb(result); boost::intmax_t target_precision = current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3; // Newton-Raphson iteration while(current_precision > target_precision) { T sine, cosine; eval_sin(sine, result); eval_cos(cosine, result); eval_subtract(sine, xx); eval_divide(sine, cosine); eval_subtract(result, sine); current_precision = eval_ilogb(sine); if(current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1) break; } if(b_neg) result.negate(); }
void eval_asin(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types."); typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type; typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; typedef typename T::exponent_type exp_type; typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type; typedef typename mpl::front<typename T::float_types>::type fp_type; if(&result == &x) { T t(x); eval_asin(result, t); return; } switch(eval_fpclassify(x)) { case FP_NAN: case FP_INFINITE: result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); return; case FP_ZERO: result = ui_type(0); return; default: ; } const bool b_neg = eval_get_sign(x) < 0; T xx(x); if(b_neg) xx.negate(); int c = xx.compare(ui_type(1)); if(c > 0) { result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); return; } else if(c == 0) { result = get_constant_pi<T>(); eval_ldexp(result, result, -1); if(b_neg) result.negate(); return; } if(xx.compare(fp_type(1e-4)) < 0) { // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/ eval_multiply(xx, xx); T t1, t2; t1 = fp_type(0.5f); t2 = fp_type(1.5f); hyp2F1(result, t1, t1, t2, xx); eval_multiply(result, x); return; } else if(xx.compare(fp_type(1 - 1e-4f)) > 0) { T dx1; T t1, t2; eval_subtract(dx1, ui_type(1), xx); t1 = fp_type(0.5f); t2 = fp_type(1.5f); eval_ldexp(dx1, dx1, -1); hyp2F1(result, t1, t1, t2, dx1); eval_ldexp(dx1, dx1, 2); eval_sqrt(t1, dx1); eval_multiply(result, t1); eval_ldexp(t1, get_constant_pi<T>(), -1); result.negate(); eval_add(result, t1); if(b_neg) result.negate(); return; } // Get initial estimate using standard math function asin. double dd; eval_convert_to(&dd, xx); result = fp_type(std::asin(dd)); // Newton-Raphson iteration while(true) { T s, c; eval_sin(s, result); eval_cos(c, result); eval_subtract(s, xx); eval_divide(s, c); eval_subtract(result, s); T lim; eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value); if(eval_get_sign(s) < 0) s.negate(); if(eval_get_sign(lim) < 0) lim.negate(); if(lim.compare(s) >= 0) break; } if(b_neg) result.negate(); }
void eval_cos(T& result, const T& x) { BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The cos function is only valid for floating point types."); if(&result == &x) { T temp; eval_cos(temp, x); result = temp; return; } typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type; typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type; typedef typename T::exponent_type exp_type; typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type; typedef typename mpl::front<typename T::float_types>::type fp_type; switch(eval_fpclassify(x)) { case FP_INFINITE: case FP_NAN: result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend(); return; case FP_ZERO: result = ui_type(1); return; default: ; } // Local copy of the argument T xx = x; // Analyze and prepare the phase of the argument. // Make a local, positive copy of the argument, xx. // The argument xx will be reduced to 0 <= xx <= pi/2. bool b_negate_cos = false; if(eval_get_sign(x) < 0) { xx.negate(); } T n_pi, t; // Remove even multiples of pi. if(xx.compare(get_constant_pi<T>()) > 0) { eval_divide(t, xx, get_constant_pi<T>()); eval_trunc(n_pi, t); BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific)); eval_multiply(t, n_pi, get_constant_pi<T>()); BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific)); eval_subtract(xx, t); BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific)); // Adjust signs if the multiple of pi is not even. t = ui_type(2); eval_fmod(t, n_pi, t); const bool b_n_pi_is_even = eval_get_sign(t) == 0; if(!b_n_pi_is_even) { b_negate_cos = !b_negate_cos; } } // Reduce the argument to 0 <= xx <= pi/2. eval_ldexp(t, get_constant_pi<T>(), -1); int com = xx.compare(t); if(com > 0) { eval_subtract(xx, get_constant_pi<T>(), xx); b_negate_cos = !b_negate_cos; BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific)); } const bool b_zero = eval_get_sign(xx) == 0; const bool b_pi_half = com == 0; // Check if the reduced argument is very close to 0 or pi/2. const bool b_near_zero = xx.compare(fp_type(1e-4)) < 0; eval_subtract(t, xx); const bool b_near_pi_half = t.compare(fp_type(1e-4)) < 0; if(b_zero) { result = si_type(1); } else if(b_pi_half) { result = si_type(0); } else if(b_near_zero) { eval_multiply(t, xx, xx); eval_divide(t, si_type(-4)); n_pi = fp_type(0.5f); hyp0F1(result, n_pi, t); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); } else if(b_near_pi_half) { T t2(t); eval_multiply(t, t); eval_divide(t, si_type(-4)); n_pi = fp_type(1.5f); hyp0F1(result, n_pi, t); eval_multiply(result, t2); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); } else { // Scale to a small argument for an efficient Taylor series, // implemented as a hypergeometric function. Use a standard // divide by three identity a certain number of times. // Here we use division by 3^9 --> (19683 = 3^9). static const ui_type n_scale = 9; static const ui_type n_three_pow_scale = 19683; eval_divide(xx, n_three_pow_scale); eval_multiply(t, xx, xx); eval_divide(t, si_type(-4)); n_pi = fp_type(0.5f); // Now with small arguments, we are ready for a series expansion. hyp0F1(result, n_pi, t); BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific)); // Convert back using multiple angle identity. for(ui_type k = 0; k < n_scale; k++) { eval_multiply(t, result, result); eval_multiply(t, result); eval_multiply(t, ui_type(4)); eval_multiply(result, si_type(-3)); eval_add(result, t); } } if(b_negate_cos) result.negate(); }